Biological activity and genome composition of a Tunisian isolate of Spodoptera littoralis nucleopolyhedrovirus (SpliNPV-Tun2)

Saoussen Ben Tiba ${ }^{1,2,3}$, Asma Laarif ${ }^{3}$, Jörg T. Wennmann ${ }^{1}$, Thameur Bouslama ${ }^{3}$ and Johannes A. Jehle ${ }^{1 *}$ ©

Abstract

Background: The baculovirus Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) is an entomopathogenic virus utilized as a biological control agent of the Egyptian cotton leaf worm, Spodoptera littoralis. Several studies have focused on the identification of different SpliNPV isolates from a biological and molecular point of view, but few of them conducted in-depth analyses of the genomic composition of these isolates. Results: Identification of a novel isolate of SpliNPV, termed Tun2, which was purified from infected S. littoralis larvae from Tunisia was reported. This isolate was propagated in vivo and its median lethal concentration (LC C_{50}) was determined to be 1.5×10^{4} occlusion bodies (OBs)/ml for third instar S. littoralis larvae at 7 days of post-infection. OB production in late fourth instar larvae was estimated to be at least $2.7 \times 10^{9} \mathrm{OBs} / \mathrm{g}$ larval weight. The completely sequenced genome of SpliNPV-Tun2 was 137,099 bp in length and contained 132 open reading frames (ORF). It showed a 98.2\% nucleotide identity to the Egyptian isolate SpliMNPV-AN1956, with some striking differences; between both genomes, insertion and deletion mutations were noticed in 9 baculovirus core genes, and also in the highly conserved polyhedrin gene. The homologs of ORF 106 and ORF 107 of SpliNPV-AN1956 appeared to be fused to a single ORF 106 in SpliNPV-Tun2, similar to the homologous ORF 110 in SpltNPV-G2. Conclusion: SpliNPV-Tun2 is proposed as a new variant of SpliNPV and a potential candidate for further evaluation as a biocontrol agent for S. littoralis and probably other Spodoptera species.

Keywords: Egyptian cotton leaf worm, Spodoptera littoralis, Baculoviridae, Alphabaculovirus, Bioassays, Survival time analysis, Illumina sequencing, Genome annotation, Phylogeny, Biological control

Background

The Egyptian cotton leaf worm Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) is considered one of the major pests of cotton, tobacco, and corn in the Mediterranean Area and Asia. Larvae of S. littoralis are polyphagous, causing substantial economic losses in both greenhouse and open field crops on a broad range of ornamental, industrial, and vegetable crops (Martins

[^0]et al. 2005). Due to the severe damage to various crops, controlling this pest is an important issue for integrated pest management. Up to now, S. littoralis management has mainly focused on chemical insecticides. However, numerous studies have been carried out on the possibility of biological control of the pest. Insect viruses and entomopathogenic bacteria, fungi, and nematodes have been investigated as biological control agents of S. littoralis (Hajek and Shapiro-Ilan, 2018). The Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) is a baculovirus that has been evaluated, registered, and applied for control of S. littoralis, as well as the fall armyworm, Spodoptera frugiperda, and the tobacco cutworm Spodoptera litura in Africa, America and Japan (Abdel-Khalik
et al.2017; El-Sheikh 2015; Takatsuka et al. 2016). Baculoviruses comprise a large group of double-stranded, circular DNA viruses that infect insects from the orders Lepidoptera, Hymenoptera, and Diptera. Many of these viruses have been investigated because of their potential as biological control agents against agricultural and forest pests (Moscardi 1999). Based on phylogenetic analysis, the Baculoviridae family is separated into 4 genera: Alphabaculovirus (lepidopteran-specific nucleopolyhedroviruses, NPVs), Betabaculovirus (lepidopteranspecific granuloviruses, GVs), Gammabaculovirus (hymenopteran-specific NPVs) and Deltabaculovirus (dipteran-specific NPVs) (Jehle et al. 2006). SpliNPV belongs to the species Spodoptera littoralis nucleopolyhedrovirus of the genus Alphabaculovirus (Harrison et al. 2018).

Different SpliNPV variants have been isolated from cotton leaf worm populations in different countries, and intra-specific variation between isolates was identified by restriction endonuclease or partial gene sequencing (Breitenbach et al. 2013; Cherry and Summers 1985; Kislev and Edelman 1982; Martins et al. 2005;). So far, only the Egyptian isolate SpliMNPV-AN1956 has been fully sequenced; its genome is $137,998 \mathrm{bp}$ in length, harbours 132 ORFs, and 15 homologous repeat regions (hrs), and is closely related to the nucleopolyhedrovirus G2 (SpltNPV-G2). Comparisons of the genome sequence of SpliMNPV-AN1956 and SpltNPV-G2 revealed an average of 85% amino acid identity across all genes and high collinearity of the 2 genomes, despite the lack/gain of 16 ORFs (Pang et al. 2001). It was reported that NPVs isolated from Spodoptera spp. have a rather narrow host range (Jakubowska et al. 2010). For example, the Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) infects only larvae of its host S. exigua (Jakubowska et al. 2010), whereas SpliNPV was shown to be infectious also to S. frugiperda, S. exigua, and S. litura (Takatsuka et al. 2016). Recently, a Tunisian isolate, named SpliMNPVTun, was detected in 2008 from infected cotton leaf worm caterpillars collected in Tunisian tomato greenhouses and identified as a SpliNPV variant based on the partial polyhedrin (polh) gene sequence (Laarif et al. 2011). Here, the identification of a further SpliNPV isolate, termed Tun2, which was obtained from a S. littoralis colony that was established from collected caterpillars from tomato fields in 2013 is reported. This isolate was tested for its activity towards third instar S. littoralis larvae, and its complete genome was determined to study its relationship to other SpliNPV variants.

Methods

Insects and virus detection

Larvae of S. littoralis were collected in 2013 from tomato fields (Monastir, Central-East, Tunisia) to establish a laboratory colony at the laboratory of entomology at Regional Research Centre in Horticulture and Organic Agriculture (CRRHAB). For colony maintenance, larvae were fed on a semi-artificial diet (Shorey and Gaston 1965) and kept at a temperature of $28 \pm 2{ }^{\circ} \mathrm{C}$ and $60 \pm 5 \%$ relative humidity (RH). Adults were kept in cylinders, and egg deposits were collected on filter papers. The filter papers were transferred to Petri dishes until larval hatching. A piece of artificial diet was added to the Petri dishes where larvae were kept until pupation. Occasionally, larvae from the rearing showed symptoms of nucleopolyhedrovirus infection indicating activation of a covert infection of the S. littoralis population. Diseased larvae were removed from the rearing and stored individually at $-20^{\circ} \mathrm{C}$.

Occlusion body purification

Baculoviral occlusion bodies (OB) were purified from pooled infected cadavers according to El-Salamouny et al. (2003). Briefly, the cadavers were homogenized in sterile distilled water and the homogenate was filtered through a muslin cloth. The obtained crude OB suspension was washed twice with 0.1% sodium dodecyl sulphate (SDS) and pelleted by low centrifugation. The pellet was resuspended in 50 mM Tris $/ \mathrm{HCl}(\mathrm{pH} 8)$, transferred to a $2-\mathrm{ml}$ Eppendorf reaction vial, and HCl $(0.1 \mathrm{M})$ or $\mathrm{Na}_{2} \mathrm{Co}_{3}(0.1 \mathrm{M})$ was added to adjust its pH to 7. Then, the OB suspension was centrifuged through a sucrose gradient and resuspended in $\mathrm{H}_{2} \mathrm{O}$. OB concentration was counted using a Neubauer Cell Counting Chamber (0.1 mm depth) and phase contrast light microscopy (Leica DMRBE, Leica, Wetzlar, Germany) (Eberle et al. 2012).

Bioassays

For testing the biological activity of SpliNPV-Tun2, per os infection experiments were conducted with third instar larvae of S. littoralis. For this, 25 larvae were fed with $1.5-2.5 \mathrm{~g}$ artificial diet plugs prepared with final concentrations of $10^{3}-10^{8} \mathrm{OBs} / \mathrm{ml}$ (Shaurub et al. 2014). Untreated control groups consisted of 75 larvae. Each treatment consisted of 3 independent replicates. The mortality data were corrected with untreated control mortality using the formula of Abbott (1925). Calculation of the median lethal concentration $\left(\mathrm{LC}_{50}\right)$ at 7 days postinfection (dpi) was estimated by Probit analysis using linear regression implemented in the ToxRat 3.2.1 software package (ToxRat Solutions GmbH, Germany). From the same experiment, larval mortality was determined
for each concentration at least at 5 different time points within the time range of $1-14$ dpi. Statistical analysis was done with R (version 4) and RStudio (version 1.1393). Survival analysis was conducted with R packages "Survival" (version 2.38) and "Survminer" (version 0.4.3). A test of significant variance between Kaplan-Meier curves was performed by a log-rank test (level of significance, $P<0.05)$.

OB productivity of S. littoralis larvae

An OB dose of 10^{4} OBs of SpliNPV-Tun2 was pipetted onto cubes of diet of $5 \mathrm{~mm}^{3}$ each and individually offered to early fourth instar larvae of S. littoralis (Grzywacz et al. 1998). When the doses were completely ingested within 2 days, a non-contaminated diet was added every second day until 12 dpi. Larvae were harvested at 14 dpi . Three different methods for OB purification were compared; low-speed centrifugation (LSC) (Harrison 2008), sucrose gradient ultracentrifugation (SGU) (El-Salamouny et al. 2003), and sucrose cushion centrifugation (SCC) (Wennmann and Jehle 2014). Purified OBs were counted as described above. OB counting was performed 3 times for each treatment; the obtained concentrations were multiplied with the volume (5 ml), and then normalized with the larva weight. Results were expressed as $\mathrm{OBs} / \mathrm{g}$ of larval tissue and were used to compute the arithmetic mean of OB / g of each experiment. Differences in the mean number of OB / g were statistically evaluated for a significance value of $P \leq 0.05$ using analysis of variance (ANOVA) and the Tukey's Honestly Significant Difference test (Tukey-HSD) comparison of means with standard R code (R version 3.3.1 in RStudio 3.4.0).

Viral DNA extraction

Viral DNA was extracted according to Bernal et al. (2013) with some modification. Occlusion derived virions (ODVs) were released from OBs by mixing $100 \mu \mathrm{l}$ of the OB suspension (containing about $10^{9} \mathrm{OBs} / \mathrm{ml}$) with $100 \mu \mathrm{l} \mathrm{Na} 2 \mathrm{CO}_{3}(0.5 \mathrm{M}), 50 \mu \mathrm{l}$ SDS (10%, w/v) in a final volume of $500 \mu \mathrm{l}$. After incubation at $60^{\circ} \mathrm{C}$ for 10 min , the suspension was neutralized to pH 7 by adding 0.1 M HCl . Undissolved OBs and other debris were pelleted by centrifugation at 3800 g for 5 min . The supernatant containing the released ODVs was transferred to a fresh vial and treated with $25 \mu \mathrm{l}$ Proteinase $\mathrm{K}(10 \mathrm{mg} / \mathrm{ml})$ for 1 h at $50^{\circ} \mathrm{C}$. Viral DNA was extracted twice with Tris/ HCl -saturated phenol and once with chloroform by using Phase Lock gel tubes (all purchased from, Carl Roth GmbH + Co., KG, Karlsruhe, Germany), followed by standard ethanol precipitation (Eberle et al. 2012). The DNA pellet was dissolved in 100μ l distilled $\mathrm{H}_{2} \mathrm{O}$.

PCR amplification and sequencing of the polyhedrin gene

The PCR amplification of the polh gene was chosen according to the specific primers designed by Martins et al. (2005) to amplify a complete SpliNPV polh gene (750 bp): 5^{\prime}-ATG TAT AGT CGC TAC AGT GCC TAC-3' (forward primer) and 5^{\prime}-TTA GTA CGC GGG ACC GGT GT-3' (reverse primer). The PCR mix comprised $34.5 \mu \mathrm{l}$ of water, $10 \mu \mathrm{l}$ Green buffer (Promega), $1 \mu \mathrm{l}$ dNTPs ($10 \mu \mathrm{M}$ each), $1.5 \mu \mathrm{l}$ Go Taq DNA polymerase (Promega), and $1 \mu \mathrm{l}$ of each primer ($10 \mu \mathrm{M}$). Finally, $1 \mu \mathrm{l}$ of DNA was added to obtain a final volume of $50 \mu \mathrm{l}$ for each reaction. PCR was initiated at $95^{\circ} \mathrm{C}$ for 1 min of denaturation followed by 35 cycles at $95^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 46^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 72{ }^{\circ} \mathrm{C}$ for 45 s and the final extension at $72^{\circ} \mathrm{C}$ for 5 min . The amplification product was visualized by 1% agarose gel electrophoresis at 90 V for 40 min in $1 \times$ TAE buffer after staining with Midori Green DNA strain (NIPPON Genetics Europe). The PCR product was purified with DNA clean and concentrator kit (Zymo Research) according to the manufacturer's instruction, and both strands were Sanger sequenced. The polh sequencing was done for different single infected larvae randomly chosen. Sequences were compiled and then aligned with the complete polh gene sequences available in GenBank.

Genome sequencing

Sequencing and raw data processing

About 50 ng purified DNA was subjected to commercial NexteraXT library preparation and Illumina NextSeq500 sequencing at StarSEQ GmbH company (Mainz, Germany). In total, more than 1.76 million reads of 151 nt in length were obtained. Raw reads were processed by adapter trimming and quality filtering excluding reads with an average phred quality score below 30 (Gueli Alletti et al. 2017). Quality filtered reads with a length shorter than 50 nt were excluded from the analysis for paired reads and 51 nt for unpaired reads. Paired and unpaired reads were kept after all steps of filtering and quality control.

Genome sequence assembly

The remaining set of reads was used for de novo sequence assembly as well as mapping against the whole genome sequence of SpliMNPV-AN1956 (GenBank accession number JX454574) (Breitenbach et al. 2013). CLC de novo assembly resulted in multiple contigs ($>1000 \mathrm{bp}$). Contigs were mapped and fit together to a single contig comprising the whole genome. This contig was considered as a first consensus (cons1). In a second approach, all reads were mapped against the SpliMNPV-AN1956 genome using BWA-MEM. From here, a second consensus (cons2) was extracted applying a majority rule (>99\%). Both consensus sequences were then aligned
to each other and checked for differences, which mainly occurred in repeated as well as homologous repeat regions (hrs). The alignment was then checked manually for ambiguities and sequence discrepancies. The correction was based on the read coverage supporting one ambiguous region per contig generated by CLC. The cutoff of the adopted corrections was coverage of 20 reads per ambiguous region. One final genome sequence of SpliNPV-Tun2 was generated based on the majority of read coverage and submitted to GenBank (Accession number MG958660).

Phylogenetic reconstruction

The 38 core genes of SpliNPV-Tun2 were translated to amino acid sequence, then aligned with core gene amino acid sequences from 88 group II NPVs, 39 group I NPVs, and from CpGV-M and SpliGV-K1 as outgroups using MUSCLE alignment tool v3.8.425 as implemented in Geneious Prime ${ }^{\circledR}$ v11 (Biomatters Ltd., Auckland, New Zealand) (Edgar 2004). The concatenated alignments of the amino acid sequences of the 38 baculovirus core genes (Wennmann et al. 2018) were then used to infer a phylogenetic tree using the Minimum Evolution method implemented in MEGA. 7 (Kumar et al. 2016).

Comparison of the SpliNPV-Tun2 genome to other NPVs

All of the 132 SpliNPV-Tun2 ORFs were tested for sequence similarity using BlastX. A detailed comparison of the similarity with genomes of SpliNPV-AB1956 and SpltNPV-G2 was made. The genome characteristics were compared in terms of length, GC\%, ORF number, presence of genes.

Results

In 2013, a laboratory colony of S. littoralis collected from tomato fields in Monastir (Tunisia) was established. In the reared colony, an occasional occurrence of moribund larvae with symptoms of a nucleopolyhedrosis infection was observed. The purification of viral OBs and DNA, PCR amplification using polh specific primers and sequence analysis (data not shown) indicated that the infective agent was a SpliNPV isolate, which was eventually termed SpliNPV-Tun2.

Virulence and OB yield of SpliNPV-Tun2

Concentration mortality bioassays with third instar larvae were performed to determine the virulence of SpliNPV-Tun2. The LC_{50} value at 7 dpi was estimated to $1.5 \times 10^{4} \mathrm{OB} / \mathrm{ml}$ with a 95% confidence interval of $0.2-5.6 \times 10^{4} \mathrm{OB} / \mathrm{ml} \quad(n=525$, slope probit line $=0.42$, $\mathrm{Chi}^{2}=8.81$). The survival rates determined at various time points after infection were inversely proportional to the applied OB concentration of $10^{3}-10^{8} \mathrm{OB} /$

Fig. 1 Kaplan-Meier survival analysis of Spodoptera littoralis L3 larvae infected with different concentrations of SpliNPV-Tun2, ranging from 10^{3} to $10^{8} \mathrm{OB} / \mathrm{ml}$. The untreated control is given as an orange line. Each line contains three independent replicates with 25 larvae each. Survival time is given in days post-infection (dpi). Dash lines represent the median survival time $\left(\mathrm{ST}_{50}\right)$ for high (10^{7} and $10^{8} \mathrm{OB} / \mathrm{ml}$) and low $\mathrm{OB}\left(10^{6} \mathrm{OB} / \mathrm{ml}\right.$ or less) concentrations

Table 1 Analysis of variance comparison of survival percentage of third instar larvae of Spodoptera littorals infected with SpliNPVTun2 isolate

Source	DF	MS	F value	\boldsymbol{P} value*
Time	6	$28,840.5$	402.41	<0.001
Treatments	11	8333.6	116.28	<0.001
Time \times treatments	66	557.3	7.78	<0.001
Residual SD	168	71.7		
Error	8.466			

DFDegree of freedom, MS Mean square
*Two-way factorial ANOVA at $\alpha=0.05$
ml (Fig. 1). In the uninfected control, a slight decrease in the survival probability with 84% was observed at 14 dpi [95\% Cl (76.1-92.7\%)]. A concentration-dependent decrease in the survival probability was observed in the treatment groups starting from 4 dpi with $96.7 \%[95 \% \mathrm{Cl}$ (96.0-97.4\%)] and reached 7.81% [$95 \% \mathrm{Cl}$ (6.48-9.40\%)] at 14 dpi . The median mortality was obtained between 7 dpi for applied concentrations of 10^{7} and $10^{8} \mathrm{OB} / \mathrm{ml}$ and 10 dpi for the lowest concentrations 10^{3} and $10^{6} \mathrm{OB} /$ ml of SpliNPV-Tun2. To estimate the survival covariance by time and by treatment, the survival was presented by percentage and survival data were normalized with lambda $=0.57$ (Table 1). The survival time was statistically different depending on the applied virus concentrations. By using the different concentrations of SpliNPV-Tun2 OBs, all treatments produced different survival percentages depending on the time ($F=7.78, P$ value < 0.01).

OB productivity of late fourth and fifth instar larvae was quantified. The mean weight of larvae with virus infection symptoms was 1548 mg with a standard deviation (s.d.) of 82.5 mg . The OBs were harvested at 14 dpi when infected larvae were seen as highly moribund. Three different standard methods for OB purification were compared, i.e. LSC, SCC, and SGU (Wennmann and Jehle 2014). OB yield was found to be significantly different among LSC, SCC and SGU purification methods (ANOVA, $P \leq 0.05$) $[F(2,6)=88.11, p<0.001]$. LSC yielded $2.7 \times 10^{9} \mathrm{OB} / \mathrm{g}$ larvae weight, followed by SCC $1.3 \times 10^{9} \mathrm{OB} / \mathrm{g}$ larvae weight, whereas SGU yielded only $5 \times 10^{8} \mathrm{OB} / \mathrm{g}$ larvae weight. (Fig. 2).

Genome sequence of SpliNPV-Tun2

A total of $1,597,175$ filtered reads amounting to (90.6\%) of the total raw reads were used for the analysis. From the total of the filtered reads, $1,508,620$ paired reads and 88,555 unpaired reads could be mapped to the reference genome of SpliNPV-AN1956, whereas about 13,500 reads did not map to SpliNPV-AN1956 but gave BLAST hits with insect or bacterial DNA sequences.

Fig. 2 Occlusion body yield (OB/g) from infected early L4 larvae harvested at 14 days post-infection depending on three purification methods low-speed centrifugation (LSC), sucrose gradient ultracentrifugation (SGU), and sucrose cushion centrifugation (SCC); n and N give the number of independent repetition the number of the tested larva, respectively. Vertical bars indicate the 95\% confidential limits. Comparison of means using Student t test: Means with different letters (\mathbf{a}, \mathbf{b} and \mathbf{c}) are significantly different at $P<0.05$

The obtained genome consensus sequence of SpliNPVTun2 (MG958660) was supported by an average of 720 -fold sequencing depth (s.d. $=316$). It had a length of $137,099 \mathrm{bp}$ and a GC content of 44.7% (Table 2). It contained 132 open reading frames (ORF) and 15 homologous repeat regions ($h r s$). Based on the nucleotide sequences, the genomes of SpliNPV-Tun2 and SpliMNPV-AN1956 were 98.2% identical and the $h r s$ in both genomes were at the same location. The genome of SpliNPV-Tun2 was 899 bp shorter than that of SpliM-NPV-AN1956 through alignment of the 2 genomes revealed the same number of ORFs, but with some differences. Sixty-nine ORF had a 100% predicted amino acid identity to SpliMNPV-AN1956 ORFs. The rest of the ORFs' amino acid identities ranged between 90 and 99%, whereas ORF 37 had only 97% amino acid (aa) sequence identity (Table 2). The sequences encoding putative proteins accounted for 88.4% for SpliNPV-Tun2, while the coding density was 87.9% in SpliMNPV-AN1956. The number of intergenic regions is 101 for SpliNPV-Tun2 and 102 in SpliMNPV-AN1956, with mean distances of 124 bp and 121 bp , respectively. Some of the intergenic regions consisted of palindromic sequences; both isolates contained 15 hrs at the same genome location (Table 2).

Phylogenetic reconstruction and genetic distance

A minimum evolution phylogenetic tree based on the concatenated amino acid sequences of 38 baculovirus core genes of group I and group II NPVs was inferred (Fig. 3). It corroborated the close relationship between SpliNPV-Tun2 and -AN1956. The next neighbour to both isolates was SpltNPV-G2. The SpliNPV isolates and SpltNPV-G2 are only distantly related to other Spodop-tera-specific NPVs, such as SeMNPV, SpltNPV-II and Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) (Fig. 3).
For baculovirus species demarcation, the Kimura-2-Parameter (K2P) distance of the 38 baculovirus core genes can be used as criterion, according to which, 2 isolates are considered to belong to the same species if their K2P distance is smaller <0.021 and to different species if the K2P distance is >0.072 (Wennmann et al. 2018). With a K2P distance of 0.001, SpliNPV-Tun2 and -AN1956 are 2 isolates belonging to the same species Spodoptera littoralis nucleopolyhedrovirus. In contrast, SpltNPV-G2 is distant enough (0.099 from the two viruses to constitute a separate species Spodoptera litura nucleopolyhedrovirus (Wennmann et al. 2018). The other known Spodoptera-specific NPV isolates constitute several other discrete species (Fig. 3).
Table 2 Feature of the SpliNPV-Tun2 genome compared to those of SpliNPV-AN1956 and SpltNPV-G2

ORF name	SpliNPV-Tun2			SpliNPV-AN1956			SpliNPV-Tun2 vs SpliNPV-AN1956 Range (\%identity)	SpltNPV-G2			SpliNPV-Tun2 vs SpltNPV-G2 Range (\%identity)
	No	Start \rightarrow end	Size (aa)	No	Start \rightarrow end	Size (aa)		No	Start \rightarrow end	Size (aa)	
polh	1	$1 \rightarrow 750$	249	1	$1 \rightarrow 747$	248	248/249 (99\%)	1	$1 \rightarrow 750$	249	249/249 (100\%)
pp78/83	2	$747 \leftarrow 2,396$	549	2	$744 \leftarrow 2,378$	544	51/542 (95\%)	2	$747 \leftarrow 2,393$	548	245/345 (71\%)
pk-1	3	2,398 $\rightarrow 3,228$	276	3	2,380 $\rightarrow 3,216$	278	274/278 (99\%)	3	2,392 $\rightarrow 3,204$	270	237/270 (88\%)
hoar	4	3,590 $\leftarrow 5,980$	796	4	3,578 ¢5,956	792	790/797 (99\%)	4	3,519 ¢5,714	731	244/300 (81\%)
	5	6,638 ¢6,444	64	5	6,420 ¢ 6,614	64	64/64 (100\%)	5	6,027 $\leftarrow 6,230$	67	26/35 (74\%)
	6	6,764 $\rightarrow 8,982$	756	6	6,742 $\rightarrow 9,006$	754	616/659 (93\%)	7	6,447 $\rightarrow 8,600$	717	338/443 (76\%)
le-0	7	$9,274 \rightarrow 10,149$	291	7	$9,297 \rightarrow 10,172$	291	291/291 (100\%)	8	$8,851 \rightarrow 9,720$	289	259/290 (89\%)
dutpase	8	$10,186 \rightarrow 10,701$	171	8	$10,211 \rightarrow 10,726$	171	171/171 (100\%)	10	$9,774 \rightarrow 10,268$	164	105/131 (80\%)
(5 P-1 repeats)	hr1	10,769 ..11,040		hr1	10,794 ...11,070			hr1	10,301 ...10,800		
	9	$11,113 \rightarrow 12,54$	476	9	11,097 \rightarrow 12,518	473	470/470 (100\%)	11	$10,801 \rightarrow 12,210$	469	456/470 (97\%)
odv-e18	10	$12,566 \rightarrow 12,817$	83	10	$12,544 \rightarrow 12,795$	83	83/83 (100\%)	12	$12,234 \rightarrow 12,485$	83	83/83 (100\%)
odv-ec27	11	$12,841 \rightarrow 13,695$	284	11	$12,819 \rightarrow 13,673$	284	284/284 (100\%)	13	$12,517 \rightarrow 13,368$	283	271/284 (95\%)
	12	$13,723 \rightarrow 14,004$	93	12	$13,701 \rightarrow 13,982$	93	93/93 (100\%)	14	$13,400 \rightarrow 13,681$	93	87/93 (94\%)
Ac146	13	$14,094 \leftarrow 14,706$	203	13	$14,073 \leftarrow 14,687$	204	202/204 (99\%)	15	$13,726 \leftarrow 14,328$	200	163/206 (79\%)
i.e.-1	14	$14,748 \rightarrow 16,997$	749	14	$14,729 \rightarrow 16,978$	749	730/730 (100\%)	16	$14,501 \rightarrow 16,567$	688	501/696 (72\%)
odv-e56	15	$17,058 \rightarrow 18,167$	369	15	$17,040 \rightarrow 18,152$	370	351/351 (100\%)	17	$16,693 \rightarrow 17,808$	371	328/351 (93\%)
	16	$18,182 \rightarrow 18,733$	183	16	$18,167 \rightarrow 18,718$	183	183/183 (100\%)	18	$17,823 \rightarrow 18,374$	183	174/183 (95\%)
p10	17	$18,787 \rightarrow 19,101$	104	17	$18,771 \rightarrow 19,085$	104	80/80 (100\%)	19	$18,439 \rightarrow 18,756$	105	80/80 (100\%)
	18	$19,079 \rightarrow 20,053$	324	18	$19,063 \rightarrow 20,034$	324	323/324 (99\%)	20	$18,734 \rightarrow 19,678$	314	315/324 (97\%)
p74	19	$20,088 \leftarrow 22,064$	658	19	$20,068 \leftarrow 22,044$	658	658/658 (100\%)	21	19,706 $\leftarrow 21,679$	657	658/658 (100\%)
rr1	20	$22,166 \leftarrow 24,640$	824	20	$22,146 \leftarrow 24,632$	828	802/803 (99\%)	23	$22,066 \leftarrow 24,378$	770	758/760 (99\%)
	21	$24,690 \rightarrow 25,904$	404	21	$24,682 \rightarrow 25,902$	406	402/406 (99\%)	24	$24,586 \rightarrow 25,785$	399	236/412 (57\%)
(10 P-I and 6 P-1Ilike repeats)	hr2	26,028...26,311		hr2	26,117...27,290			hr2	26,751...27,151		
	22	$27,116 \rightarrow 28,123$	335	22	27,305 \rightarrow 28,309	334		26	27,162 $\rightarrow 28,055$	297	271/304 (89\%)
me53	23	$28,136 \leftarrow 29,05$	304	23	28,322 $\leftarrow 29,236$	304	303/304 (99\%)	27	28,076 $\leftarrow 28,981$	301	284/301 (94\%)
	24	$29,138 \rightarrow 29,344$	68	24	29,324 \rightarrow 29,530	68	68/68 (100\%)	28	29,013 \rightarrow 29,273	86	52/68 (76\%)
lef-6	25	$29,355 \leftarrow 29,813$	152	25	29,541 $\leftarrow 30,002$	153	149/153 (97\%)	29	29,287 $\leftarrow 29,724$	145	107/158 (68\%)
$d b p$	26	$29,872 \leftarrow 30,732$	286	26	$30,061 \leftarrow 30,921$	286	286/286 (100\%)	30	$29,788 \leftarrow 30,660$	290	234/290 (81\%)
	27	$30,856 \rightarrow 31,257$		27	$31,049 \rightarrow 31,450$	133	133/133 (100\%)	31	$30,718 \rightarrow 31,167$	149	120/133 (90\%)
ubi/gp37	28	$31,283 \rightarrow 32,296$	337	28	$31,476 \rightarrow 32,489$	337	336/337 (99\%)	32	$31,136 \rightarrow 32,191$	351	309/337 (92\%)
39k/PP3	29	$32,351 \leftarrow 33,343$	330	29	$32,541 \leftarrow 33,533$	330	330/330 (100\%)	33	$32,246 \leftarrow 33,214$	322	258/340 (76\%)
lef-11	30	$33,207 \leftarrow 33,638$	143	30	$33,397 \leftarrow 33,828$	143	143/143 (100\%)	34	$33,075 \leftarrow 33,509$	144	123/144 (85\%)
Ac38	31	$33,608 \leftarrow 34,285$	225	31	$33,798 \leftarrow 34,478$	226	221/226 (98\%)	35	$33,479 \leftarrow 34,141$	220	194/225 (86\%)

Table 2 (continued)

ORF name	SpliNPV-Tun2			SpliNPV-AN1956			SpliNPV-Tun2 vs SpliNPV-AN1956 Range (\%identity)	SpltNPV-G2			SpliNPV-Tun2 vs SpltNPV-G2 Range (\%identity)
	No	Start \rightarrow end	Size (aa)	No	Start \rightarrow end	Size (aa)		No	Start \rightarrow end	Size (aa)	
p47	32	$34,362 \leftarrow 35,627$	421	32	$34,555 \leftarrow 35,820$	421	421/421 (100\%)	36	$34,211 \leftarrow 35,479$	422	371/422 (88\%)
lef-12	33	$35,66 \rightarrow 36,256$	198	33	$35,853 \rightarrow 36,449$	198	198/198 (100\%)	37	$35,506 \rightarrow 36,111$	201	168/198 (85\%)
(1 P-1 repeat)	hr3	36,321..36,372		hr3	36,506..36,547			hr3	36,102..36,301		
lef-8	34	$36,433 \leftarrow 39,168$	911	34	$36,618 \leftarrow 39,353$	911	910/911 (99\%)	38	$36,316 \leftarrow 39,072$	918	830/920 (90\%)
bjdp	35	$39,167 \rightarrow 40,078$	303	35	$39,352 \rightarrow 40,263$	303	303/303 (100\%)	39	$39,071 \rightarrow 39,979$	302	303/303 (100\%)
	36	$40,101 \rightarrow 40,67$	189	36	$40,286 \rightarrow 40,855$	189	189/189 (100\%)	40	$40,001 \rightarrow 40,570$	189	189/189 (100\%)
	37	$40,691 \leftarrow 40,891$	66	37	$40,877 \leftarrow 41,071$	64	55/66 (83\%)	41	$40,590 \leftarrow 40,754$	54	54/66 (82\%)
chitA	38	$40,906 \leftarrow 42,705$	599	38	$41,086 \leftarrow 42,885$	599	598/599 (99\%)	42	$40,767 \leftarrow 42,461$	564	562/563 (99\%)
(5 P-1 repeats)	hr4	42,602...43,004		hr4	42,837...43,091			hr4	42,502...43,051		
	39	$43,126 \leftarrow 43,728$	200	39	$43,305 \leftarrow 43,907$	200	198/200 (99\%)	43	$43,021 \leftarrow 43,635$	204	130/203 (64\%)
	40	$43,945 \leftarrow 44,583$	212	40	$44,073 \leftarrow 44,711$	212	210/212 (99\%)	44	$43,779 \leftarrow 44,405$	208	167/212 (79\%)
	41	$44,653 \rightarrow 45,099$	148	41	$44,783 \rightarrow 45,229$	148	148/148 (100\%)	45	$44,475 \rightarrow 44,888$	137	123/148 (83\%)
	42	$45,133 \leftarrow 46,407$	424	42	$45,265 \leftarrow 46,533$	422	410/425 (96\%)	46	$44,926 \leftarrow 46,194$	422	241/257 (94\%)
	43	$46,412 \leftarrow 46,639$	75	43	$46,538 \leftarrow 46,765$	75	75/75 (100\%)	47	$46,199 \leftarrow 46,426$	75	71/75 (95\%)
Lef-10	44	$46,599 \rightarrow 46,85$	83	44	$46,725 \rightarrow 46,973$	82	75/83 (90\%)	48	$46,386 \rightarrow 46,640$	84	71/84 (85\%)
vp1054	45	$46,687 \rightarrow 47,727$	346	45	$46,813 \rightarrow 47,850$	345	330/330 (100\%)	49	$46,474 \rightarrow 47,532$	352	306/337 (91\%)
	46	$47,856 \rightarrow 48,071$	71	46	$47,979 \rightarrow 48,194$	71	71/71 (100\%)	50	$47,653 \rightarrow 47,868$	71	57/71 (80\%)
	47	$48,355 \rightarrow 48,855$	166	47	$48,478 \rightarrow 48,978$	166	166/166 (100\%)	51	$48,172 \rightarrow 48,693$	173	154/166 (93\%)
	48	$48,906 \leftarrow 49,472$	188	48	$49,032 \leftarrow 49,601$	189	170/172 (99\%)	52	$48,722 \leftarrow 49,246$	174	104/152 (68\%)
	49	$49,489 \leftarrow 49,737$	82	49	$49,618 \leftarrow 49,866$	82	66/66 (100\%)	53	$49,271 \leftarrow 49,519$	82	57/66 (86\%)
cathepsin	50	$49,784 \rightarrow 50,794$	336	50	$49,913 \rightarrow 50,923$	336	334/336 (99\%)	54	$49,566 \rightarrow 50,579$	337	313/337 (93\%)
p49	51	$50,843 \rightarrow 52,183$	446	51	$50,972 \rightarrow 52,312$	446	446/446 (100\%)	55	$50,628 \rightarrow 51,947$	439	376/446 (84\%)
fp25k	52	$52,291 \leftarrow 52,884$	197	52	$52,420 \leftarrow 53,013$	197	197/197 (100\%)	57	$52,075 \leftarrow 52,668$	197	197/197 (100\%)
lef-9	53	$53,042 \leftarrow 54,538$	498	53	$53,171 \leftarrow 54,667$	498	498/498 (100\%)	59	$52,839 \leftarrow 54,335$	498	479/498 (96\%)
(8 P-1 repeats)	hr5	54,548 ...55,204		hr5	54,677 ...55,304			hr5	54,401 ...55,642		
	54	$55,105 \rightarrow 55,392$	95	54	$55,352 \rightarrow 55,648$	98	76/82 (93\%)	-	-	-	-
	55	$55,424 \rightarrow 55,732$	102	55	$55,681 \rightarrow 55,989$	102	80/80 (100\%)	-	-	-	-
(3P-I and 10 P-11like repeats)	hr6	55,715 ..56,710		hr6	56,009 ..57,005			hr6	55,992...56,166		
	56	$56,760 \leftarrow 57,793$	346	56	$57,057 \leftarrow 58,097$	346	342/346 (99\%)	62	$56,221 \leftarrow 57,324$	367	210/371 (57\%)
	57	$57,944 \rightarrow 58,948$	334	57	$58,250 \rightarrow 59,254$	334	333/334 (99\%)	63	$57,477 \rightarrow 58,478$	333	302/335 (90\%)
	58	$59,434 \leftarrow 59,030$	134	58	$59,335 \leftarrow 59,742$	134	131/134 (98\%)	64	$58,556 \leftarrow 58,966$	136	98/136 (72\%)
	59	$59,030 \leftarrow 59,434$	313	59	$59,675 \leftarrow 60,616$	313	313/313 (100\%)	65	$58,899 \leftarrow 59,840$	313	262/310 (85\%)

Table 2 (continued)

ORF name	SpliNPV-Tun2			SpliNPV-AN1956			SpliNPV-Tun2 vs SpliNPV-AN1956 Range (\%identity)	SpltNPV-G2			SpliNPV-Tun2 vs SpltNPV-G2 Range (\%identity)
	No	Start \rightarrow end	Size (aa)	No	Start \rightarrow end	Size (aa)		No	Start \rightarrow end	Size (aa)	
	60	59,367 $\leftarrow 60,308$	138	60	60,558 ¢60,974	138	138/138 (100\%)	66	$59,800 \leftarrow 60,198$	132	123/135 (91\%)
	61	60,25 ¢0,666	349	61	60,979 $\rightarrow 62,028$	349	346/349 (99\%)	67	$60,203 \rightarrow 61,276$	357	314/357 (88\%)
	62	$60,671 \rightarrow 61,720$	800	62	$62,263 \leftarrow 64,665$	800	799/800 (99\%)	68	$61,552 \leftarrow 63,924$	790	698/805 (87\%)
	63	$62,026 \leftarrow 64,428$	1020	63	$64,667 \rightarrow 67,729$	1020	1019/1020 (99\%)	69	$63,926 \rightarrow 66,994$	1022	924/1027 (90\%)
	64	67,446ヶ67,633	36	64	67,683 ¢67,871	62	16/16 (100\%)	-	-	-	-
	hr7	67,605..67,800		hr7	67,916..68,117			hr7	67,362 ...76,581		
	65	$67,907 \rightarrow 69,049$	380	65	$68,224 \rightarrow 69,366$	380	380/380 (100\%)	70	$67,509 \rightarrow 68,651$	380	309/380 (81\%)
	66	69,204ヶ69,827	207	66	69,444 $\leftarrow 70,067$	207	207/207 (100\%)	71	68,727 $\leftarrow 69,353$	208	160/213 (75\%)
	67	69,899 ¢70,282	127	67	$70,139 \leftarrow 70,522$	127	127/127 (100\%)	72	69,412 $\leftarrow 69,795$	127	123/127 (97\%)
	68	$70,305 \leftarrow 70,559$	84	68	$70,545 \leftarrow 70,799$	84	68/68 (100\%)	73	69,814 $¢ 70,068$	84	67/68 (99\%)
lef-1	69	$70,624 \leftarrow 71,772$	382	69	$70,864 \leftarrow 72,015$	383	358/359 (99\%)	74	$70,133 \leftarrow 71,287$	384	331/340 (97\%)
v\|f-1	70	$71,793 \leftarrow 72,155$	120	70	$72,036 \leftarrow 72,398$	120	119/120 (99\%)	75	$71,307 \leftarrow 71,669$	120	84/124 (68\%)
gp41	71	$72,152 \leftarrow 73,132$	326	71	$72,395 \leftarrow 73,375$	326	311/311 (100\%)	76	$71,666 \leftarrow 72,658$	330	307/313 (98\%)
	72	$73,107 \leftarrow 73,820$	237	72	$73,350 \leftarrow 74,063$	237	236/237 (99\%)	77	$72,633 \leftarrow 73,331$	232	206/238 (87\%)
$t \mid k-20$	73	$73,681 \leftarrow 74,268$	195	73	$73,924 \leftarrow 74,505$	193	179/195 (92\%)	78	$73,210 \leftarrow 73,803$	197	160/203 (79\%)
vp90	74	$74,237 \rightarrow 76,807$	856	74	$74,474 \rightarrow 77,044$	856	850/856 (99\%)	79	$73,772 \rightarrow 76,357$	861	739/862 (86\%)
(6 P-1 repeats)	hr8	76,989...77,270		hr8	77,112...77,422			hr8	76,362...76,581		
ca30	75	$77,320 \leftarrow 78,099$	259	75	$77,534 \leftarrow 78,313$	259	259/259 (100\%)	80	$76,639 \leftarrow 77,391$	250	188/257 (73\%)
vp39	76	$78,128 \leftarrow 79,036$	302	76	$78,342 \leftarrow 79,250$	302	302/302 (100\%)	81	$77,450 \leftarrow 78,358$	302	296/302 (98\%)
lef-4	77	$79,038 \rightarrow 80,504$	488	77	$79,252 \rightarrow 80,721$	489	479/489 (98\%)	82	$78,360 \rightarrow 79,787$	475	413/488(85\%)
p33	78	$80,535 \leftarrow 81,302$	255	78	$80,751 \leftarrow 81,518$	255	255/255 (100\%)	83	$79,833 \leftarrow 80,600$	255	248/255 (97\%)
	79	$81,301 \rightarrow 81,831$	176	79	$81,517 \rightarrow 82,050$	177	174/177 (98\%)	84	$80,599 \rightarrow 81,147$	182	167/182 (92\%)
odv-225	80	$81,828 \rightarrow 82,508$	226	80	$82,047 \rightarrow 82,727$	226	226/226 (100\%)	85	$81,144 \rightarrow 81,827$	227	215/227 (95\%)
DNA helicase	81	$82,613 \leftarrow 86,368$	1251	81	$82,832 \leftarrow 86,587$	1251	1251/1251 (100\%)	86	$81,918 \leftarrow 85,625$	1235	1155/1251 (92\%)
	82	$86,337 \rightarrow 86,852$	171	82	$86,556 \rightarrow 87,071$	171	171/171 (100\%)	87	$85,594 \rightarrow 86,106$	170	165/171 (96\%)
38 k	83	$86,859 \leftarrow 87,776$	305	83	$87,079 \leftarrow 87,996$	305	304/305 (99\%)	88	$86,114 \leftarrow 87,028$	304	298/305 (97\%)
lef-5	84	$87,672 \rightarrow 88,568$	298	84	$87,892 \rightarrow 88,785$	297	296/298 (99\%)	89	$86,924 \rightarrow 87,832$	302	254/305 (83\%)
p6.9	85	$88,589 \leftarrow 88,858$	89	85	$88,806 \leftarrow 89,069$	87	10/10 (100\%)	90	$87,850 \leftarrow 88,104$	84	10/10 (100\%)
p40	86	$88,919 \leftarrow 90,022$	367				345/346 (99\%)	91	$88,162 \leftarrow 89,253$	363	331/367 (90\%)
(8P-1 repeats)	hr9	$90,022 \leftarrow 88,919$		hr9	90,305 ..90,732			hr9	89,262..89,651		
p12	87	$90,546 \leftarrow 90,914$	122	86	$89,130 \leftarrow 90,233$	367	122/122 (100\%)	92	89,657 $\leftarrow 90,022$	121	97/122 (80\%)
p45	88	$90,911 \leftarrow 92,038$	375	87	$90,770 \leftarrow 91,138$	122	374/375 (99\%)	93	$90,019 \leftarrow 91,140$	373	356/373 (95\%)

Table 2 (continued)

ORF name	SpliNPV-Tun2			SpliNPV-AN1956			SpliNPV-Tun2 vs SpliNPV-AN1956 Range (\%identity)	SpltNPV-G2			SpliNPV-Tun2 vs SpltNPV-G2 Range (\%identity)
	No	Start \rightarrow end	Size (aa)	No	Start \rightarrow end	Size (aa)		No	Start \rightarrow end	Size (aa)	
vp80	89	$92,058 \rightarrow 93,992$	644	88	$91,135 \leftarrow 92,262$	375	638/648 (98\%)	94	91,167 \rightarrow 93,101	644	548/630 (87\%)
	90	93,989 \rightarrow 94,156	55	89	$92,282 \rightarrow 94,228$	648	55/55 (100\%)	95	93,101 $\rightarrow 93,268$	55	54/55 (98\%)
odv-ec43	91	94,182 \rightarrow 95,267	361	90	$94,421 \rightarrow 95,506$	361	361/361 (100\%)	96	93,300 $\rightarrow 94,385$	361	357/361 (99\%)
	92	95,358 $\rightarrow 95,696$	112	91	95,599 $\rightarrow 95,937$	112	112/112 (100\%)	97	$94,466 \rightarrow 94,804$	112	103/112 (92\%)
odv-e66	93	95,686 $\leftarrow 97,836$	716	92	95,927 $\leftarrow 98,074$	715	715/716 (99\%)	98	$94,794 \leftarrow 96,872$	692	633/679 (93\%)
p13	94	$97,779 \leftarrow 98,636$	285	93	$98,017 \leftarrow 98,874$	285	285/285 (100\%)	99	$96,875 \leftarrow 97,744$	289	262/289 (91\%)
(8 P-1 repeats)	hr10	98,699...99,009		hr10	98,878...99,348			hr10	97,753...98,049		
	95	$99,224 \leftarrow 99,748$	174	94	$99,458 \leftarrow 99,982$	174	171/174 (98\%)	127	$125,316 \leftarrow 125,834$	172	87/149 (58\%)
	96	$100,205 \rightarrow 101,173$	322	95	$100,441 \rightarrow 101,409$	322	320/322 (99\%)	100	$98,090 \rightarrow 99,055$	321	242/322 (75\%)
	97	$101,215 \leftarrow 101,913$	232	96	$101,451 \leftarrow 102,149$	232	232/232 (100\%)	101	$99,106 \leftarrow 99,816$	236	206/240 (86\%)
	98	$101,933 \leftarrow 103,342$	469	97	$102,169 \leftarrow 103,578$	469	468/469 (99\%)	102	$99,836 \leftarrow 101,209$	457	374/470 (80\%)
	99	$103,357 \leftarrow 103,89$	177	98	$103,593 \leftarrow 104,126$	177	176/177 (99\%)	103	$101,236 \leftarrow 101,775$	179	157/179 (88\%)
	100	$103,972 \leftarrow 104,169$	65	99	$104,211 \leftarrow 104,408$	65	65/65 (100\%)	104	$101,855 \leftarrow 102,055$	66	45/66 (68\%)
	101	$104,256 \rightarrow 105,551$	431	100	$104,495 \rightarrow 105,790$	431	431/431 (100\%)	105	$102,193 \rightarrow 103,449$	418	372/420 (89\%)
(7P-I and 24 P-II-like repeats)	hr11	105,681..105,729		hr11	104,511...107,449						
	102	$106,726 \leftarrow 107,649$	518	101	107,481	349	212/212 (100\%)	107	$105,624 \rightarrow 106,226$		140/209 (67\%)
pif-3	103	$107,678 \rightarrow 108,28$	317	102	$108,559 \rightarrow 109,161$	200	200/200 (100\%)	108	$106,234 \rightarrow 106,587$	200	184/199 (92\%)
	104	$108,395 \rightarrow 108,63$	237	103	$109,276 \rightarrow 109,512$	78	78/78 (100\%)	112	$107,915 \leftarrow 109,045$	208	181/208 (87\%)
alk-exo	105	$108,655 \leftarrow 109,902$	835	104	$109,541 \leftarrow 110,788$	415	413/415 (99\%)	109	$109,007 \rightarrow 109,165$	408	339/411 (82\%)
	106	$109,998 \leftarrow 111,158$	387	106/107	$\begin{aligned} & 111,873 \leftarrow 112,064 @ 11 \\ & 2,210 \leftarrow 112,605 \end{aligned}$	131/63	$\begin{aligned} & \text { 232/232 (100\%)@60/62 } \\ & (97 \%) \end{aligned}$	110	$109,168 \leftarrow 109,551$	376	172/230 (75\%)
	107	$111,207 \rightarrow 111,408$	67	-	-	-	33/33 (100\%)	111	$109,553 \rightarrow 110,758$	52	30/33 (91\%)
	108	$111,307 \leftarrow 111,702$	131	108	$112,607 \rightarrow 113,839$	410	395/395 (100\%)	112	$110,817 \leftarrow 111,449$	127	106/131 (81\%)
	109	$111,704 \rightarrow 112,936$	410	109	$113,893 \leftarrow 114,669$	258	256/259 (99\%)	113	$111,433 \leftarrow 111,777$	401	331/395 (84\%)
lef-2	110	$112,992 \leftarrow 113,771$	259	110				114	$105,624 \rightarrow 106,226$	210	189/209 (90\%)
	111	$113,608 \leftarrow 114,033$	141	111	$114,509 \leftarrow 114,931$	140	14/116 (98\%)	115	$106,234 \rightarrow 106,587$	114	82/97 (85\%)
p24 capsid	112	$114,02 \rightarrow 114,739$	239	112	$114,918 \rightarrow 115,637$	239	238/239 (99\%)	116	$111,825 \rightarrow 112,559$	244	220/241 (91\%)
(7 P-I repeats)		114,740 ..115,157		hr12				hr12	112,542..112,961		
	113	$115,35 \rightarrow 118,139$	929	113	$116,248 \rightarrow 119,034$	928	918/929 (99\%)	118	$113,090 \rightarrow 115,849$	918	762/908 (84\%)
	114	$118,156 \leftarrow 118,875$	239	114	$119,051 \leftarrow 119,782$	243	239/243 (98\%)	119	$115,866 \leftarrow 116,585$	239	239/242 (99\%)
bro-a	115	$118,941 \leftarrow 119,489$	182	115	$119,836 \leftarrow 120,390$	184	180/185 (97\%)	120	$116,653 \rightarrow 117,213$	186	179/185 (97\%)
egt	116	$119,733 \leftarrow 121,331$	532	116	$120,636 \leftarrow 122,234$	532	532/532 (100\%)	121	$117,465 \rightarrow 119,033$	522	505/505 (100\%)

Table 2 (continued)

ORF name	SpliNPV-Tun2			SpliNPV-AN1956			SpliNPV-Tun2 vs SpliNPV-AN1956 Range (\%identity)	SpltNPV-G2			SpliNPV-Tun2 vs SpltNPV-G2 Range (\%identity)
	No	Start \rightarrow end	Size (aa)	No	Start \rightarrow end	Size (aa)		No	Start \rightarrow end	Size (aa)	
fgf	117	$121,458 \rightarrow 122,189$	243	117	$122,363 \rightarrow 123,094$	243	242/243 (99\%)	122	119,165 \rightarrow 119,905	246	242/243 (99\%)
	118	$122,214 \leftarrow 122,447$	77	118	$123,121 \leftarrow 123,354$	77	77/77 (100\%)	123	$119,928 \rightarrow 120,161$	77	77/77 (100\%)
pif-1	119	$122,452 \leftarrow 124,029$	525	119	$123,359 \leftarrow 124,936$	525	523/525 (99\%)	124	$120,184 \rightarrow 121,764$	526	505/507 (99\%)
(2P-1 repeats)				hr 13	(2 P-Irepeats)			hr13	121,771..121,926		
38.7 k	120	$124,29 \leftarrow 125,327$	345	120	125,203 $\leftarrow 126,240$	345	343/345 (99\%)	128	$125,891 \leftarrow 126,919$	342	287/343 (84\%)
lef-1	121	$125,314 \leftarrow 126,009$	231	121	$126,227 \leftarrow 126,922$	231	231/231 (100\%)	129	$126,906 \leftarrow 127,601$	231	214/231 (93\%)
	122	$125,99 \leftarrow 126,37$	126	122	$126,903 \leftarrow 127,289$	128	126/128 (98\%)	130	$127,582 \leftarrow 127,950$	122	110/127 (87\%)
	123	$126,367 \leftarrow 126,897$	176	123	$127,286 \leftarrow 127,816$	176	176/176 (100\%)	131	$127,947 \leftarrow 128,477$	176	159/176 (90\%)
calyx/pep 12	124	$126,907 \leftarrow 127,968$	353	124	$127,826 \leftarrow 128,887$	353	353/353 (100\%)	132	$128,481 \leftarrow 129,515$	344	155/168 (92\%)
pkip 1	125	$128,057 \rightarrow 128,596$	179	125	$128,976 \rightarrow 129,515$	179	179/179 (100\%)	133	$129,544 \rightarrow 130,161$	205	157/180 (87\%)
arif-1 1	126	$128,63 \leftarrow 129,358$	242	126	$129,549 \leftarrow 130,277$	242	238/242 (98\%)	134	$130,199 \leftarrow 130,936$	245	215/246 (87\%)
pif-2 127	127	$129,386 \rightarrow 130,651$	421	127	$130,305 \rightarrow 131,570$	421	421/421 (100\%)	135	$130,910 \rightarrow 132,187$	425	371/404 (92\%)
(2P-1 and 6 P-11-like repeats)		130,679 ..131,114		hr14	(2 P-I and 6P-IIlike repeats)			hr14	132,105...133,451		
Ac23	128	$131,200 \rightarrow 133,242$	680	128	$132,119 \rightarrow 134,155$	678	670/681 (98\%)	136	133,451 \rightarrow 135,499	682	608/683 (89\%)
	129	$133,276 \leftarrow 134,004$	242	129	$134,189 \leftarrow 134,917$	242	241/242 (99\%)	137	$135,545 \leftarrow 136,240$	231	150/190 (79\%)
	130	$134,109 \rightarrow 134,885$	258	130	$135,022 \rightarrow 135,798$	258	258/258 (100\%)	138	$136,338 \rightarrow 137,117$	259	223/259 (86\%)
	131	$134,972 \rightarrow 135,394$	90	131	$135,885 \rightarrow 136,295$	136	58/58 (100\%)			-	-
(6P-11-like repeats)		135,610 $\ldots 135,811$		hr15				hr 15	137,619...138,104		
	132	$135,866 \leftarrow 136,750$	294	132	$136,765 \leftarrow 137,649$	294	294/294 (100\%)	140	$138,104 \leftarrow 138,952$	282	138/295 (47\%)

Given are the names of open reading frames (ORF), ORF number (No.), start and end position of the ORFs including direction of transcription (arrow), the translated amino acid (aa) length of the ORF, and the compared range and percent identity of the ORFs

Fig. 3 Baculovirus phylogeny based on Minimum Evolution (ME) method of amino acid sequences of 38 core genes of different NPV. Translated amino acid sequences of each core gene were separately aligned, and alignments were concatenated using Geneious 8 . The consensus tree was obtained by a heuristic search with 500 bootstrap replicates. The Model is the JTT model (Jones et al. 1992) with a uniform rate among site and without invariant site. Bootstrap values (>50\%) are shown at each node. Only Alphabaculovirus group II is given in detail. Alphabaculovirus group I and Betabaculovirus were reduced. Betabaculoviruses represented with only CpGV-M and SpliGV-K1 for this analysis were used as outgroup

Main genome differences between SpliNPV-Tun2 and -AN1956

Compared to SpliNPV-AN1956, the new isolate SpliNPV-Tun2 showed insertion and deletion mutations in 62 ORFs, of which 37 ORFs are with predicted function. ORFs with significant changes caused by deletions and insertions are illustrated in (Fig. 4). These differences affect ORFs coding for predicted virus proteins related to virus structure, such as the structural protein PP78/81, the capsid-associated protein VP80 and VP1054, the OB matrix protein (Polyhedrin, POLH), the nucleotide metabolism (Ribonucleotide Reductase, RR1), proteins
involved in viral DNA replication (Late Expression Factor 2 (LEF-2) and LEF-10, Protein kinase 1 (PK-1), LEF5, and the group II Alphabaculovirus-specific HOAR and the BRO-a. Furthermore, a considerable number of amino acid changes were found but will not be further detailed here.
A notable difference is the presence of a tyrosine residue close to the N -terminus fifth amino acid position of the predicted POLH of SpliNPV-Tun2, a residue which is missing in the POLH of SpliNPV-AN1956 (Fig. 4). Another difference between the genome sequences of SpliNPV-Tun2 and -AN1956 is related to ORFs 106 and

Fig. 4 Graphic representation of selected open reading frames with insertion and deletion (indel) mutations and amino acid changes of SpliNPV-Tun2 and -AN1956 (JX454574). The total protein length of each open reading frame (ORF) is shown to the right, while the numbers above each insertion/deletion region represent the corresponding amino acids from the aligned reference sequence. Deletions/insertions/substitution are illustrated between the bars

```
ORF106 SpliNPV-Tun2 85 <KDGDDNENAMQEREEDTPLILLSKKNKYIKEFILNKIN< 47
ORF106-107 SpliMNPV-AN1956 10 <KDGDDNENAM 1 65 * YAKK IKYIKEFILNKIN< 47
ORF110 SpltNPV-G2 81 <ADNQDDGNAI QEREED SLSIVSKKNKYIKELILNKIN< }4
```

Fig. 5 Alignment of the translated ORF 106 in SpliNPV-Tun2 to the homologous ORF 106-107 of SpliMNPV-AN1956 and ORF 110 in SpltNPV-G2. Numbers and arrows on both sides of the lines indicate the amino acid position and ORF orientation in the corresponding translated gene. *indicates the stop codon of ORF 107 of SpliMNPV-AN1956
107. Whereas in SpliNPV-AN1956 two ORF 106 and ORF 107 were located from genome position $110,884<111,843$ (319 aa) and $111,873<112,064$ (63 aa), respectively, these two ORFs were identified as one single ORF in SpliNPVTun2 (ORF 106, genome position 109,998<111,161,
(387 aa)). The split of the ORF 106 homolog of SpliNPVTun2 into two ORFs 106 and 107 in SpliNPV-AN1956 is caused by a missing thymidine residue at genome position 110,991 of SpliNPV-AN1956, causing a frameshift and separation into two ORFs (Fig. 5). Interestingly, a similar homologous ORF 110 (genome position
$107,915<109,045,376$ aa) is present in the narrowly related SpltNPV-G2, which may suggest a variation in SpliNPV-AN1956 or a sequencing error at this position in the original sequence of SpliNPV-AN1956. Compared to SpliNPV-AN1956, SpliNPV-Tun2 encodes an additional ORF 107 ($111,207>111,408,67 \mathrm{aa}$), which 5^{\prime} region overlaps with the 5^{\prime} region of the adjacent ORF 108. In Splt-NPV-G2, the 5^{\prime} region of ORF 111 ($109,007>109,165,52$ aa) would be homologous to the 3^{\prime} region of ORF 107 of -Tun2 (Fig. 5).

Discussion

A new variant of SpliNPV, termed Tun2, was isolated and characterized by bioassays and genome sequencing. SpliNPV-Tun2 was found in a S. littoralis colony that was derived from larvae collected in tomato fields in Cen-tral-East Tunisia, in 2013. Another natural SpliNPV-Tun isolate was found in 2008 from tomato field in ChottMariem (Sousse) (Laarif et al. 2011), suggesting that SpliNPV is present in wild populations of S. littoralis in Tunisia. Though the conditions of bioassays performed with SpliNPV-Tun2 were not fully identical to the bioassays carried out with SpliNPV-Tun, both the LC_{50} and the ST_{50} values were similar, suggesting that both isolates may not have significant biological differences.
OB productivity was quantified in the fourth instar larvae, as this instar was identified to be optimal for virus production (Grzywacz et al. 1998). Three different methods for OB purification were tested, of which the low-speed centrifugation (LSC) method (Harrison 2008) producing the highest yields of polyhedral OBs, which corresponded to an OB yield of about $4.2 \times 10^{9} \mathrm{OB} /$ larvae. The superiority of LSC for polyhedral OB purification compared to sucrose gradient ultracentrifugation (SGU) and sucrose cushion centrifugation (SCC) was previously noted for isolation of Agrotis segetum nucleopolyhedrovirus by Wennmann and Jehle (2014). LSC and SCC are methods typically used for OB purification from NPVs (Harrison 2008), whereas SGU appears to counterselect for NPV polyhedra but favours purification of GV granules yielding about five times less NPV OBs than the other 2 methods (Wennmann and Jehle 2014).
Whole genome sequencing of SpliNPV-Tun2 revealed its close relationship to SpliNPV-AN1956 (Breitenbach et al. 2013), another isolate of SpliNPV from North Africa, which originated from Egypt and was first described by Abul Nasr (1956). Other isolates of SpliNPV from North Africa and the Mediterranean area were reported by Laarif et al. (2011). Only a few differences between the genome sequence of SpliNPV-Tun2 SpliNPV-AN1956 were noted: (i) the genome of SpliNPVTun2 is little shorter, (ii) both genomes contain the same number of ORFs and hrs and are fully collinear to each
other, (iii) minor indel mutations could be identified in 34 ORFs as well as in intergenic regions, (iv) genetic changes were noticed in nine baculovirus core genes, and also in the highly conserved polh gene, and (v) the ORFs 106 and 107 of SpliNPV-AN1956 appeared to be fused to a single ORF 106 in SpliNPV-Tun2 but an additional ORF 107 was identified.
Phylogenetic analyses based on the 38 baculovirus core genes have been shown to reflect isolate and species phylogeny of baculovirus evolution and are considered as the most reliable method to infer the phylogenetic position of a given baculovirus (Wennmann et al. 2018). Our Minimum Evolution phylogenetic analysis revealed SpliNPV-AN156 and SpltNPV-G2 as closest neighbours of SpliNPV-Tun2. SpltNPV-G2 is an in vivo cloned genotype of an isolate separated from cadavers of S. litura, cotton leaf worm, in the area of Guangzhou, China (Pang et al.2001). Breitenbach et al. (2013) found that Split-NPV-AN1956 and SpltNPV-G2 share a highly collinear genome and form a distantly related clade to other NPVs specific for Spodoptera species, such as SeMNPV, SfMNPV, and SpltNPV-II. Our phylogenetic analyses confirm that SplitNPV-Tun2, -AN1956, and SpltNPV-G2 form a clade of Spodoptera-specific NPVs which is separate from other group II alphabaculoviruses isolated from Spodoptera species, such as SeMNPV, SpltNPV-II, and SfMNPV. K2P distances of the 38 core genes clearly indicate that SpliNPV-Tun2 and -AN1956 should be considered as isolates from the same species, whereas SpltNPV-G2 belongs to a separate alphabaculovirus species, as well as all other even more distant NPVs isolated from Spodoptera sp. (Wennmann et al. 2018; Escasa et al.2019).

Conclusions

Identification and genome sequence of the new isolate SpliNPV-Tun2 originating from Tunisia extended the present knowledge related to the genetic diversity of SpliNPV. With the detailed characterization of its genome, SpliNPV-Tun2 is proposed to be further evaluated as a biological agent for control of S. littoralis and potentially for the fall armyworm, S. frugiperda, and tobacco cutworm S. litura.

Abbreviations

aa: Amino acid; dpi: Days post-inoculation; hrs: Homologous repeat regions; OB: Occlusion body; ODV: Occlusion derived virion; ORF: Open reading frame; PCR: Polymerase chain reaction; LC_{50} : Median lethal concentration; LSC: Low-speed centrifugation; SCC: Sucrose cushion centrifugation; SGU: Sucrose gradient ultracentrifugation; ST_{50} : Median survival time.

Acknowledgements

Andreas Larem (JKI) is acknowledged for reviewing early versions of the manuscript.

Author contributions

SBT contributed to study conception and design, data collection, data analysis and interpretation, draft manuscript preparation, AL contributed to study conception and design, securing funding, data analysis and interpretation, JTW contributed to data analysis and interpretation, TB contributed to data analysis and interpretation, and JAJ contributed to data analysis and interpretation manuscript conception and major contributor in writing the manuscript. All authors read and approved the final manuscript.

Funding

The Programme d'Appui au Système de Recherche et d'Innovation, financé par l'Union Européenne (PASRI) and the Agence Nationale de Promotion de la Recherche Scientifique (ANPR) are acknowledged for supporting parts of this research.

Availability of data and materials

On request from authors.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

${ }^{1}$ Federal Research Centre for Cultivated Plants, Institute for Biological Control, Julius Kühn Institute (JKI), Heinrichstr 243, 64287 Darmstadt, Germany.
${ }^{2}$ Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia.
${ }^{3}$ LR21AGR03-Production and Protection for a Sustainable Horticulture, Regional Research Centre On Horticulture and Organic Agriculture, University of Sousse, BO. 57, 4042 Chott-Mariem, Tunisia

Received: 21 January 2022 Accepted: 11 June 2022
Published online: 20 June 2022

References

Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265-267
Abdel-Khalik LE, El-Sheikh E, Ragheb D, Ashour M (2017) Efficacy and virulence of Spodoptera littoralis nucleopolyhedrovirus on S littoralis larval feeding and susceptibility. Zagazig J Agricult Res 44:261-271. https://doi.org/10. 21608/zjar.2017.53955
Abul Nasr S (1956) Polyhedrosis virus disease on cotton leafworm prodenia litura F. Bull Entomol Soc Egypt 40:321-332
Bernal A, Williams T, Hernández-Suárez E, Carnero A, Caballero P, Simón O (2013) A native variant of Chrysodeixis chalcites nucleopolyhedrovirus: the basis for a promising bioinsecticide for control of C. chalcites on Canary Islands'banana crops. Biol Control 67:101-110. https://doi.org/10.1016/j. jpurol.2013.08.006
Breitenbach JE, el El-Sheikh SA, Harrison RL, Rowley DL, Sparks ME, GundersenRindal DE, Popham HJ (2013) Determination and analysis of the genome sequence of Spodoptera littoralis multiple nucleopolyhedrovirus. Virus Res 171:194-208. https://doi.org/10.1016/j.virusres.2012.11.016
Cherry CL, Summers MD (1985) Genotypic variation among wild isolates of two nuclear polyhedrosis viruses isolated from Spodoptera littoralis. J Invertebr Pathol 46:289-295. https://doi.org/10.1016/0022-2011(85) 90071-0
Eberle KE, Wennmann JT, Kleespies RG, Jehle JA (2012) Chapter II-basic techniques in insect virology. In: Lacey LA (ed) Manual of techniques in invertebrate pathology, 2nd edn. Academic Press, San Diego, pp 15-74
Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113

El-Salamouny S, Lange M, Jutzi M, Huber J, Jehle JA (2003) Comparative study on the susceptibility of cutworms (Lepidoptera: Noctuidae) to Agrotis segetum nucleopolyhedrovirus and Agrotis ipsilon nucleopolyhedrovirus. J Invertebr Pathol 84:75-82. https://doi.org/10.1016/j.jip.2003.08.005
El-Sheikh E (2015) Efficacy of Spodoptera littoralis nucleopolyhedrovirus on Spodoptera frugiperda (J.E. Smith) and Spodoptera exigua (Hübner): virulence biological effects and inhibition of juvenile hormone esterase. Egypt J Biol Pest Control 25(3):587-595
Escasa SR, Harrison RL, Mowery JD, Bauchan GR, Cory JS (2019) The complete genome sequence of an alphabaculovirus from Spodoptera exempta, an agricultural pest of major economic significance in Africa. PLoS ONE 14(2):e0209937. https://doi.org/10.1371/journal.pone.0170510
Grzywacz D, Jones KA, Moawad G, Cherry A (1998) The in vivo production of Spodoptera littoralis nuclear polyhedrosis virus. J Virol Meth 71:115-122. https://doi.org/10.1016/s0166-0934(97)00209-7
Gueli Alletti G, Sauer AJ, Weihrauch B, Fritsch E, Undorf-Spahn K, Wennmann JT, Jehle JA (2017) Using next generation sequencing to identify and quantify the genetic composition of resistance-breaking commercial isolates of Cydia pomonella granulovirus. Viruses 9(9):250. https://doi.org/ 10.3390/v9090250

Hajek AE, Shapiro-Ilan DI (2018) Ecology of invertebrate diseases. Wiley, Hoboken
Harrison RL (2008) Genomic sequence analysis of the Illinois strain of the Agrotis ipsilon multiple nucleopolyhedrovirus. Virus Genes 38:155-170
Harrison RL, Herniou EA, Jehle JA, Theilmann DA, Burand JP, Becnel JJ, Krell PJ, van Oers MM, Mowery JD, Bauchan GR (2018) Virus taxonomy profile: baculoviridae. J Gen Virol 99:1185-1186. https://doi.org/10.1099/jgv.0. 001107
Jakubowska AK, Lynn DE, Herrero S, Vlak JM, van Oers MM (2010) Host-range expansion of Spodoptera exigua multiple nucleopolyhedrovirus to Agrotis segetum larvae when the midgut is bypassed. J Gen Virol 91:898-906. https://doi.org/10.1099/vir.0.015842-0
Jehle JA, Blissard G, Bonning W, BC, Cory JS, Herniou EA, Rohrmann GF, Theilmann DA, Thiem SM, Vlak JM, (2006) On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol 151:1257-1266. https://doi.org/10.1007/s00705-006-0763-6
Kislev N, Edelman M (1982) DNA restriction-pattern differences from geographic isolates of Spodoptera littoralis nuclear polyhedrosis virus. Virology 119:219-222. https://doi.org/10.1016/0042-6822(82)90081-2
Kumar S, Stecher G, Koichiro T (2016) MEGA7: molecular evolutionary genetics analysis version 70 for bigger datasets. Mol Biol Evol 33(7):1870-1874
Laarif A, Salhi E, Fattouch S, Hammouda MHB (2011) Molecular detection and biological characterization of a nucleopolyhedrovirus isolate (Tun-SINPV) from Spodoptera littoralis in Tunisian tomato greenhouses. Annals Biolog Res 2(4):180-191
Martins T, Montiel R, Medeiros J, Oliveira L, Simoes N (2005) Occurrence and characterization of a nucleopolyhedrovirus from Spodoptera littoralis (Lepidoptera: Noctuidae) isolated in the azores. J Invertebr Pathol 89:185-192. https://doi.org/10.1016/j.jip.2005.06.012
Moscardi F (1999) Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol 44:257-289. https://doi.org/10.1146/ annurev.ento.44.1.257
Pang Y, Yu J, Wang L, Hu X, Bao W, Li G, Chen C, Han H, Hu S, Yang H (2001) Sequence analysis of the Spodoptera litura multicapsid nucleopolyhedrovirus genome. Virology 287:391-404. https://doi.org/10.1007/ s11262-005-5840-5
Shaurub ESH, Abd El-Meguid A, Abd El-Aziz NM (2014) Quantitative and ultrastructural changes in the haemocytes of Spodoptera littoralis (Boisd.) treated individually or in combination with Spodoptera littoralis multicapsid nucleopolyhedrovirus (SpliMNPV) and azadirachtin. Micron 65:62-68. https://doi.org/10.1016/j.micron.2014.04.010
Shorey HH, Gaston LK (1965) Sex pheromones of noctuid moths. V. Circadian rhythm of pheromone-responsiveness in males of Autographa californica, Heliothis virescens, Spodoptera exigua and Trichoplusia ni (Lepidoptera: Noctuidae). Ann Entomol Soc Am 58:597-600. https://doi.org/10.1093/ aesa/58.5.597
Takatsuka J, Okuno S, Nakai M, Kunimi Y (2016) Genetic and phenotypic comparisons of viral genotypes from two nucleopolyhedroviruses interacting with a common host species Spodoptera litura (Lepidoptera: Noctuidae). J Invertebr Pathol 139:42-49. https://doi.org/10.1016/j.jip.2016.07.009

Wennmann JT, Jehle JA (2014) Detection and quantitation of Agrotis baculoviruses in mixed infections. JVirol Methods 197:39-46. https://doi.org/10. 1016/j.jviromet.2013.11.010
Wennmann JT, Keilwagen J, Jehle JA (2018) Baculovirus Kimura two-parameter species demarcation criterion is confirmed by the distances of 38 core gene nucleotide sequences. J Gen Virol 99:1307-1320. https://doi.org/10. 1099/jgv.0.001100

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:
 - Convenient online submission
 - Rigorous peer review
 - Open access: articles freely available online
 - High visibility within the field
 - Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: *Correspondence: johannes.jehle@julius-kuehn.de
 ${ }^{1}$ Federal Research Centre for Cultivated Plants, Institute for Biological Control, Julius Kühn Institute (JKI), Heinrichstr 243, 64287 Darmstadt, Germany Full list of author information is available at the end of the article

