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Abstract 15 
Quality decision making in public health and animal health surveillance relies on addressing the challenge of 16 
synthesizing health-related information from disparate sources into actionable information. In the case of 17 
early warning systems for impending outbreaks this challenge is compounded with the need for evidence 18 
generation in real-time, and timely decision-making. The analysts running and interpreting the output from 19 
the epidemiological surveillance algorithms must present those in a format that is appropriate to those who 20 
have responsibility for taking action. We argue that the Bayesian inference framework, which provides a 21 
posterior probability for a given disease state, can be easily combined with a decision theory framework to 22 
support decision-making for disease surveillance and control in a transparent way. We provide a simple 23 
introduction to Bayesian approaches to epidemiological surveillance, with a particular focus on syndromic 24 
surveillance (SyS), that covers:(i) full Bayes (hierarchical) models; (ii) empirical Bayes models; and (iii) semi-25 
Bayes models that use Bayesian approaches to estimate model parameter distributions but that produce an 26 
output not intended for Bayesian inference.  We illustrate the flexibility and robustness of applying Bayesian 27 
probabilistic reasoning with three working examples based on animal SyS data from France and Norway.  28 

In more complex SyS scenarios, the main drawback of applying full Bayesian methods resides in the 29 
challenge of setting prior probabilities and the demanding computations, which may necessitate the use of 30 
approximate solutions. As an alternative approach, a framework for communicating SyS results based on the 31 
Bayes factor, i.e. the ratio between the posterior and prior odds that an outbreak is ongoing against an 32 
alternative hypothesis, is presented. Such explicit separation of prior information about a hypothesis and 33 
evidence from the data makes the framework useful for presenting results even when the modelling 34 
approach is not in itself Bayesian. 35 

Keywords: Syndromic surveillance, health surveillance, Bayesian modeling, Time-series analysis, Hidden 36 
markov model, outbreak detection 37 

 38 
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Introduction 39 

Health surveillance provides scientific and factual evidence to risk-assessors which are essential to inform 40 
decision-making, and to motivate timely and appropriate action. Increased availability of health-related data 41 
and methodological innovations have fostered new approaches to optimise surveillance systems for early-42 
detection. One of them is syndromic surveillance (SyS). The public health sector has initiated the use of 43 
“health-related data that precede diagnosis and signal with sufficient probability of a case or an outbreak to 44 
warrant further public health response” (Fricker and Rolka, 2006) for surveillance at the turn of this century, 45 
and has been followed in the last decade by the veterinary health sector (Dórea and Vial, 2016; Dórea et al., 46 
2011). 47 

Risk-assessors are faced with an unprecedented amount of health-related data being passively collected on 48 
national, regional and even individual levels (from flu-related internet searches to antibiotic sales in the pig 49 
industry). Decision-makers must take an increasing number of routine decisions based on these data: which 50 
reports should be part of a formal investigation? Should they wait another day before acting? Answering 51 
such questions is not a trivial task given that passive surveillance data are associated with a higher degree of 52 
uncertainty compared to, for example, data on notifiable diseases (Onisko et al., 2006).  53 

Observable data evaluated under different scientific hypotheses (e.g. the null hypothesis H0: “no outbreak of 54 
the disease is currently occurring in this region” and the alternative hypothesis H: “an outbreak of the 55 
disease is currently occurring in this region”) are typically modelled through probability distributions which 56 
depend on unknown quantities called parameters. There are two main approaches to the statistical 57 
inference of parameters and of hypothesis testing. These two classes are known as the frequentist and the 58 
Bayesian approach. Both classes have existed for centuries but in practice, frequentist methods have 59 
dominated, in large part due to the fact that they include a number of statistical tests that allows 60 
calculations to be performed by hand or using pre-calculated tables. Frequentist approaches assume that 61 
the data are a repeatable random sample (i.e. they can be associated with frequencies) from an infinite 62 
sampling scheme. The underlying parameters are treated as fixed at some unknown value that remains 63 
constant during this repeatable sampling process. In the Bayesian paradigm, the data are treated as 64 
observations from a realised sample (i.e. fixed) and parameters are described probabilistically, reflecting the 65 
uncertainty about their true value. Bayesian methods are very flexible but even moderately complex models 66 
will result in integrals that can only be solved by numerical methods such as Markov chain Monte Carlo 67 
(MCMC) methods. Consequently Bayesian methods did not gain popularity until computational power 68 
become readily available (Madigan, 2005). 69 

Ideally, a decision should be made which maximises the expected benefit based on decision theory. We 70 
argue that Bayesian methods applied to health surveillance problems provide an output that is better apt to 71 
support decision-making than the corresponding frequentist approaches. While outputs may support 72 
decision making with transparency, the terminology and technical aspects of the Bayesian inference network 73 
may be daunting and difficult to grasp, hampering communication about the model approaches used in the 74 
surveillance system and the interpretation of statistical outputs. Decision-makers may, as a result, not fully 75 
understand what inference can be drawn from these outputs. The objectives of this paper are three-fold: 1) 76 
to provide a theoretical yet simple introduction to Bayesian methods commonly applied in health 77 
surveillance; 2) to discuss how Bayesian (inference) framework can be used as a general approach for 78 
presenting results from SyS to decision-makers; and 3) to illustrate, through three working examples, how a 79 
Bayesian framework can be applied to outbreak detection scenarios . 80 

Theoretical overview 81 

A literature search aimed at identifying Bayesian methods already used in the field of animal or public health 82 
surveillance was performed in Scopus using the following search string: 83 
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TITLE-ABS-KEY ( ( bayes*  AND  surveillance )  OR  ( bayes*  AND  syndromic ) )  84 

It was outside the scope of this work to provide a systematic literature review. The goal of this scoping 85 
exercise was to identify key references to build the theoretical framework presented, and find relevant 86 
examples to illustrate the use of this framework in practice. Title and abstract were screened for all 3225 87 
resulting documents, and selected abstracts subjected to full-text evaluation. All reports identified which 88 
specifically report the use of Bayesian methods for outbreak detection were included and are cited in the 89 
relevant sections below.  90 

A closer look at the articles retrieved from the first search revealed that the terminology used in literature is 91 
not consistent and that a search with fixed keywords would miss significant pieces of work. Thus, the initial 92 
search was followed up by a “snowball approach” in which we looked up the original works cited in books, 93 
reviews and research papers. 94 

Working examples 95 

To illustrate the different approaches to probabilistic reasoning in a Bayesian framework, three surveillance 96 
working examples were constructed: 97 

1) Syndromic data on French horses presenting nervous symptoms and respiratory symptoms are evaluated 98 
each week with an empirical Bayesian network to detect  incursions of West Nile virus (as in (Mats Gunnar 99 
Andersson et al., 2014)). 100 

2) A dynamic empirical Bayesian network is applied to the same data for change point analysis.  101 

3) A full Bayes approach to spatio-temporal SyS for bluetongue using on-farm mortality and late abortions 102 
data in Norwegian cattle. More details about this example are given in the Supplementary Material.  103 

Although the examples we provide are based on animal health surveillance scenarios, the concepts they 104 
illustrate are very much transferable to public health surveillance systems.  105 

An introduction to Bayesian inference 106 

Important concepts in Bayesian statistics are the prior probability, which is the probability assigned to a 107 
hypothesis or event before the data were observed; and the posterior probability which is the probability for 108 
the same hypothesis given the prior probability and the relevant data (Bernardo and Smith, 1994; 109 
Christensen et al., 2011). The central part of Bayesian statistics is the Bayes’ theorem (equation 1), which 110 
allows us to calculate the posterior probability of a hypothesis of interest 𝐻 (e.g. disease present) given data 111 
regarding a chosen indicator event 𝐸 (e.g. number of reported clinical cases): 112 

𝑃(𝐻|𝐸) =
𝑃(𝐸|𝐻) 𝑃(𝐻)

𝑃(𝐸)
=

𝑃(𝐸|𝐻) 𝑃(𝐻)

 𝑃(𝐸|𝐻) 𝑃(𝐻)+ 𝑃(𝐸|𝐻0
) 𝑃(𝐻0)

,        (1) 113 

𝑃(𝐻) is the prior probability of the disease within our population and 𝑃(𝐸|𝐻) and 𝑃(𝐸) are the conditional 114 
probability of observing the symptoms in the presence of the disease, and of observing the symptoms 115 
regardless of the disease state of the population respectively. 𝐻0 is the null hypothesis of no disease 116 
outbreak, while the alternative H, an ongoing outbreak of the disease. 117 

A common form of Bayes´ theorem is the odds form (equation 2): 118 

𝑃(𝐻|𝐸)

𝑃(𝐻0|𝐸)
=

𝑃(𝐸|𝐻)

𝑃(𝐸|𝐻0)
×

𝑃(𝐻)

𝑃(𝐻0)
       (2) 119 

It can also be expressed as: 120 
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 𝑂𝑝𝑜𝑠𝑡 = 𝐿𝑅 × 𝑂𝑝𝑟𝑖𝑜𝑟      (3) 121 

In the form shown in equation (3) it is apparent that the ratio between posterior (𝑂𝑝𝑜𝑠𝑡) and prior odds 122 

(𝑂𝑝𝑟𝑖𝑜𝑟) equals the likelihood ratio (𝐿𝑅) for the observed evidence under the two hypotheses. This form is 123 

extensively used when reporting results from the analysis of forensic evidence where 𝐿𝑅 is referred to as 124 
value of evidence (Aitken and Taroni, 2004). More generally the ratio of the posterior and the prior odds is 125 
known as the Bayes factor. 126 

In a continuous sampling space, computation of 𝑃(𝐸|𝐻) involves integration over the unknown model 127 
parameters 𝜃: 128 

𝑃(𝐸|𝐻 ) = ∫ P(E│𝜃, H)𝜋𝑦(𝜃)𝑑𝜃   (4) 129 

Where 𝜋𝑦(𝜃) is the probability distribution of 𝜃 based on training data or expert opinion 𝑦. Starting from a 130 

(possibly vague) prior distribution  𝜋(𝜃), an updated (posterior) distribution 𝜋𝑦(𝜃) given 𝑦 may be found via 131 

the general form of Bayes’ theorem, see e.g. (Christensen et al., 2011). In other cases, the Bayes factor may 132 
be assessed “directly” as the 𝐿𝑅 in equation (2) above, i.e. without any further averaging or integration over 133 
parameters or sub-hypotheses. 134 

A natural extension of the Bayesian idea that the values of parameters arise from distributions is the use of 135 
models where parameters arise within hierarchies. In a SyS context, the probability that a disease case with 136 
a syndrome is observed would be a parameter of the distribution of reported cases, and when this 137 
parameter is unknown it may be modelled by a probability distribution. In Bayesian modelling, the 138 
parameters of a prior distribution are referred to as hyperparameters and their probability distribution 139 
referred to as hyperprior distributions. In the example above the hyperparameter “reporting probability” and 140 
its probability distribution have a real meaning but hyperparameters may also represent unknown statistical 141 
relationships. Using hyperprior distributions in addition to prior distributions is known as hierarchical Bayes. 142 
This approach is commonly used for multilevel modelling as it allows us to explicitly incorporate uncertainty 143 
from the multiple levels of the information. 144 

For further reading about Bayesian inference see e.g. (Christensen et al., 2011). 145 

Hierarchical Bayesian models and Bayesian Networks 146 

Bayesian models for SyS will typically be based on multiple variables describing different stochastic events in 147 
which the output from one variable is the input for another. A chain of variables may for example describe (i) 148 
the distribution of infected animals; (ii) the number of symptomatic animals given (i); and (iii) the number of 149 
reported animals given (ii). Such models are usually referred to as hierarchical models or Bayesian networks 150 
(BN). Other names include Bayesian belief networks, probabilistic graphical models, or probabilistic 151 
independence networks. There is no clear difference between a hierarchical model and a BN and the latter 152 
may be seen as a graphical representation of the joint distribution of a set of variables in the model. 153 

The structure of a BN is made up of variables (called nodes) which are connected probabilistically (through 154 
arcs). The arcs may indicate a direct, functional relationship or an observed statistical relationship where the 155 
cause for the correlation may be outside the model. If the arcs embody direct causal relationships, then the 156 
model is called a causal BN. Each node 𝑋𝑖, represents a function which takes the value of the parental nodes 157 
as input to calculate the probability for each state of the node (value of that variable): 𝑃(𝑋𝑖|parents(𝑋𝑖)). If 158 
𝑋𝑖  has no parent, the prior probabilities of its states are specified. Nodes in BN must respect the Markov 159 
condition, i.e. a node must be independent of its non-descendants, given the state of its parents. This 160 
Markov condition allows us to factor the complete joint distribution of the variables in the model as 161 
following equation (5): 162 
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𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|parents(𝑋𝑖))𝑛
𝑖=1      (5) 163 

From equation (5) it then becomes possible to derive the probability of any subset of nodes conditioned on 164 
the state of another subset of nodes. 165 

Figure 1 illustrates how an empirical Bayesian model, where syndromic data are evaluated for each week 166 
independently, as in (Mats Gunnar Andersson et al., 2014), can be represented as a BN. We used data on 167 
French horses presenting nervous symptoms (NeurSy) and respiratory symptoms (RespSy) to detect 168 
incursions of an exotic disease, West Nile virus. The probability distributions of neurological symptoms 169 
(NeurSy) and respiratory symptoms (RespSy) would typically be estimated by dynamic regression. The 170 
numbers shown in figure 1 are hypothetical. 171 

 172 

 173 

Figure 1: In this empirical Bayesian model, nodes with a red circle (e.g. “prior Belief”) are decision nodes with 174 
values set by the user, whereas nodes with a white filled circle are chance nodes. When a chance node 175 
shows several bars they represent the estimated probability of the node being in that state (e.g. observing 1, 176 
2, 3,...n syndromic cases). When the chance node has a single bar, 100%, the value of the node is known. 177 
(e.g. Fig 1b, NeurSy counts). In this case the value of the node is used to recalculate the probability of the 178 
states of the other nodes in the model. 179 

 180 

BN are quite robust to imperfect prior knowledge and probabilities need not be exact to be useful. This is an 181 
interesting trait of BN as causal conditional properties are often easier to estimate than the reverse. For 182 
example, clinicians would find it easier to estimate 𝑃(NeuroSy|WNV) than 𝑃(WNV|NeuroSy). 183 

Bayesian inference and decision theory 184 

Bayes’ theorem can easily be applied a posteriori to derive the probability of an outbreak given a statistical 185 
alarm (signal above threshold: yes/no) derived from frequentist methods (equation 6): 186 

𝑝(𝑜𝑢𝑡𝑏𝑟. |𝑎𝑙𝑎𝑟𝑚) =  
𝑝(𝑎𝑙𝑎𝑟𝑚|𝑜𝑢𝑡𝑏𝑟.) ∗ 𝑝(outbr)

𝑝(𝑎𝑙𝑎𝑟𝑚|𝑜𝑢𝑡𝑏𝑟.) ∗ 𝑝(outbr.) +𝑝(𝑎𝑙𝑎𝑟𝑚|𝑛𝑜 𝑜𝑢𝑡𝑏𝑟.)∗ 𝑝(no outbr.)
    (6) 187 
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Risk-assessors will usually have some idea about the prior probability of an outbreak 𝑃(outbr.) and the false 188 
alarm rate of the system 𝑝(alarm|no outbr.). Sensitivity 𝑝(alarm|outbr.) is much harder to quantify as it 189 
will depend on the shape and magnitude of the outbreak. However, it is possible to compute upper and 190 
lower bounds for the posterior probability 𝑝(outbr.|alarm) by assuming that the sensitivity is, at worst 191 
equal to the false alert rate, and at best equal to 1. In practice, the probability 𝑝(outbr.|alarm) would 192 
depend on whether the counts are near or very much above a pre-defined threshold (Grossi, 2008). 193 

Within the Bayesian framework, it is not necessary to define a threshold for the signal (e.g. number of 194 
clinical cases observed). We may instead use the probability densities for the observed signal given an 195 
outbreak 𝑓(signal|outbr.) or no outbreak 𝑓(signal|no outbr.): 196 

𝑝(𝑜𝑢𝑡𝑏𝑟. |𝑠𝑖𝑔𝑛𝑎𝑙) =  
𝑓(𝑠𝑖𝑔𝑛𝑎𝑙|𝑜𝑢𝑡𝑏𝑟.)∗𝑝 (outbr.)

𝑓 (𝑠𝑖𝑔𝑛𝑎𝑙|𝑜𝑢𝑡𝑏𝑟.)∗𝑝(outbr.)+𝑓(𝑠𝑖𝑔𝑛𝑎𝑙|𝑛𝑜 𝑜𝑢𝑡𝑏𝑟.)∗ 𝑝(no outbr.)
     (7) 197 

and let the threshold be defined for a given posterior probability or expected utility of action (Mats Gunnar 198 
Andersson et al., 2014).  The latter is the average amount of clinical cases, or loss of animals, that we expect 199 
to see. Since an unmanaged outbreak as well as actions will result in costs, the expected utility will always be 200 
zero or negative. 201 

The Bayesian approach, centered on sequential inference, constitutes a transparent support to risk- 202 
assessors (Heaton et al., 2012) but in some situations, deriving the posterior probability of an outgoing 203 
outbreak may not be enough to take informed mitigation measures (e.g. vaccination, quarantine).  The costs 204 
and benefits of the possible actions must be considered in a way that is adaptive, i.e. relies on the latest 205 
collected information. This is particularly important when the surveillance goal of the system is early 206 
detection and decision-makers require an understanding of the explicit trade-offs between waiting another 207 
day for more data and acting today based on the information collected so far. 208 

Decision theory is a framework for making optimal decisions given values and uncertainties and is closely 209 
related to game theory. Since Bayesian models for SyS will present as output a posterior probability for each 210 
state, given prior knowledge and evidence, they are easily combined with a decision theory framework as 211 
discussed in (Mats Gunnar Andersson et al., 2014; Onisko et al., 2006) to design a surveillance system that is 212 
optimal, accounting for costs of actions and consequences of outbreaks. Many software for BN, including the 213 
GeNIe modeling environment (“BayesFusion, LLC,” n.d.; Druzdzel, 1999), allows the user to incorporate 214 
functions for calculating utility as extra nodes in BN models. BNs with utility nodes are referred to as 215 
influence diagrams (Figure 2). Decision support models can be built in which a Bayesian model is combined 216 
with a decision theory framework to evaluate the best decision given the evidence or the added value of 217 
“waiting” for more data; or to analyse alternative ways of epidemic control under imperfect information (Lin 218 
and Ludkovski, 2014).  219 
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 220 

Figure 2: Example of a simple Influence Diagram where the posterior probability of an outbreak is used to 221 
decide on whether to vaccinate. The evaluation nodes (blue hexagon) takes different values for each 222 
combination of states of the parental decision and chance nodes. The values shown in the example are 223 
hypothetical. 224 

 225 

Dynamic Bayesian Networks (DBN) and Hidden Markov Models HMM (HMM) 226 

If a BN is used to model time-series data, i.e. the arcs flow forward in time, it is known as a dynamic Bayesian 227 
network (DBN) or sometimes as temporal BN or two-time slice BN. The DBN represents graphically 228 
conditional independencies (arcs) between a set of time instances (nodes) with probabilities. The simplest 229 
DBN for a sequence of observations {𝑌1, … , 𝑌𝑡} is the first-order Markov model which only uses 𝑌𝑡−1 to 230 
derive the value of 𝑌𝑡. If the observation 𝑌𝑡 is generated by some variable which state 𝑆𝑡 is discrete and 231 
hidden from the observer, the DBN will form a hidden Markov model (HMM). In HMM, both the sequence of 232 
states and observations follow a first-order Markov order – that is, a given state St is independent of all the 233 
states prior to 𝑡 − 1; and given 𝑆𝑡, 𝑌𝑡 is independent of the states and observations at all other time indices. 234 

A belief propagation algorithm (Pearl, 1988) is used to update the probabilities of all the nodes in the 235 
network to incorporate new evidence (i.e. new observations). The objective of HMM is to compute the 236 
optimal estimate of the hidden state (and its uncertainty) given the observed data - the posterior probability 237 
distribution (or density) P(𝑆𝑡|𝑌) - which can be derived as a recursive form of Bayes’ rule. This can be 238 
computed through a forward filtering and backward smoothing approach (Scott, 2002). Parameter 239 
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estimation is then performed using methods such as Gibbs sampling (Carter and Kohn, 1994), the 240 
expectation-maximisation algorithm or Markov chain Monte Carlo (MCMC) sampling (Ryden, 2008). 241 

Markov switching models & State-space models  242 

Markov switching models (MSM) are an extension of HMM which include lagged observations. The 243 
observable random variables in the MSM depend on their historical values as well as the hidden state 244 
variables.  245 

State-space models (SMM) (also known as linear Gaussian state-space models and Kalman filters) are also an 246 
extension of HMM in which the latent variable is continuous and normally distributed (as opposed to 247 
discrete and following a multinomial distribution). A good accessible introduction to HMM, DBN and their 248 
numerous extensions can be found in (Ghahramani, 2001).   249 

Not one but several Bayesian approaches 250 

The general term Bayesian may be applied to “any method that seeks to approximate the posterior 251 
(probability) distribution for some variable(s) or parameter(s) of interest” (definition attributed to (Bernardo 252 
and Smith, 1994)). Generally, three types of Bayesian models can be considered: 253 

I. Models in which data are used to obtain posterior probability distributions for parameters which are then 254 
used for inference. Such hierarchical models, that include hyperparameters and hyperpriors, are referred to 255 
as full Bayes (Lawson and Kleinman, 2005). Some publications use the term “full likelihood method” for 256 
these models (Frisén and Andersson, 2009). A full Bayes approach entails formulating subjective prior 257 
probabilities to express pre-existing information; carefully modelling the data structure; checking and 258 
allowing for uncertainty in model assumptions; and possibly formulating a set of possible decisions and a 259 
utility function for the value or cost for correct and incorrect decisions. 260 

II. Methods that seek to estimate the posterior probability of a variable of interest, but do not build full 261 
Bayes models are collectively named empirical Bayes (Lawson and Kleinman, 2005).  In this case, point 262 
estimates for (some) input parameters are used (e.g. based on maximum likelihood or linear regression) 263 
rather than applying a parameter distribution. 264 

III: Models that use Bayesian approaches to estimate model parameter distributions but that produce an 265 
output in a format not intended for Bayesian inference.  These can be referred to as semi-Bayes. 266 

From a decision- maker’s perspective the semi-Bayes approach (III) is indistinguishable from the traditional 267 
frequentist approach. Bayesian models may be used to estimate parameters of a regression model for time 268 
series analysis, as shown in Jung et al.(Jung et al., 2006), but the resulting model is used to compute 269 
confidence intervals for the syndromes of interest and define action thresholds just as in a traditional SyS. 270 
These were not often reported in the SyS literature and will not be discussed further. 271 

Our literature informed discussion presented below will focus on the first two cases, full Bayes and empirical 272 
Bayes models. Within each of these classes, the models developed may differ significantly in their 273 
mathematical representation and technical implementation. In many cases, the naming of the methods and 274 
the technical description (e.g. using discrete distributions for small counts but approximating data with 275 
continuous distributions for large counts) may mask the fact that the models are, at a more fundamental 276 
level, very similar. 277 
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Bayesian framework as applied to SyS 278 

1. One region-one time unit 279 

The simplest situation is a surveillance system that, as in working example 1, is implemented for a region as 280 
a whole, looking at data for one time unit at a time. Observation 𝑌 (e.g. number of clinical cases for a 281 
syndrome) at time 𝑡 is generated by some process (health/disease status of the population under 282 
surveillance) whose state 𝑆𝑡 is hidden from the observer. The standard frequentist solution to this scenario is 283 
the Shewhart method which compares a daily sample statistic against an upper control limit typically set to 284 
be a multiple of the standard deviation of the mean (Shewhart, 1939). While most efficient in detecting 285 
spike-type outbreaks, the Shewhart method does not perform well when the increase in the mean of the 286 
process is slow. 287 

I. Full Bayes 288 

 Schmidt and Pereira (Schmidt and Pereira, 2011) reviewed generalized dynamic models commonly used for 289 
modeling time series of count data, and demonstrated how the parameters of interest could be estimated 290 
using a full Bayes approach. In particular, the authors demonstrated how a Bayesian framework could be 291 
used to estimate the probability of disease (in their case dengue fever) given the absence of reported 292 
positive cases. The “one region – one time unit” is the simplest biosurveillance scenario we can consider, and 293 
most examples found in the literature using a full Bayesian approach addressed the more complex scenarios 294 
of multiple time points and/or multi-dimensional surveillance data, as presented in the next sections.  295 

II. Empirical Bayes 296 

Andersson et al. (Mats Gunnar Andersson et al., 2014) developed an Empirical Bayes model for syndromic 297 
surveillance of WNV and Equine Influenza using syndromic data as described in the working example 1. In 298 
this approach, where only one time unit is considered, the distributions of reported cases are modelled using 299 
linear regression models fitted by maximum likelihood. This allows calculation of ratio of the likelihood of 300 
observing n cases given an ongoing outbreak, over the likelihood of observing n cases given no outbreak. 301 
This ratio, mentioned above as the value of evidence (V) can then be multiplied by the prior odds of an 302 
ongoing outbreak to obtain the posterior odds.  303 

The approach may be extended to handle multiple data streams by assuming that they are conditionally 304 
independent given any of the hypotheses the likelihood ratios from the two data streams can be combined 305 
by multiplication:  306 

𝐿𝑅 =
𝑃(𝐸1,𝐸2|𝐻1)

𝑃(𝐸1,𝐸2|𝐻2) 
=

𝑃(𝐸1|𝐻1)

𝑃(𝐸1|𝐻2) 
×

𝑃(𝐸2|𝐻1)

𝑃(𝐸2|𝐻2) 
     (8) 307 

where E1 is the evidence from syndrome 1 and E2 is the evidence from syndrome 2. This equation is 308 
equivalent to the simple BN in working example 1. 309 

 310 

2. One region-multiple time units 311 

A more advanced surveillance scenario would be to look at data from one region accumulated over several 312 
time units at a time. This is exemplified by extending working example 1 into working example 2.   313 

We use the term change point analysis (CPA) for methods that seek to detect subtle change(s) in incidence 314 
and to characterise the direction of the change in a time series between change points. Knowing the time at 315 
which process parameters have started to shift, the so-called change point, makes it easier to initiate a 316 
search to identify and eliminate the source of variation. Frequentist statistical process control charts are 317 
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used to detect shifts in a process parameter by distinguishing between assignable cause variation (i.e. new 318 
emergent properties) and common causes of the process variation (i.e. variation that is predictable 319 
probabilistically). They may incorporate the cumulative sums of the deviations of the sample values from the 320 
target values (CUSUM) (Lucas, 1985) or may use a weighted average of the sample statistics with 321 
exponentially decaying weights (termed exponentially weighted moving average chart or EWMA) (Holt, 322 
2004; Winters, 1960). These methods and others are reviewed in (Unkel et al., 2012), and more recently in 323 
(Yuan et al., 2019). 324 

Application of the Bayesian framework to the change point estimation problem allows us to draw inferences 325 
based on posterior distributions for the time and the magnitude of a change (Barry and Hartigan, 1993).  326 
Kass-Hout et al. (Kass-Hout et al., 2012), for example, applied the CUSUM CPA method to detect changes in 327 
emergency admission trends that can indicate influenza illness in USA. The authors showed that the use of 328 
CPA, in comparison to single-point detection, allowed decision-makers to make a more informed decision on 329 
which alarms warranted response, prioritizing time-series changes depending on whether they represented 330 
decreasing, stable or increasing trends. However, the authors brought attention to the inherent assumption 331 
of a normal distribution for the time-series data, an issue that Texier et al. (2016) (Texier et al., 2016) later 332 
suggested could be the reason for a more accurate and less biased performance of frequentist methods in 333 
their particular evaluation using simulated data. 334 

I. Full Bayes 335 

Full Bayes approaches for CPA are often based on HMM. Le Strat and Carrat (1999) (Le Strat and Carrat, 336 
1999) pioneered the use of HMM in biosurveillance which many biostatisticians have built upon. The 337 
recursive nature of HMM allows us to easily run them in real time as only the present observation(s) and the 338 
previously estimated state and uncertainty matrix are required, i.e.  no additional past data are needed. 339 
Unkel et al. (Unkel et al., 2012) provided a comprehensive review of statistical methods used for prospective 340 
detection of infectious disease outbreaks, and pointed HMM among the class of methods that can explicitly 341 
account for the correlation structure among observations in a time-series. 342 

HMM and MSM can be used in a purely temporal setting, where the transition from non-outbreak to 343 
outbreak scenarios is seen as a Markovian process. That is, disease outbreak states are modeled as hidden 344 
state variables which control the observed time series.  The process was evaluated for the detection of 345 
simulated anthrax outbreaks in a time-series or clinic visits collected from a metropolitan area (Lu et al., 346 
2010, 2008). The authors showed higher sensitivity compared to traditional deterministic SyS methods. They 347 
also pointed out that the method was less sensitive to extreme values than traditional approaches, as a jump 348 
component could be introduced to absorb sporadic extreme values. This is expected to reduce the number 349 
of false alarms and increase robustness to variations in the data, which is the result reported by other 350 
authors applying HMM to determine the epidemic and non-epidemic periods from influenza surveillance 351 
data (Conesa et al., 2015; Martínez-Beneito et al., 2008; Rath et al., 2003). Amorós et al. (Amorós et al., 352 
2020) later extended the temporal model presented by Martinez-Beneito et al. (2008)(Martínez-Beneito et 353 
al., 2008) to model specifically the differentiated incidence rates between equally spaced time points, 354 
improving detection in earlier stages of the epidemic, when incidence rates are low.   355 

Influenza monitoring was also used as the test case for a framework that used Bayesian networks both to 356 
estimate the probability of an individual patient having the specific disease, based on its electronic medical 357 
records, and then the probability of an outbreak in the population (Cooper et al., 2015). The population 358 
component is based on a SEIR compartmental spread disease model (Susceptible-Exposed-Infected-359 
Recovered). In this framework, which is unique in its integrated approach to combining patient and 360 
population outbreak detection and characterization, counts are not the only source of evidence. The 361 
population probabilities of an ongoing outbreak also become more informative with more and better 362 
information about the individual clinical cases.  363 
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Dawson et al. (2015)(Dawson et al., 2015) used a similar Bayesian network methodology, informed by 364 
individual medical records and a spread model, but improved by incorporating a particle filter. In the words 365 
of the authors, “[t]his inclusion allows the system to track the fraction of the population sick as a continuous 366 
parameters, rather than as a few coarse discrete states, which is especially important when the number of 367 
cases are small”. The gain in timeliness and specificity comes at the cost of a high parametrisation burden, 368 
which can be particularly disadvantageous for detection of unknown diseases or rare diseases used as 369 
biological weapons.  370 

Watkins et al. (Watkins et al., 2009) used reported case counts of hepatitis A, superimposed with simulated 371 
outbreaks, to evaluate the suitability of HMM as a surveillance methods for use in sparse small area count 372 
data, with limited availability of baseline data. At false alarm rates around 0.05, the Bayesian method did not 373 
outperform traditional CUSUM methods, but at 0.01 false alarm rates the HMM had both greater sensitivity 374 
and shorter timeliness for detection. 375 

Höhle et al. (Höhle and An Der Heiden, 2014) used a hierarchical Bayesian model to account for reporting 376 
delay during an outbreak of Shiga toxin-producing Escherichia coli. The authors explicitly modelled the delay 377 
distribution (discrete time survival regression) in parallel to the epidemic curve, allowing for changes in the 378 
reporting delay as intervention measures are implemented, and an effective “nowcasting” of the epidemic 379 
burden in order to inform control strategies. The approach was also used for surveillance of foodborne 380 
disease in China (Wang et al., 2018), and dengue fever in Brazil (Bastos et al., 2009) and Thailand 381 
(Rotejanaprasert et al., 2020). A Bayesian nowcasting model which accounts for reporting delay while 382 
explicitly modeling the temporal relationship between cases – to accurately model reporting delay 383 
accounting for the fact that future cases are intrinsically linked to past reported cases – was recently 384 
introduced and made available as the R package {nobBS} (McGough et al., 2020). Liu et al. (Liu et al., 2020) 385 
used a Bayesian model to learn from individuals reporting behaviour in online participatory health 386 
surveillance systems, and estimating their probability of reporting every week. The model was applied to ILI 387 
prevalence estimation in Australia to demonstrate how the framework can be used to correct inconsistent 388 
participation and sampling bias in prevalence estimations. 389 

II. Empirical Bayes 390 

Working example 2 illustrates a simple empirical DBN (Figure 3). Such absorbing state model is only 391 
appropriate when the goal of the surveillance system is the early detection of emerging diseases for 392 
example, but it is not suitable for the monitoring of recurrent seasonal diseases such as influenza. 393 
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 394 

Figure 3: In this Dynamic Bayesian Network, the probability distributions for respiratory and neurological 395 
syndromes are the same as in Figure 1 and assumed to be dependent only on the state of node p(Ongoing). 396 
The nodes in the “dynamic” part of the network, however, take one value for each time-step. The node 397 
P(ongoing) takes the values “yes” or “no”. The state may change from “no” to “yes” with a probability 398 
defined in node P(onset). Once the node is in state “yes” (outbreak started), it cannot switch back. Such 399 
models are referred to as “absorbing state models” (Heaton et al., 2012). 400 

 401 

The DBN in Figure 3 is a first order Markov model since the state of each time-instance is only dependent on 402 
the state of the previous time-instance (represented by the circular arc at node “Ongoing”). A DBN may be 403 
extended to allow higher order (>1) interactions between time instances such as an nth order DBN allows 404 
arcs from {𝑌𝑇−𝑛, … , 𝑌𝑇−1} to 𝑌𝑇. 405 

While the approach above uses the Bayesian decision framework to weight in the likelihood of being in an 406 
epidemic versus non epidemic state based on the number of observed cases, García et al. (2015) (García et 407 
al., 2015) proposed a method based on the shape of the distribution for the number of cases, which they 408 
tested for detection of influenza-like illness (ILI). Their method is based on the rationale that the number of 409 
reported cases, which follows an autoregressive dynamic in the absence of an outbreak, will change to 410 
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exponential growth during the early phase of the outbreak. The authors noted that the method, which could 411 
be implemented in a straightforward algorithm, relies only on training based on historical data, without the 412 
need to tune free parameters. Furthermore, it allows quantitative estimations of epidemic parameters. 413 
Polyakov et al. (Polyakov and Breban, 2016) also explored the idea of a breakpoint change, but in this case 414 
the authors looked for a statistically significant change in the epidemic’s basic reproduction number, R0. 415 

Brooks et al. (Brooks et al., 2015) proposed a framework for monitoring ILI seasonal epidemic in which the 416 
prior for an upcoming seasonal curve is calculated considering sets of transformations of past seasons’ 417 
curves. As the season progresses and data becomes available, the likelihood of being in any of these curves 418 
are weighted based on actual observed data. These weights are used to generate distributions – rather than 419 
point values – for forecasts of specific epidemic targets, such as peak and duration.  420 

Izadi et al. (Izadi et al., 2009) presented innovative work using BN to evaluate the performance of SyS 421 
algorithms. The authors evaluated algorithms both intended for the one-time unit evaluation problem, as 422 
well as options that consider multiple time-points. Their work is mentioned in this section because as for 423 
other work that we have classified as empirical Bayes, detection is based on frequentist statistical 424 
approaches, but a Bayesian framework is used to deal with uncertainty in the process, and aid decision 425 
making – in this case decision about algorithm choice an parameterization. Ebel et al. (Ebel et al., 2017) used 426 
an empirical Bayes approach to account for the variability and uncertainty associated with reporting of 427 
foodborne illness cases, and estimate the actual power of outbreak detection through surveillance. 428 

3. Multi-dimensional surveillance data 429 

Multivariate SyS systems, which concurrently monitor several health-related data streams, have greater 430 
sensitivity and are more reliable than univariate systems (Rolka et al., 2007). This is because no single data 431 
source captures data from all the individuals involved in an outbreak. Some diseases will cause a wide 432 
variety of clinical symptoms in different people or animals (e.g. diarrhoea in some, fever in others) and/or 433 
will affect different strata of the population (e.g. different age or production groups). Since there is generally 434 
different information contained in observations from different data sources, SyS systems should seek to 435 
simultaneously evaluate various combinations of multiple data sets using multivariate approaches – 436 
overviews are provided in (Frisén, 2010; Sonesson and Frisén, 2005).  437 

Many information systems will also record some sort of spatial information related to a syndromic case (e.g. 438 
postal code of patient, geographic coordinates of a farm). Including this extra layer of information in the 439 
analytical methods can allow detection of localised outbreaks of a disease or identify variations in regional 440 
patterns. Spatial and spatio-temporal frequentist aberration-detection algorithms have been developed, 441 
ranging from spatial CUSUM (Dassanayaka, 2015) to space-time scan statistics (Kulldorff, 2001) and spatio-442 
temporal regression methods (Kleinman et al., 2004). For a comprehensive review of methods for space-443 
time disease surveillance, readers are referred to (Robertson et al., 2010).  444 

The application of Bayesian alternatives to multi-dimensional surveillance in general, and spatial-temporal 445 
monitoring in particular, are reviewed below with examples. 446 

I. Full Bayes 447 

Dynamic Bayesian Networks can be used to discover the interplay among multiple data sources monitored 448 
for health surveillance. Such method was applied by Sebastiani et al. (Sebastiani et al., 2006) to jointly 449 
monitor four data sources employed for influenza surveillance. The joint model can be used to forecast the 450 
beginning of epidemics, as well as the peaks of epidemics, and in their work showed that paediatric patients 451 
were infected with respiratory viruses before the rest of the population.  452 

Later coining this as “Bayesian Information Fusion Networks”, a series of papers demonstrated the 453 
enhancement of disease surveillance systems by this method’s advantages of combining multiple data 454 
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sources and providing Bayesian decision support capabilities. Mnatsakanyan et al. (2009)  (Mnatsakanyan et 455 
al., 2009) described a system for detection of influenza-like events combining chief complaints from 456 
emergency department (ED) visits, International Classification of Diseases Revision 9 (ICD-9) codes from 457 
records of outpatient visits to civilian and military facilities, and influenza surveillance data from state health 458 
departments. The system showed results high sensitivity and specificity for timely detection compared to 459 
confirmed laboratory cases. Burkom et al. (Burkom et al., 2011) “fused” environmental data with public 460 
health data, including water quality data in the surveillance and early detection of waterborne disease 461 
outbreaks. The fusion networks method was later refined to improve sensitivity while reducing false alarm 462 
rate (Burkom et al., 2013). The refined method considers the inclusion of many different sources of data, 463 
which are then tested individually for their inclusion in a process of hierarchical training of the Bayesian 464 
networks. Hierarchical model selection was also used by (Ertem et al., 2018) to enable combination of 465 
multiple predictors into the previously referenced model developed in (Brooks et al., 2015). 466 

Morrison et al. (2016) (Morrison et al., 2016) applied the hierarchical Bayesian framework to improve 467 
environmental health models, which usually focus only on monitoring health outcomes, with the explicit 468 
modeling of environmental exposure (risk factors) as a latent process. The authors implemented the 469 
computation efficiently by using integrated nested Laplace approximations, and demonstrated the 470 
superiority of the method compared to univariate models. 471 

A causal Bayesian network to model an entire population of people (not just those seeking treatment) was 472 
introduced by  Cooper et al. (Cooper et al., 2004) to monitor emergency department chief complaint data. 473 
The so called Population-wide Anomaly Detection and Assessment (PANDA) algorithm was later extended to 474 
simultaneously monitor two data sources of different granularity: aggregated regional counts for OTC sales 475 
and multivariate ED records for individual patients (W.-K. Wong et al., 2005). The latter work used the 476 
extended PANDA for detection of anthrax release, but the authors pointed out that the algorithm could be 477 
used even to model the effects of noncontagious disease outbreaks. Later, the population-wide Bayesian 478 
network model idea was applied again to emergency department data for detecting both specific and non-479 
specific disease outbreaks (Shen and Cooper, 2009). This hybrid approach can jointly model known diseases 480 
(e.g., influenza and anthrax) by using informative prior probabilities, and unknown diseases (e.g., a new, 481 
highly contagious respiratory virus that has never been seen before) by using relatively non-informative prior 482 
probabilities.  483 

Multi-dimensional surveillance data also emerges when the spatial dimension is explicitly taken into account. 484 
The Bayesian-network-based spatial scan statistic (BNetScan), similarly to the temporal approaches 485 
described above, is an entity-based BN that models the underlying state and observable variables for each 486 
individual in a population. This network is then used to determine the posterior probability of each sub-487 
region containing a cluster. It has been applied to simulated outbreaks of influenza and cryptosporidiosis 488 
injected into Emergency Department data (Jiang et al., 2010). 489 

Spatio-temporal data are also the most common use case for HMMs. The transition probabilities of the 490 
Markov chain can be allowed to vary over space and time, in the fashion of conditional autoregressive 491 
modeling (CAR) models in which spatial correlation in the disease data is modelled by a set of random 492 
effects. Several extensions to HMM (such as beyond normality (Rolka et al., 2007), beyond two hidden 493 
states, multivariate extensions and random observation time (Pearl, 1988)) are available. More recent 494 
advances go further. The spatio-temporal conditional autoregressive HMM with an absorbing state proposed 495 
in (Heaton et al., 2012) combines good sensitivity and specificity, use of covariate information, inclusion of 496 
spatio-temporal dynamics, and transparent support to decision-makers.  497 

Working example 3 illustrates a full Bayes approach applied to a spatio-temporal SyS for bluetongue disease 498 
using two data-streams: increased mortality, and late abortions in the Norwegian cattle population. A HMM 499 
model with an absorbing state was implemented, similar to Heaton et al. (2012) (Heaton et al., 2012) but 500 
with some changes. For example, our model includes time delays between infection and resulting observed 501 
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data. An overview is given in Figure 4, and a detailed description of the model is given in the Supplementary 502 
Material. The model for the baseline rates (i.e. number of deaths and late abortions without an outbreak) 503 
was fitted to actual historical data from 2006. Data on the individual level were aggregated on a grid of 25 504 
km x 25 km cells, with a total of 42 grid points covering the south-west region of Norway from which the 505 
data originate. A model for the bluetongue outbreak signal was fitted using simulated outbreak data 506 
(Szmaragd et al., 2009), and this signal was then added to the observed baseline cases. Another simulated 507 
outbreak of bluetongue in the same region was used for the SyS with infections status unknown for the 508 
whole county. The main parameter of interest is the infections status (infected or not infected with the 509 
disease) of each grid point for each week. The first simulated infection occurs five weeks after the start of 510 
the syndromic surveillance, but the increase of deaths and late abortions does not pick up speed until week 511 
14. Detection is set to occur when the estimated probability of infection is above 50%, which occurs at week 512 
15. Approximate posterior distributions of model parameters were obtained using MCMC simulation using 513 
OpenBUGS version 3.2.3 (Thomas et al., 2006). A similar framework was applied to the monitoring of 514 
nervous symptoms in horses, showing how spatio-temporal monitoring can be applied simultaneously for 515 
detection of a specific disease (in this case West Nile Virus) and a more general class of diseases related to 516 
the syndromic manifestation (Hedell et al., 2019). 517 

 518 

Figure 4: A full Bayes approach to spatio-temporal surveillance for bluetongue in Norwegian cattle. The first 519 
row shows the grid points infected at various times in the simulation, with open triangles indicating infection 520 
but not yet any additional deaths or late abortions. The second and third rows illustrate the ability of the SyS 521 
model to predict the infection status. The second row shows the posterior probability that each region is 522 
infected, while the third row shows the Bayes factor. 523 
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 524 

(Zamiri et al., 2015) modelled influenza spread within populations using SIR compartment models 525 
(Susceptible-Infected-Recovered). Individual sets of SIR parameters are used to model the epidemic 526 
dynamics within each area, and spatial spread and information are then explicitly modelled by adding a set 527 
of transition probabilities between every pair of monitored geographical areas. The optimal Bayesian 528 
predictor for the unknown number of ongoing epidemics is an extension of previous formulations of 529 
nonlinear multitarget filtering to account explicitly for spatial spread of disease, and be able to process 530 
multiple syndromic data streams representing the reports from multiple geographical areas. While the full 531 
Bayesian optimal solution is computationally intractable, the authors implemented an estimation algorithm 532 
based on a probability hypothesis density (PHD) filter with particle systems (known as particle-PHD or 533 
sequential Monte Carlo (SMC) PHD filter in tracking literature (Jégat et al., 2008). While the framework was 534 
shown to be useful in providing timely prediction of the epidemic peak and duration, the authors highlight 535 
that this is rather a conceptual solution, and implementation in practice requires further research.  536 

(Zou et al., 2018) also used a hybrid hierarchical Bayesian framework in which a spatial explicit model is 537 
coupled with a particle filter, which the authors highlight allows for online updating of streaming data.” 538 

A Bayesian model that outperformed SaTScan was introduced by Li et al. (Li et al., 2012). BaySTDetect is a 539 
mixture of a component that describes the background effect of the disease in a study region as a whole, 540 
accounting for spatial and temporal autocorrelations, and a second component that estimates the time 541 
trend for each area. Boulieri et al. (Boulieri et al., 2020) later extended the model by addressing important 542 
limitations, such as allowing for the mixing parameter which designates areas as following a usual or unusual 543 
trend to vary in time. It is important to note that the framework has only been applied in the surveillance of 544 
non-communicable, non-infectious conditions. These have not been extensively explored in this article. For a 545 
recent review of spatiotemporal models for non-communicable disease surveillance readers are referred to 546 
Blangiardo et al. (Blangiardo et al., 2020) 547 

II. Empirical Bayes 548 

 The main challenge to multi-dimensional monitoring is handling the complex correlation structure among 549 
the data sources monitored, which cannot be easily addressed without the help of Bayesian networks, as 550 
described in the full Bayes approaches listed above. While less common, empirical Bayes frameworks have 551 
also been constructed to handle the spatial dimension or the combination of multiple sources of data.   552 

One example is the Bayesian spatial scan statistic proposed by Neil et al. (Neil et al., 2006). The (original) 553 
Kulldorff scan statistic (Kulldorff, 1997), which is based on the concept of likelihood ratios, “preludes” 554 
Bayesian models but lacks a Bayesian interpretation. Since it is possible to estimate, by simulation, the 555 
probability of obtaining a particular value of a scan spatial or spatiotemporal statistic under baseline and 556 
outbreak conditions (Lawson and Kleinman, 2005), it is also possible to apply the continuous form of Bayes 557 
Theorem to estimate the Bayes ratio between H and HA and thus make inference on the posterior 558 
probability of H. 559 

The framework for syndromic surveillance based on the value of evidence presented in examples 1 and 2 560 
(Struchen et al., 2017) has been extended to monitor multiple syndromes (Faverjon et al., 2016), and 561 
account for reporting delays (Struchen et al., 2017). 562 

Manitz et al. (2013) (Manitz and Höhle, 2013) extended the widely used Farrington  aberration detection 563 
based on generalized linear models (GLM) algorithm (Farrington et al., 1996; Noufaily et al., 2013), to a 564 
Bayesian generalized additive model (GAM). This extends the original algorithm by allowing adjusting for 565 
concurrent processes influencing the case counts. The authors demonstrated this by incorporating the 566 
influence of absolute humidity when modeling weekly reports of campylobacteriosis cases in Germany. Fast 567 
and efficient integrated nested Laplace approximations allowed the method to be made available through an 568 
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easily accessible implementation in the R (statistical programming environment R (R Core Team and Team, 569 
2016)) package {surveillance} (Höhle, 2007; Salmon et al., n.d.). Salmon et al. (Salmon et al., 2015) later built 570 
further into this framework by including an adjustment to account for reporting delays. Vial et al. (F Vial et 571 
al., 2016) applied the framework to multivariate time series surveillance in animal health. While the authors 572 
highlighted challenges such as defining the expected covariance structure among series in the presence and 573 
absence of an outbreak, they also demonstrated such as the ability to include known covariates.  574 

Discussion 575 

As the number of health data sources grows in volume and complexity, so does the number of approaches 576 
developed to continuously monitoring these data and provide decision-makers with information to support 577 
surveillance. Making this information actionable requires being able to incorporate the outputs of the data 578 
analyses into surveillance practice in a transparent way. In this scoping review we have focused specifically 579 
on the surveillance goal of early disease detection, and reviewed the use of Bayesian frameworks in 580 
syndromic surveillance systems.  581 

We set claim already in the introduction that Bayesian inference can support decision-making in transparent 582 
ways by providing a posterior probability of being in specific disease occurrence states, and doing so by 583 
incorporating many sources of data, as well as prior knowledge of disease dynamics. As Moss et al. (2016) 584 
(Moss et al., 2016) pointed out, the ongoing challenge of integrating data analytics into surveillance practice 585 
“requires close collaboration between modellers, epidemiologists, and public health staff”.  Many of the 586 
challenges lifted by the authors – such as underestimation of the true number of cases and inherent biases 587 
in reporting-based data – were addressed with Bayesian frameworks in the examples presented and 588 
discussed here. These examples further highlighted the flexibility and robustness of the Bayesian framework, 589 
while also pointing our challenges such as complex implementation. 590 

The Bayesian approach can easily incorporate different sources of data (W. Wong et al., 2005), while 591 
accounting for both the uncertainties in the estimations, and the stochasticity of the model (Salmon et al., 592 
2015). Bayesian models are flexible enough to deal with trends, seasonality and other covariates, and 593 
different distributions (e.g. Poisson, Gamma). The ability to incorporate prior knowledge about the 594 
distribution of parameters can also help hone inference (e.g. through the narrowing of credible intervals) for 595 
highly-dimensional models which may result from the scaling of BN to millions of nodes (e.g. modelling of an 596 
entire population) for real-time surveillance applications. Traditionally, a strength of Bayesian methods has 597 
been the ability to monitor for specific diseases, based on their known characteristics; while frequentist 598 
methods, being non-specific, were better apt at monitoring for unknown diseases. However, recent 599 
methodological developments have proved successful in applying BN to detect known diseases by using 600 
informative prior probabilities, and unknown diseases by using relatively non-informative prior probabilities 601 
(Shen and Cooper, 2007). Examples reviewed – both full and empirical Bayes – demonstrated that BN are 602 
suited to model the underlying epidemiological process, but can also be applied to models that rely on the 603 
observed data alone to both predict and detect epidemic curves (Brooks et al., 2015).  604 

A full Bayesian model where all parameters retain their probability density distribution is robust to 605 
overfitting and may handle complex data-streams with correlated data. Such approach is considered by 606 
some to be the “gold standard” and fulfil important optimality criteria. This is, at least in theory, an 607 
advantage over the empirical approaches that include shortcuts (e.g. using maximum likelihood or 608 
expectation maximisation to estimate parameters) and simplified assumptions regarding dependency which 609 
may both serve to propagate errors. Under particular scenarios (in particular when sampling size is low), 610 
Bayesian credible interval estimates obtained from MCMC, such as those generated through Gibbs sampling, 611 
will be narrower than confidence intervals calculated on the basis of large sample approximations (Salameh 612 
et al., 2014). 613 
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Despite the flexibility and robustness gained with the inclusion of prior probabilities into Bayesian based 614 
monitoring models, their specification can be challenging. This is particularly the case when dealing with 615 
multiple sources of evidence. While Bayesian models allow the incorporation of many sources of data, and 616 
provide robustness in the estimation of their probability distributions (Morrison et al., 2016), deciding on the 617 
structure of covariance among data streams, both in the absence and presence of an outbreak, is not a trivial 618 
task (Flavie Vial et al., 2016). A combination of expert opinion and previous data are often required to find 619 
suitable informative prior distributions. In many cases, weakly informative priors are used; weakly in the 620 
sense that the final results (posterior distributions) are mainly influenced by data rather than the priors. 621 
When the amount of data is scarce the choice of prior distribution may have a large influence on the final 622 
results. Therefore, investigating the sensitivity of the results for different priors may be important. LeStrat 623 
and Carrat (Le Strat and Carrat, 1999) proposed to detect outbreak and non-outbreak phases of influenza 624 
with HMMs using Gaussian distributed priors while Rath et al. (Rath et al., 2003) later demonstrated better 625 
detection accuracy using a mixture of Gaussian and exponential distributions. However, it is important to 626 
remember that in frequentist SyS, implicit priors are used. The sensitivity and specificity of the system are 627 
calculated based on outbreaks simulated from a probability distribution hence making the performance 628 
parameters conditional on these prior assumptions. 629 

Irrespectively whether the analysis is based on frequentist or Bayesian approaches, the existence of multiple 630 
hypotheses is a major challenge for interpretation and communication. In the examples above the 631 
hypotheses of main concern (H) would be that that there is an outbreak of the disease (or disease group) of 632 
interest and the null hypothesis (H0) that everything is normal. Bayes rule is used to estimate the posterior 633 
probability that an outbreak is ongoing under the assumption that the set of hypotheses is exhaustive, that 634 
is P(H) + P(H0)=1. When we deal with a finite number of hypotheses (H1, …, Hn) we may assign a prior 635 
probability to each hypothesis and apply Bayes rule. In many cases, it is impossible to include all hypotheses 636 
in the model. There may be other possible explanations for a peak in a data-stream which is not covered by 637 
any model hypothesis and in such instances, it is not possible to calculate the posterior probability of H. The 638 
same problem applies when, for example, estimating the specificity of a detection algorithm. In the Bayesian 639 
decision framework, however, we can still use likelihood ratios to calculate the odds ratio between two 640 
hypotheses included in the decision framework, for instance outbreak presence over non-outbreak (Taroni 641 
et al., 2010).  642 

Thus, presenting the result as a posterior probability of a specific disease may be dangerous. One option is to 643 
make the set of hypotheses exhaustive by explicitly defining H as “an outbreak of disease X or another 644 
disease displaying similar symptoms” and assuming all other scenarios explaining the results are covered by 645 
H0. Another possibility is to present the results as the likelihood ratio or the Bayes factor between each pair 646 
of hypotheses that are part of the model. 647 

The main drawback of applying full Bayesian approaches to real-life SyS scenarios resides in the resulting 648 
computations, which can be quite complex and necessitate the use of approximate solutions. For example, 649 
models based on both continuous and discrete distributions may be handled in a MCMC framework 650 
(typically Gibbs sampling as in WinBUGS/OpenBUGS/JAGS). In some cases, it is possible to find a solution in 651 
“closed form”, i.e. the integrals have an algebraic solution, circumventing the need for finding distributions 652 
for parameters by simulation and thereby speeding up calculations. To overcome the long computational 653 
time associated with most MCMC-based models, approximate solutions to BN, including  integrated nested 654 
Laplace approximations (Schrödle et al., 2011) have been developed. In the most complex cases, 655 
implementation of the full Bayes method may be theoretically too demanding and computationally too 656 
difficult and thus, in practice, the simpler empirical methods will still have a part to play (Lawson and 657 
Kleinman, 2005). 658 
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Conclusion 659 

One of the main advantages of Bayesian approaches to epidemiological surveillance is their conceptual 660 
simplicity and the fact that their fundamental principles are based on relatively few concepts. Studies have 661 
linked the easiness of explanation of medical decision-support systems to user perception of the system and 662 
the accuracy of decision-making) (Suermondt and Cooper, 1992). The Bayesian framework where results are 663 
presented as posterior probabilities (and strength of evidence as LR’s or Bayes factors) has been found to be 664 
analogous to intuitive human reasoning and thus useful for presenting and interpreting results.  They have 665 
been adopted, for example, as the golden standard for presenting forensic evidence in many countries 666 
(Aitken and Taroni, 2004). Nonetheless, the posterior probability for a given node will depend on several 667 
factors that may need explaining to the decision-makers: the evidence (itself possibly arising from multiple 668 
data streams), the BN structure (nodes and arcs), and the BN parameters (local conditional probabilities). 669 
Thankfully, methods (e.g. the hierarchical explanation method) do exist for selecting and organising 670 
information to explain BN inference in the context of outbreak detection (Madigan et al., 1997; Šutovský and 671 
Cooper, 2008). The Bayesian approach fits nicely in a decision theoretic framework. If utility functions and 672 
the posterior probabilities of the hypotheses are provided, it is possible to find the best action for the 673 
decision-making problem at hand. 674 

A common objection to Bayesian methods is that the posterior probabilities can be strongly influenced by 675 
the priors. As an alternative approach (M G Andersson et al., 2014), it is proposed a framework for 676 
communicating SyS based on explicit separation of prior information about an hypothesis and evidence from 677 
data. In this framework the results from SyS would be presented as the Bayes factor, i.e. the ratio between 678 
the posterior and prior odds that an outbreak is ongoing against an alternative hypothesis. A specific 679 
advantage of this approach is that is it logical for communicating results also when the set of hypotheses is 680 
not exhaustive. Furthermore, it is analogous with scale of evidence adopted at many forensic institutes  681 
(Nordgaard et al., 2012). From that perspective the proposed framework is useful for presenting results even 682 
when the modelling approach is not in itself Bayesian. 683 
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