immune response against SARS-CoV-2. These results can contribute to the development of therapeutics, preventive medication against hyperinflammatory syndromes as well as alternative vaccine constructs and adjuvants.

Theobald SJ, Simonis A, [...], Rybniker J. (2021) Long-lived macrophage reprogramming drives spike protein-mediated inflammasome activation in COVID-19. EMBO Molecular Medicine 13(8): e14150

P033

MicroRNA-223 dampens neutrophil-mediated lung inflammation during pneumococcal pneumonia

<u>C. Gökeri</u>¹, P. Pennitz^{1, 2}, W. Groenewald¹, U. Behrendt¹, H. Kirsten³, C. Zobel⁴, S. Berger^{1, 2}, G. Heinz⁵, M.-F. Mashreghi^{5, 6}, S.-M. Wienhold¹, K. Dietert^{7, 8}, A. Dorhoi^{9, 10}, A. Gruber⁷, M. Scholz¹¹, G. Rohde^{12, 13, 14}, N. Suttorp^{2, 13, 15}, CAPNETZ Study Group, M. Witzenrath^{1, 2, 13, 15}, G. Nouailles^{1, 2}

¹Charité-Universitätsmedizin Berlin, Division of Pulmonary Inflammation, Berlin, Germany,
²Charité-Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany,
³Universität Leipzig, Institute for Medical Informatics, Statistics and Epidemiology, Leipzig, Germany,
⁴Bundeswehrkrankenhaus Berlin, Department of Internal Medicine, Berlin, Germany,
⁵Deutsches Rheuma-Forschungszentrum Berlin, Therapeutic Gene Regulation, Berlin, Germany,
⁶Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany,
⁷Freie Universität Berlin, Institute of Veterinary Pathology, Berlin, Germany,
⁸Freie Universität Berlin, Veterinary Centre for Resistance Research, Berlin, Germany,
⁹Friedrich-Loeffler-Institut, Institute of Immunology, Greifswald, Germany,
¹⁰University of Greifswald, Faculty of Mathematics and Natural Sciences, Greifswald, Germany,
¹¹Universität Leipzig, Institute for Medical Informatics, Statistics and Epidemiology, Berlin, Germany,
¹²Goethe-Universität Frankfurt am Main, Department of Respiratory Medicine, Medical Clinic i, Frankfurt/Main, Germany,
¹³CAPNETZ STIFTUNG, Hannover, Germany,
¹⁴Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover, Germany,
¹⁵German Center for Lung Research, Berlin, Germany

Community acquired pneumonia remains a leading cause of communicable disease-related mortality globally, despite the widespread use of protective vaccines and effective antibiotics. Neutrophils play a major role in containing bacterial growth, while also orchestrating detrimental pulmonary inflammation when dysregulated. Here we aimed to elucidate the role of myeloid cell-derived microRNA-223 in regulating pulmonary inflammation during pneumococcal pneumonia.

Serum microRNA-223 was quantified in pneumococcal pneumonia patients and healthy subjects. Wild-type and microRNA-223 knockout mice were intranasally infected with *Streptococcus pneumoniae*, followed by evaluation of pulmonary inflammation in terms of clinical disease course, histopathology, immune cell chemotaxis and inflammatory protein and gene signatures. Single-cell RNA sequencing was utilized to evaluate the transcriptomic repercussions of the absence of microRNA-223 during murine pneumococcal pneumonia.

Cell-free serum microRNA-223 was reduced in pneumococcal pneumonia patients relative to healthy subjects, which was correlated with increased disease severity. MicroRNA-223 knockout mice exhibited enhanced neutrophilic influx into the lungs and bronchoalveolar lavage, leading to histopathological aggravation and increased production of proinflammatory mediators following *Streptococcus pneumoniae* infection. MicroRNA-223 was induced in the lungs and sorted lung neutrophils of wild-type mice by *Streptococcus pneumoniae* in a time-sensitive manner, while its absence resulted in a dysregulated transcriptome of pulmonary neutrophils involving anti-microbial and cellular maturation genes.

Altogether, our findings indicate that in the absence of microRNA-223, alterations in the neutrophil transcriptome provoked exacerbated acute lung injury in mice, while reduced levels in the serum correlated to increased disease severity in pneumococcal pneumonia patients.