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Abstract 
Larvae of honeybee workers were exposed to the insecticide fipronil during the feeding phase. To 
evaluate the effect of fipronil in the post-embryonic development of africanized Apis mellifera, 
bioassays of toxicity were done. The bioassays were performed by acute exposure applying 1μL of 
distilled water for control (I) and for experiments: 0.5 ng a.i./µL of fipronil; 5 ng a.i./µL of fipronil 
and 20 ng a.i./ µL of fipronil. Triplicates were performed for all treatments. The results showed that 
the rate of anomalous pupae in exposed honeybees was statistically significant in relationship to 
the control (p <0:03). The most frequent abnormalities were: high pigmentation on the proximal 
and distal larval body and body malformation, such as absence of head and limbs. Pink eye pupa 
and white eyed pupae presented malformations in their larval bodies, but with the eye developed. 
It is assumed that the fat body is related to the high rate of anomalies, since this tissue has proteins 
linked to the process of metamorphosis. Furthermore, the fat body may be participating in the 
regulation of juvenile hormone during the process of metamorphosis, and consequently in the 
release of ecdysteroid hormones that are involved in the change from larva to adult. The high rate 
of abnormalities in the pupal stage of individuals exposed to fipronil raises concerns about the 
impacts caused in the colonies of bees and population decline of pollinators. 
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1. Introduction 
Fipronil (phenylpyrazoles - C12H4Cl2F6N4OS) is an agrochemical widely used in Brazil for pest 
control, such as termites, beetles, caterpillars and for drilling in plantations of cotton, potato, corn, 
soy and sugar cane, by many ways of use. Fipronil is a neurotoxic molecule which acts directly on 
the central nervous system (CNS) of the insects, blocking the chloride channels acting on the 
gamma-aminobutyric acid receptor (GABA). Therefore, the insecticide is a serious CNS disruptor, 
causing abnormalities in normal nerve impulses in insects, such as hyperarousal, convulsions and 
paralysis, taking them to death. Fipronil is highly toxic to non-target insects, with LD50 in adult of 
africanized Apis mellifera L. (Hymenoptera: Apidae) of 1.06 ng a.i./ µL / bee1-5. 

The toxic effects of fipronil are dose-dependent and can shorten the lifespan of bees, killing and 
disrupting their physiological homeostasis6-8. The insecticide has sublethal effects on the viability, 
survival and colony population, and consequently the effects on the bee population are 
unpredictable and highly variable, resulting in a very difficult9,10 impact evaluation and diagnosis 
on bees.  

Adult bees and larvae can be contaminated by pollen and nectar collected from plantations where 
fipronil is applied11. Potential risks to bee larvae occur during the feeding phase, because the 
worker larvae are fed by nurse bees 143 times during the whole larval phase12,13

. Additionally, 
during the larval feeding stage the nurse works while touching the larvae and the walls of the 
alveoli and may contaminate both the larva and the wax14,15. Based on the above, the relationship 
between fipronil insecticide with the frequency of anomalies in pupae of Africanized A. mellifera 
was analyzed. 
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2. Material and Methods  
First instar larvae of africanized A. melifera workers were collected from brood combs obtained 
from an apiary located in rural area in Piedade, state of São Paulo, Brazil, and individually 
transferred to previously sterilized polyethylene well plates. The wells were inserted in cell culture 
microplates with 24 wells, containing larval food. Then the microplates were kept in incubator 
B.O.D (34-35 Cº, 95.5 % of humidity) during the all larval development. The larvae were fed daily 
with a micropipette with 1 μL larval food from day 1-5 14-17. The bioassays were performed by acute 
exposure, applying 1μL of water and different concentrations of fipronil solutions on the larval 
tegument at the 4th day of incubation. Distilled water (I) was used for control, but for experiments: 
II) 0.5 ng a.i./ μL of fipronil; III) 5 ng a.i./ μL of fipronil and IV) 20 ng a.i./ μL of fipronil3,18. Triplicates 
with 24 larvae were performed for all treatments, totalizing 72 larvae per group. The post-
embryonic development (larval and pupal stages) was monitored. Anomalous pupae were 
collected, classified and counted under a stereomicroscope Zeiss Stemi DV4. The statistical 
analyses were performed, using the variance test-ANOVA (F test) and the Student's t test (p <0.05) 
with Assistant program, version 7.7 beta19. 

3. Results and Discussion  
Different anomalies were observed between the control and the treatments of 20 and 5 ng 
a.i./μL/larvae, with an exception for treatment 0.5 ng a.i./μL/larvae that was also different from the 
control (Table 1). These results confirmed the negative impact on the larval development of the 
bee after exposure to fipronil. The results also showed that the impact on the larval development 
is dose-dependent (Table 1). 

Treatment mean values   ng a.i./μL/larva of anomalies F P 
Control 0.33333 c 4.7347* 0.0349 
 20 5.33333 a   
 5 4.33333 ab   
 0.5 0.66667 bc   

Table 1 Analysis of variance and mean values of anomalies in the pupal stage larvae treated with fipronil. 
Mean value of anomalies followed by the same letter are not statistically different, according to T test at P=5%. 
ANOVA (F test); *statistical differences (p < 0.05). 

The anomalies were more frequent during the pupal development. Many anomalies of different 
types were observed for each pupal stage in treatments. The anomalous individuals within the 
domes were lying on the bottom of the alveoli, whereas normal larvae stood upright, such as in 
natural conditions (Figure 1A, B; Figure 2B, C; Figure 3A, B, C). White-eyed pupa were the more 
frequently observed pupa with a malformation of the head, thorax and abdomen, and absence of 
appendices (Figure 1A, B).    
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Figure 1 White eyed pupa. A. Control. B and C treatments anomalous pupa. Notice the absence of appendices 
(arrow).  

Among the pink eyed pupae also anomalous individuals were present, with incomplete 
development of the head and thorax (Figure 2B.). Some individuals also had a larval body with 
developed eyes (Figure 2C.). Pupae with dark pink eyes presented more evidence of incomplete 
development of the head and thorax (Figure 3B.) and some larvae showed dark pigmentation in 
middle-distal portion of the body (Figure 3C). Additionally, some individuals presented a more 
frequent development of the eye but with poor development of the thorax and abdomen (Figure 
3C). 

 
Figure 2 Pink-eyed pupa. A. Control. B and C treatments. Notice the absence of the members (arrows) and in C 
dark pigmentation of the middle-posterior body with eye and larval body (red arrow).  
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Anomalous undefined pupas were also observed (Figure 3A, B, C). The most frequent abnormality 
was the arrest of metamorphosis demonstrated by pupae with necrosis in head and thorax (dark 
coloration) and absence of appendices eversion. (Figure 3A, B, C).  

 
Figure 3 A and B. Anomalous pupa showing necrosis in head and thorax (dark coloration) and absence of 
appendices eversion. C. Anomalous pupa with the whole body presented anomalies. Malformation and dark 
pigmentation of the head and thorax, as anomalous development of the abdomen. 

It is assumed that the fat body has a role related to the abnormalities in the individuals exposed to 
fipronil during the post-embryonic development, since this tissue acts in the intermediary 
metabolism of bees, synthesizing and storing proteins related to the transport of important 
hormones for metamorphosis, such as hexamerins20,21. 

The fat body fills the insect body cavities and it is the predominant tissue in larvae and pre-pupae. 
The fat body is directly in contact with the hemocoel. Assuming that the natural metabolites and 
even insecticides are present in the hemocoel, it is suggested that the action and the interaction of 
the insecticide molecules with the fat body is very quick 21-23. According to these authors, in A. 
mellifera the fat body can represent up to 60% of the larval body weight24. The fat body is 
composed primarily of two cell types, trophocytes with functional differentiation, and oenocytes. 
The cells of this tissue have extensive plasticity, which is demonstrated by the multiple roles they 
play, and the fat body may be the target of morphogenetic hormones of insects25,26. 

The proteins produced during the larval stage and stored in the hemolymph are named storage 
proteins27. Some of these proteins belong to the class of hexamerins and are synthesised in large 
quantities by trophocytes and often also by oenocytes (cells responsible for lipid synthesis and 
hydrocarbons26) of larval fat body28. The hemolymph protein storage is a response to intense food 
intake, where in up to 90% of the total circulating proteins may be accumulated29,30. These 
proteins are used in the intermediary metabolism and the post-larval development, acting as a 
source of amino acids for the reconstruction of the adult tissues22,31-34. 

In this context, many authors demonstrated the role of certain hexamerins in the transport of 
metabolites or hormones, such as ecdysteroids (Ecd) and juvenile hormone (JH)35-38. According to 
these authors, protein from the hemolymph, which includes the hexamerins, form a complex with 
JH binding proteins, aiding their transport to target cells and tissues39. Indirectly, the hexamerins 
could be related to the regulation of the hemolymph titers of JH and consequently its role in 
regulation of the larval and pupal development35-39. The above may help understanding the fat 
body's relationship with the anomalies observed in the ontogenetic development and pupae of 
africanized A. mellifera. 

According to these authors, there was a synthesis de novo of Ecd in the abdomen of Aedes aegypti 
(Diptera, Culicidae) grown in laboratory conditions, suggesting the presence of an abdominal 
source of these hormones in these insects40,41. 
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The JH-III in bees is synthesized by a pair of symmetrical retrocerebral glands controlled by the 
central nervous system and located in the thorax, the corpora allata. The gland and also the 
prothoracic glands synthesise the Ecd hormone44-53. As shown in this study, most of the anomalies 
in treated pupae are found on the head and thorax, where the organs that synthesise JH and Ecd 
are situated54.  

Furthermore, JH-III plays a function in storage and control of protein granules in trophocytes, and 
is also considered to be responsible of production and control of the levels of JH binding protein 
in the hemolymph42,43. The maximum titer of JH-III synthesis is reached in worker larvae, and 
decreases in the early pupal stage42,53,54. The Ecd hormones are involved in the change from larva 
to adult (metamorphic process), so at the end of the 5th instar of worker larvae, Ecd titer starts to 
increase42. Additionally, there is evidence that oenocytes synthesise Ecd. This hormone regulates 
several metabolic processes during development and still is involved in the synthesis of lipids and 
hydrocarbons in cuticulogenesis22. 

The results also indicate that larvae exposed to fipronil are not completing the changes to the last 
larval instar, probably maintain a higher titer of JH in the abdominal region, but also do not 
perform the activation of pupal genes by Ecd hormone, consequently inhibiting or disrupting the 
expression of the genes for adulthood. 

During the larval period, the presence of JH and ecdysone induce epidermal cells to produce the 
larval cuticle. When there is a reduction of circulating JH at the end of the larval period, the 
metamorphosis and pupation starts 53,54. Therefore, intense new cuticle synthesis is required prior 
to apolysis of the larval cuticle that occurs in pre-pupae54-56. However, in this study it was observed 
that the necessary apolysis of the cuticle in the metamorphic process did not occur in anomalous 
pupae.  

4. Conclusion 
The larval exposure to fipronil proved extremely deleterious pupae of africanized A. mellifera 
reared under laboratory conditions. This is corroborated by research15,57-63 that exposed concern 
and discussed the relationship of contamination of larvae by pesticides and their impact on bee 
colonies. 
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