
1.  Introduction
Knowledge of water travel times in riverbeds of losing streams and in adjacent alluvial sediments is important 
for quantifying exchange rates across groundwater-surface water interfaces, assessing biogeochemical turno-
ver rates from concentration differences and evaluating the impacts of anthropogenic pollution in floodplain 
aquifers. Transport characteristics along subsurface flow paths control biogeochemical processes, including 
redox zonation. They also impact the temperature distribution within hyporheic and alluvial sediments. Both 
influence the structure of the microbial community in the hyporheic zone (Peralta-Maraver et  al.,  2018), the 
biogeochemical cycling of nutrients and carbon (Zarnetske et al., 2011), and the removal rates of anthropogenic 
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Plain Language Summary  Rivers and groundwater bodies exchange water back and forth. 
Knowing the time that water spends traveling from rivers to certain points in groundwater is important for water 
management, particularly in situations where drinking water is produced via bank filtration: It allows to predict 
what happens to natural and toxic compounds that come from the river and to assess the quantity of water 
moving from rivers to aquifers. Here, we present a modeling approach to estimate travel times of groundwater 
originating from a nearby river. The approach uses the open-source software packages MODFLOW-NWT 
and MT3D-USGS and a combination of natural tracers, such as the noble gas  222Rn, which is produced in the 
subsurface with varying rates but decays with a constant rate constant. We demonstrate that by using both  222Rn 
and other natural tracers, such as heat, we estimate travel times from rivers to points in groundwater with less 
uncertainty.
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compounds (Schaper et al., 2019). The distribution of travel times is also important for quantifying the rates 
at which compounds are transformed and cycled (Frei & Peiffer, 2016; Ginn, 1999). Furthermore, knowledge 
on travel times can be used to assess the characteristics of groundwater-surface water interactions, such as the 
magnitude and direction of exchange flows and the volume of subsurface transient storage zones (Cranswick 
& Cook, 2015). Travel times also influence the opportunity for transformation reactions to proceed and thus 
constrain the overall attenuation capacity of the riverbed and alluvial sediments (Ocampo et al., 2006). From an 
anthropocentric perspective, the transport time scales through hyporheic and riparian sediments to a particular 
location in adjacent alluvial aquifers are of critical importance where riverbank filtration is used for drinking 
water production (Hellauer et al., 2018; Henzler et al., 2014). The assessment of transport time scales, that is, 
water and solute travel times in both the riverbed and alluvial aquifers, is therefore crucial for freshwater ecology, 
river management, pollutant dynamics research, and drinking water supply.

In aquifers, water samples are often not characterized by a single travel time but by a distribution of travel times 
(Danckwerts, 1953; J. L. McCallum, Cook, et al., 2014). This is partially a sampling effect, but even at idealized 
points within an aquifer, the mixing by local dispersion along flow paths and even more so between flows paths 
of distinct ages deems travel times to be distributions (Engdahl et al., 2016; Leray et al., 2016; J. L. McCallum 
et al., 2015; Varni & Carrera, 1998).

In the present study, we refer to the mean travel time as the average time the water molecules within a water 
sample have spent within the subsurface, that is, we use the term synonymously to mean groundwater age (Bethke 
& Johnson, 2008). Water travel time distributions and mean travel times are typically estimated by combining 
models based on either parametric (Luo et al., 2006; Maloszewski & Zuber, 1993) or shape-free transfer functions 
(Cirpka et al., 2007; J. L. McCallum, Engdahl, et al., 2014; Z. Liao et al., 2014) or numerical groundwater flow 
and transport models (Engelhardt et al., 2013; Gilfedder et al., 2019; Varni & Carrera, 1998) with either artifi-
cial or natural tracers. In the context of groundwater-surface water interactions, the addition of artificial tracers 
to rivers requires injecting large masses of tracer, the majority of which remaining in the river, hampering the 
application of artificial-tracer tests in larger rivers. Moreover, artificial tracers are often injected over short time 
periods, which limits their ability to study transient hydrological processes that occur over longer periods in the 
natural environment. Environmental or natural tracers, such as heat, electrical conductivity (EC), and  222Rn, have 
thus often been measured and interpreted to estimate travel times in alluvial floodplain and hyporheic sediments.

The use of EC to estimate travel times in alluvial aquifers and river sediments is often constrained to losing condi-
tions and situations where EC fluctuations in surface water are high enough and travel times to observation wells 
short enough to allow a time-varying signal to be measured in the observation wells (Cirpka et al., 2007; Vieweg 
et al., 2016; Vogt et al., 2010). Heat, on the contrary, typically shows pronounced diurnal fluctuations in surface 
waters and because of the low costs involved in measuring temperature, is among the most widely used tracers to 
quantify groundwater-surface water exchange flows in riverbed sediments (Anderson, 2005; Rau et al., 2014) and 
alluvial aquifers (Hoehn & Cirpka, 2006). The main disadvantage of heat as a tracer to estimate alluvial travel 
times is that its transport depends on the effective heat capacity of the sediment determining the retardation of 
temperature in comparison to an ideal tracer. On the submeter to meter scale close to the sediment-water inter-
face, thermal parameters can be inferred from daily temperature fluctuations (A. M. McCallum et al., 2012; Luce 
et al., 2013). On the decameter scales, however, seasonal temperature time series are required for the estimation 
of travel times. Seasonal temperature signals, however, cannot univocally be related to such signals in the river 
as the temperature at the land surface shows practically the same signal (Molina-Giraldo et al., 2011). Addi-
tionally, thermal parameters need to be measured or inferred from other measured sediment properties (Engel-
hardt et al., 2013). To reduce uncertainties stemming from sediment heterogeneity and conceptual uncertainty 
with respect to flow path geometry, heat as a tracer has been combined with other tracers, such as the artificial 
sweetener acesulfame (Engelhardt et al., 2013), the artificial tracer bromide (Ma et al., 2012), and the natural 
tracer  222Rn (F. Liao et al., 2021; Hoehn & Cirpka, 2006).

Compared to EC and temperature, tracer methods that use the noble gas  222Rn hardly depend on surface water 
signals. The radioactive  222Rn has a half-life of 3.82 d and is produced from radioactive decay of  226Ra as part of 
the  238U decay chain. Due to gas exchange with the atmosphere, where natural  222Rn concentrations are extremely 
low,  222Rn concentrations in surface waters are also typically very low, except immediately downstream of 
strongly gaining river reaches (Cartwright & Gilfedder, 2015; Cook et al., 2006). Upon infiltration of surface 
water into the subsurface and below the capillary fringe, where groundwater is not in direct gas exchange with soil 
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air,  222Rn concentrations increase as a result of  222Rn emanation from  226Ra bearing sediment materials resulting 
in a reaction rate 𝐴𝐴 𝐴𝐴222𝑅𝑅𝑅𝑅 of:

𝑟𝑟222𝑅𝑅𝑅𝑅 = 𝛾𝛾 − 𝜆𝜆222
222

𝑅𝑅𝑅𝑅� (1)

where 𝐴𝐴 𝐴𝐴222𝑅𝑅𝑅𝑅 is the rate of change of  222Rn concentration due to radioactive processes (Bq L −1 s −1), λ222 is the 
radioactive decay constant of  222Rn [T −1],  222Rn is the concentration of  222Rn (Bq L −1), and γ denotes the effec-
tive production rate of  222Rn into the groundwater. The latter rate is proportional to the  226Ra content at the grain 
surface of the sediments and denotes the amount of  222Rn released from the solid phase into the pore space per 
unit time (Bq L −1 s −1) (Porcelli & Swarzenski, 2003). It differs from the emanation fraction, which is the propor-
tion of total  222Rn produced within the bulk aquifer to the total amount of  222Rn released into the pore space, 
and the emanation rate E, which is the amount of  222Rn released into the pore space per unit dry sediment (Cook 
et al., 2006). Because  226Ra has a half-life of 1,600 years and is bound to the solids, the  222Rn production rate γ 
can be viewed as constant over the time scales of interest considered in the present study. After 5 to 6 half-lives 
of  222Rn a secular equilibrium is reached:

222
𝑅𝑅𝑅𝑅∞ =

𝛾𝛾

𝜆𝜆222

� (2)

where  222Rn∞ is the secular equilibrium concentration. In a system with constant production rate γ, the  222Rn 
concentration of a water parcel that does not mix with other water parcels then evolves according to

222�� (�) = 222��∞ +
(222�� (�) − 222��∞

)

exp (−�222�)� (3)

This expression was originally employed by Hoehn and von Gunten (1989) to estimate apparent Rn ages (τapp) 
in alluvial aquifers recharged by surface water. While heat and solute transport are typically described via the 
advection-dispersion equation, the Hoehn and von Gunten (1989) model has been widely used to approximate 
groundwater ages by τapp (Cranswick et al., 2014; Hoehn & Cirpka, 2006; Lamontagne & Cook, 2007; Pittroff 
et al., 2017; Popp et al., 2021). Similar to other apparent-ages models (Bethke & Johnson, 2008), the application 
of Equation 3 to estimate groundwater travel times assumes steady state and piston flow and therefore neglects the 
effects of dispersion and mixing between flow paths, which can lead to erroneous travel time estimates (Gilfed-
der et al., 2019; J. L. McCallum et al., 2015; Varni & Carrera, 1998). Moreover, in the derivation of Equation 3, 
the production rate γ is treated as a constant and thus the effects of heterogeneous production rates cannot be 
considered. In aquifers, however, γ does not only depend on the overall  226Ra content of the sediment and the 
overall mineral composition, but also on the specific surface area of the sediments (Sakoda et al., 2011). Given 
these multiple factors on which γ depends and the heterogeneous distribution of sediment properties typically 
encountered at groundwater-surface water interfaces, it is reasonable to assume that  222Rn production rates are 
not uniform in the subsurface.

While it has been demonstrated that  222Rn production rates can vary considerably in sediments used in labora-
tory sand box experiments (Hoehn et al., 1992), along river reaches (Bouchez et al., 2021; Cook et al., 2006), 
and across lake bottoms (Corbett et al., 1997), the spatial variability of  222Rn production rates at scales of typi-
cal groundwater-surface water interactions studies (<100  m) is poorly documented. Mullinger et  al.  (2009) 
showed that within an alluvial aquifer,  222Rn emanation coefficients, that is, emanation rates normalized by sedi-
ment  226Ra content, decreased with depth across spatial scales of <10 m, but did not investigate the effects of their 
findings on travel time estimates. By explicitly simulating  222Rn concentrations using HydroGeoSphere (Therrien 
et al., 2010), Gilfedder et al. (2019) showed that neglecting dispersion leads to a systematic underestimation of 
mean river-to-groundwater travel times. The influence of heterogeneously distributed  222Rn production rates on 
the estimation of travel times in alluvial aquifers, however, is unclear. While HydroGeoSphere and COMSOL 
Multiphysics (F. Liao et al., 2021) have been employed to explicitly simulate  222Rn transport in the hyporheic 
zone and within alluvial aquifers, the applicability of open-source groundwater flow and transport software, 
such as MODFLOW-NWT (Niswonger et al., 2011) and MT3D-USGS (Bedekar et al., 2016), to  222Rn transport 
has not been investigated. Explicit formulations of  222Rn transport during aquifer recharge from surface waters 
allow the joint inversion of  222Rn and other natural tracers, such as heat, to improve the precision of travel time 
estimates in alluvial aquifers.
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In the present study, we evaluate how the transport of  222Rn in saturated porous media can explicitly be simu-
lated using MODFLOW-NWT and MT3D-USGS via the advection-dispersion equation. Specifically, we (a) 
investigate the influence of nonuniform  222Rn production rates within an alluvial aquifer on the estimation of 
mean river-to-groundwater travel times and (b) assess whether the joint inversion of hydraulic heads, temperature 
time series, and  222Rn concentrations can reduce uncertainty in the estimation of travel times in situations where 
surface waters infiltrate into alluvial aquifers. To this end,  222Rn∞ concentrations of both riverbed and alluvial 
sediments were measured in incubation experiments and time series of hydraulic head observations, tempera-
ture, and  222Rn concentrations were collected in the alluvial aquifer adjacent to a losing lowland river. Using a 
Bayesian framework, we estimate distributions of mean river-to-groundwater travel times in the alluvial aquifer 
based on model scenarios that consider different combinations of model constraints and  222Rn transport formu-
lation. We hypothesize that neglecting the effects of spatially nonconstant γ can lead to erroneous estimates of 
mean river-to-groundwater travel times and that the joint inversion of heads, temperature, and  222Rn considerably 
reduces the uncertainty associated with estimating river-to-groundwater travel times.

2.  Field Study and Laboratory Analysis
2.1.  Site Description and Sediment Sampling

River Erpe is an urban lowland river east of Berlin, Germany. The study site is located close to Heidemühle (Lati-
tude 52.478669°N and Longitude 13.635111°E) at a river section, which due to losing conditions and sandy sedi-
ments has been subject to previous plot-scale investigations on the fate of trace organic compounds in the hypor-
heic zone (Schaper et al., 2018, 2019). The present study focuses on river-to-groundwater travel time and  222Rn 
transport along a transect in the floodplain aquifer southeast of River Erpe (Figure 1a).

Sediment characteristics of both the riverbed (n = 20) and the alluvial aquifer (n = 27) were determined from 
samples collected near the transect close to the southeastern riverbank of the River Erpe (see Supporting Infor-
mation S1, for exact locations). Sediment samples were collected from the upper 10 cm of the riverbed using 
KSAT rings (METER Group, Germany, USA). In the alluvial aquifer, a hand auger (Eijkelkamp Soil & Water, 
The Netherlands) was used to drill a borehole until the saturated zone was reached. Sediment samples from the 
saturated zone were collected using a suction corer (Eijkelkamp) and transferred into KSAT rings. It should be 
noted that due to limitations of this sampling procedure, sediment samples were collected 1–2 m above the depth 
of the constructed piezometer screen intervals. Saturated hydraulic conductivities (K) were measured using a 
KSAT device (METER Group). Thermal conductivities and bulk volumetric heat capacities were assessed in 
saturated sediments using a KD2Pro device (METER Group).

2.2.  Site Instrumentation

Seven piezometers (P1–P7) were installed in the southeastern alluvial aquifer in a transect perpendicular to the 
channel of the River Erpe (Figure 1a). P0 was installed at the northern end of the transect directly within the 
stream channel. Two stilling wells (SW) were installed; SW1 was installed in the surface water in close vicinity to 
P0 and SW2 was installed downstream of a rock ramp. In addition, three piezometers were installed northeast and 
southwest of the main transect (P8, P9, and P11). Piezometers were constructed of PVC tubes (inner diameter: 
4 cm), which were installed using a hand auger for the unsaturated zone and a percussion hammer (Cobra TT, 
Eijkelkamp, The Netherlands) for the saturated zone. The 25-cm-long filter-screened section of each piezometer 
was located 4–6 m below the land surface and the riverbed, respectively (Figure 1c, Table S2 in Supporting 
Information S1). P3, P7, P9, and P11 were equipped with data loggers that measured temperature and absolute 
pressure, while SW1, SW2, P0, P1, and P8 were equipped with data loggers that measured temperature, abso-
lute pressure, and EC (Micro Divers and CTD divers, respectively, van Essen Instruments, The Netherlands). 
Absolute pressure was converted into water pressure using air pressure data collected by a barologger (van Essen 
Instruments) installed in P1. Data were collected between 30 May 2019 and 5 November 2019 with the exception 
of P0, where data collection commenced on 5 June 2019.

Six multilevel temperature sticks (TS1 to TS6, UIT, Dresden, Germany (Munz et al., 2011)), were installed in the 
hyporheic zone of the River Erpe close to the southeastern bank (Figure 1a) and collected time series of tempera-
ture profiles from 2 June 2019 to 17 June 2019 at varying depths (Table S3 in Supporting Information S1). These 
time series data were used to calculate the magnitude and direction of vertical Darcy flows using the MATLAB 
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toolbox VFLUX 2.0 (Gordon et al., 2012; Irvine et al., 2015). Within VFLUX, dynamic harmonic regression 
(Young et al., 1999) is employed to extract phase angles and amplitudes from measured temperature time series, 
which are then used to calculate phase shifts and amplitude ratios of temperature time series at two different 
depths. In the present study, measured temperature time series were evaluated via both the combined phase-shift 
(Δφ) and amplitude ratio (Ar) method of A. M. McCallum et al. (2012) and the Ar method of Hatch et al. (2006). 
Sediment porosity, volumetric heat capacity, and thermal conductivity were obtained from sediment samples 
collected as described in Section 2.1. Uncertainty of flux estimates was assessed by a Monte Carlo simulation 
with 1,000 iterations using the VFLUX 2.0 function “vfluxmc.m.” Additional information on flux calculations is 
provided in Supporting Information S1.

2.3.  Near-Surface Geophysics

Ground conductivity measurements were collected using the Frequency Domain Electromagnetic Induction 
(FDEM) instrument CMD Explorer (GF Instruments, Brno, Czech Republic) to characterize the subsurface. The 
CMD Explorer is a multireceiver coil, electromagnetic conductivity meter. A transmitting coil creates a time-var-
ying electric field at a frequency of 10,000 Hz. This frequency together with the coil spacings set the depth of 

Figure 1.  (a) Map of the field site showing the main piezometer transect (black line, P0–P7) and the location of a groundwater observation well of the Berlin Water 
Works (BWB) located between P3 and P4, two surface water stilling wells (SW1 and SW2), the surrounding piezometers not included in the groundwater flow and 
transport model (P8, P9, and P11), and 6 multilevel temperature sticks (TS) installed in the riverbed to obtain information on groundwater-surface water exchange 
flows. The black line shows the length of the model domain. The blue arrow indicates the flow direction of the River Erpe and is located next to a rock ramp. (b) Log 
resistivity of the subsurface measured along the transect (gray line in panel (a)) from northwest to southeast. (c) Two-dimensional vertical model domain from the 
thalweg of the River Erpe to piezometer P7, including boundary conditions (GHB = general head boundary, CHD = constant head boundary) and pilot point groups 
(colored symbols) of the two pilot point sets (I and II). Pilot point set I was used to prescribe hydraulic aquifer parameters (hydraulic conductivity, porosity, and bulk 
density) and thermal aquifer parameters (thermal conductivity and volumetric heat capacity) (shown as circles), while pilot set II was used to prescribe  222Rn production 
rates (shown as triangles).



Water Resources Research

SCHAPER ET AL.

10.1029/2021WR030635

6 of 22

investigation for each receiver-transmitter pair with the depth ranging from ∼2.2 to ∼6.7 m. Further details of the 
FDEM method are described in Telford et al. (1990) and Reynolds (2011).

The data that the instrument records are converted to apparent conductivity using a low induction number approx-
imation, which is acceptable if the subsurface material is not overly conductive (McNeil, 1980). To evaluate the 
results, the FDEM data sets were inverted to produce smooth-model inversions of “true” resistivity-depth sections 
(electrical resistivity, Ω-m where electrical conductivity, S m −1 is the inverse of resistivity) using the Aarhus 
GeoSoftware inversion code AarhusInv (Auken et al., 2015).

Ground conductivity data were collected at 1 s intervals along the transect. Accuracy is 4% at 50 mS m −1 with an 
apparent conductivity range of 0–1,000 mS m −1 (resolution 0.1 mS m −1). Measurement locations were georefer-
enced with a handheld GPS connected to the CMD control unit, and the topographic elevation of each location 
was obtained from a high-resolution LIDAR digital elevation model of the study area.

2.4.  Water Sampling and Analysis

An automated water sampler (3700 Teledyne ISCO, USA) was used to obtain hourly grab samples from the River 
Erpe, 100 m upstream of P0 between 30 May 2019 10:00 and 14 June 2019 11:00, which were combined in a 
time integrated manner to yield one surface water sample per day. Groundwater samples were collected from all 
piezometers over 4 days (5, 7, 11, and 15 June 2019) using a peristaltic pump (12 VDC, Eijkelkamp Soil & Water, 
The Netherlands) so that three-well volumes were removed prior to sampling. Additionally, in situ parameters 
(pH, temperature, and EC) had to show constant values before samples were collected.

Samples for chloride analysis were filtered through 0.2 μm cellulose acetate syringe filters (Sartorious, Germany) 
and analyzed via ion chromatography (Metrohm, Switzerland), following standard protocols (DIN EN ISO 
10304-1). For  222Rn analysis in water, water samples of 10 ml each were taken directly from the pump hose using 
a gas tight glass syringe and carefully injected beneath 10 ml of a liquid scintillation cocktail (MaxiLight®, Hidex 
Oy, Finland). Laboratory analysis did not commence for at least 3 hr to allow  222Rn and its two progenies  218Po 
and  214Po to diffuse from the water into the cocktail phase. Afterward,  222Rn concentrations in water samples 
were determined via liquid scintillation counting (LSC) using a Hidex 300 SL (Hidex Oy, Finland) LSC spec-
trometer. The spectrometer is equipped with pulse length index processing electronics to discriminate between 
alpha and beta decays and possesses a triple to double coincidence value of 1 (Eikenberg et al., 2014), that is, an 
alpha counting efficiency of 100%, and hence does not require calibration. The measurement time of each sample 
was set to 2 hr and the pulse length index to 10. Subsequently, overall groundwater  222Rn concentrations (Bq L −1) 
were calculated from overall alpha counts and corrected for decay after sampling via:

222
𝑅𝑅𝑅𝑅 =

CPM𝛼𝛼 − CPM0

3𝜀𝜀𝜀𝜀 ⋅ 60 ⋅ 𝑒𝑒−𝑡𝑡𝑡𝑡222
� (4)

where CPMα is counts per minute within the alpha (α) channel, CPM0 is the counts per minute within the α chan-
nel of a  222Rn free sample, V is the sample volume (10 ml), and λ222 is the radioactive decay constant of  222Rn 
(0.1813 d −1). ε is a transfer factor describing the fractionations of  222Rn,  214Po, and  218Po between water and the 
LSC cocktail, which was assumed to be 0.9. Groundwater samples were collected and measured in duplicates and 
triplicates. For  222Rn analysis in river water, two samples were collected 10 cm below the water surface on the 15 
June 2019 using the same procedure as described above.

2.5.  Determination of  222Rn Equilibrium Concentrations in the Sediments

 222Rn equilibrium concentrations were determined in sediment samples collected from the riverbed close to P0 
and P1, P3, P5, P6, P7, P8, and P11. Approximately 1.45 kg of saturated sediment was incubated in 700-ml 
gas-tight glass jars (height = 21 cm, inner diameter 6.5 cm). Sediment was filled to the top of the glass jar with 
a maximum of 40 ml of water above the sediment-water interface. Sets of duplicate or triplicate water samples 
were taken after incubation periods of at least 22 days. Ten ml of pore water were sampled from the bottom of the 
glass jars using a peristaltic pump connected to USGS Minipoint samplers (Duff et al., 1998) via silicon tubing 
and a pump rate of approximately 5 ml min −1. To minimize  222Rn degassing, sampled water was injected directly 
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beneath 10 ml of MaxiLight® scintillation cocktail. Exact incubation periods and sediment characteristics of the 
incubated materials are compiled in Table S4 in Supporting Information S1.

3.  Numerical Modeling
MODFLOW-2005 (Harbaugh, 2005) was used to simulate groundwater flow, applying the Newton formulation 
of MODFLOW-NWT (Niswonger et al., 2011). MT3D-USGS (Bedekar et al., 2016) was employed to simulate 
heat transport, groundwater age, and the reactive transport of  222Rn. Scripting of input files and post-processing of 
model results were conducted using the Python package FloPy (Bakker et al., 2016) and R (R Core Team, 2019), 
respectively. Conditional parameter distributions were inferred using the differential adaptive Metropolis algo-
rithm implemented in DREAM (Vrugt, 2016).

3.1.  Groundwater Flow Model

The model domain was a two-dimensional vertical cross section discretized in 46 layers, 1 column, and 176 rows 
with a bottom elevation of 17.5 m asl and a top elevation of 35 m asl. The layer thickness at the top of the model 
domain was set to 0.05 m and increased to 0.75 m with depth. The row width was set to 0.2 m at the northern 
end of the model domain and increased to 1 m at the southern end. The simulated time period was 62.5 days (30 
May 2019 12:00 to 31 July 2019 23:55) and was discretized into 6-hr-long stress periods. Measured time series of 
river stage served as an inflow boundary condition, which was assigned to the first 20 rows in the uppermost layer 
as time varying, specified head using the constant head package (CHD; Figure 1c). At the southern end of the 
model domain, the outflow boundary was also defined as a time varying specified head boundary (CHD), using 
the groundwater levels measured in P7. A general head boundary (GHB) was implemented 5 m below the river 
boundary to simulate regional groundwater flow underneath River Erpe. Because the exact groundwater level of 
the GHB was not known, the assigned groundwater level was adjusted during parameter inference.

Measured time series of hydraulic heads in P0, P1, and P3 and manual head measurements in P4 to P6 were 
used as model constrains. Between 29 May 2019 and 31 July 2019, total precipitation measured at the weather 
station at IGB Berlin (Latitude 52.448788°N and Longitude. 13.64753°E) was 96.4 mm and the mean ambient 
air temperature measured by the baro datalogger installed 20  cm below the land surface in P1 was 20.6°C. 
During the same time period, water levels in both P11 and P7 decreased by 8.6 cm (Figure S5 in Supporting 
Information S1). Therefore, recharge was assumed to be negligible during the time period of the present study. 
The initial distribution of groundwater heads for the transient groundwater flow simulation was determined by 
running MODFLOW-NWT in a steady-state mode using the same hydraulic conductivity field and the measured 
groundwater levels of 29 May 2019.

3.2.  Heat Transport Simulations

In the present study, the two-dimensional transport of heat was simulated via the convection-conduction equation. 
Similar to heat transport in MT3DMS (Zheng & Wang, 1999), heat transport in MT3D-USGS is based on the 
flow field provided by MODFLOW-NWT and is simulated as solute transport replacing concentration by temper-
ature and applying thermal retardation via equilibrium “sorption” and a “linear isotherm” (compare Section S3 
in Supporting Information S1 for details). Measured temperature time series in the River Erpe (SW1) and in P7 
served as fixed-temperature in the inflow and outflow, respectively, which were implemented using the MT3D-
USGS Source and Sink Mixing Package. Measured time series of temperature in P0, P1, and P3 were used as data 
to calibrate the model. An initial temperature field was obtained by linearly interpolating temperatures at the first 
simulation day (29 May 2019) via kriging. It should be noted that vertical conductive heat transport from the land 
surface was assumed to be negligible, because river-to-groundwater travel times to P0, P1, and P3 were relatively 
short compared to the time scales of seasonal land surface temperature fluctuations (compare Section 4.4).

3.3.  Explicit Simulation of  222Rn Using MT3D-USGS

In the present study, reactive transport of  222Rn was explicitly simulated by substituting the rate expression of 
Equation 1 into the advection-dispersion equation:
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where Dh is the hydrodynamic dispersion tensor (m 2 s −1), parameterized by longitudinal and transverse disper-
sivities times the mean linear velocity of water, q is the specific discharge vector (m s −1),  222Rn denotes the  222Rn 
concentration in groundwater (Bq L −1), and γ is the quasi-zero-order production rate of  222Rn (Bq L −1 s −1). 
MT3D-USGS cannot simultaneously simulate zero-order production and first-order decay for the same species. 
We therefore simulate the production of  222Rn by introducing a virtual dissolved mother compound  mothRn* that 
linearly decays to  222Rn but hardly changes its concentration. The latter can be achieved by guaranteeing an 
extremely small Damköhler number (Da  =  λmothxθ/q) of the mother compound within the domain, in which 
λmoth is the first-order decay coefficient of this compound. Note that  mothRn* is a virtual solute with practically 
uniform concentration and spatially variable decay coefficient λmoth, whereas the true mother compound  226Ra is 
immobile, has a constant decay coefficient and a spatially variable concentration. We introduce an arbitrarily high 
inflow concentration  mothRn* at all inflow boundaries. Then, the first-order decay coefficient λmoth of the mother 
compound must be set in the following way in order to meet the desired zero-order production rate of  222Rn:

𝜆𝜆moth(𝐱𝐱) =
𝛾𝛾(𝐱𝐱)

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅
∗

� (6)

Formally, the virtual mother compound undergoes advective-dispersive-reactive transport:
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subject to uniform initial and inflow concentrations of 153,578 Bq L −1. The coupled transport equations 
of  222Rn and  mothRn* are implemented in MT3D-USGS via its linear-decay-chain capabilities. As pointed out 
above,  mothRn* does practically not vary within the domain. It is neither the true mother compound  226Ra, nor 
is λmoth its true decay coefficient. The only purpose of introducing this compound is to achieve a spatially vari-
able zero-order production rate γ of  222Rn, which is discussed in the following by its associated equilibrium 
concentration:

222
𝑅𝑅𝑅𝑅∞(𝐱𝐱) =

𝛾𝛾(𝐱𝐱)

𝜆𝜆222
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𝜆𝜆moth(𝐱𝐱)

𝜆𝜆222

𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅𝑅𝑅

∗� (8)

In Section S5 in Supporting Information S1, we demonstrate that the chosen approach yields the analytical  222Rn-
age profile for the case of uniform flow. We have also checked that the concentrations of the virtual mother 
compound vary by less than 1% within the domain so that unintended spatial differences in the production rate γ 
of  222Rn can be excluded. It should be noted that a spatially variable zero-order production rate γ of  222Rn could 
also be expressed in terms of the sediment emanation rate (E, see Section S5 in Supporting Information S1 for 
details). The longitudinal dispersivity was allowed to vary between 0.01 and 1 m and the ratio of longitudinal 
dispersivity to vertical transverse dispersivity was set to 0.1. The  222Rn concentration prescribed at the inflow 
boundary at the northwestern section of the model domain was set to 0 Bq L −1 because sampled water in P0 
was chemically distinct from regional groundwater and considered to originate from infiltrated surface water 
(compare Section 4.1).

3.4.  Parameterization, Parameter Inference, and Model Scenarios

Values for hydraulic conductivity (K), sediment porosity (θ), bulk density of the sediment (ρb), the thermal 
transport parameters, and equilibrium  222Rn∞ concentrations were assumed to be time invariant during the simu-
lation period. Model parameterization was achieved using two sets of pilot points (Doherty, 2003). To reduce 
the number of total parameters, both sets of pilot points were further grouped into pilot point groups (PPGs). 
At all pilot points of a PPG, the same parameter was prescribed during parameter inference and subsequently 
kriging was used as a spatial interpolation method to distribute parameter values across the model domain. The 
semivariogram parameters were chosen such that interpolated values were close to prescribed values (exponential 
semivariogram model with slope 190 and nugget 0.001). The first set of pilot points (set I) was used to distribute 
the values of K, θ and the thermal transport parameters across the model domain and consisted of 30 pilot points, 
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which were assigned to five PPGs. PPGs 0, 1, 2, 3, and 4 of set I corresponded to sediments in the riverbed (Group 
0) and to sediments in the alluvial aquifer in the vicinity of P0 (Group 1), P1 (Group 2), P2 and P3 (Group 3), 
and P6 (Group 4) and contained 14, 5, 2, 4, and 2 pilot points, respectively (Figure 1c). Values of thermal trans-
port parameters and θ prescribed at PPG 3 were also prescribed at PPG 4 due to a lack of measured temperature 
time series in piezometers P4 to P6. Specific storage was set to 1 × 10 −5 m −1 and was assigned homogeneously 
throughout the model domain. Specific yield was assumed to be a fraction of porosity and calculated from 
porosity using a specific yield to porosity ratio, which was prescribed for the entire model domain and inferred 
during parameter inference. To account for the heterogeneity of measured  222Rn concentrations within the aqui-
fer, particularly between P5 and P6, and for the data availability compared to hydraulic head and temperature 
time series,  222Rn∞ concentrations were distributed across the model domain using a second set of pilot points 
(set II). Set II consisted of 32 pilot points grouped into six PPGs, which are located in the riverbed (Group 0), in 
the vicinity of P0 and P1 (Group 1), P2 and P3 (Group 2), P4 and P5 (Group 3), P6 (Group 4), and P7 (Group 5) 
and contained 14, 5, 2, 4, 2, and 2 pilot points, respectively (Figure 1c).

In the present study, parameter inference was achieved using the differential evolution adaptive Metropolis algo-
rithm, DREAM (Vrugt, 2016; Vrugt et al., 2009). During each DREAM run, 28 Markov chains were run in paral-
lel. Convergence of the chains to a limiting posterior distribution was declared after the 𝐴𝐴 𝑅̂𝑅 -statistic of Gelman and 
Rubin (Gelman & Rubin, 1992) for each model parameter had fallen below 1.2. Following convergence, 28,000 
additional iterations were performed to sample the posterior distribution.

Hydraulic and thermal parameters as well as distributions of mean river-to-groundwater travel times to each 
piezometer were estimated for four model scenarios (A–D). In all four scenarios, hydraulic heads were used 
to condition the parameters of the flow model, while temperature was used only in scenarios A, C, and D. 
Measured  222Rn concentrations in groundwater were used as data for conditioning in scenarios B, C, and D. In 
scenarios B and D,  222Rn concentrations were modeled using spatially varying production rates as described in 
Section 3.3 (Equations 6–8), while in scenario C, a constant production rate was prescribed across the entire 
model domain (Table 1). The same set of boundary conditions and the same prior parameter distributions were 
used in all four model scenarios (Table 2).

All prior parameter ranges were set as uniform priors. The priors for the thermal sediment parameters, porosity, 
and hydraulic conductivity were in accordance with measured parameter ranges (Table 1, Figure 4), while the 
prior range for longitudinal dispersivity (αL) was chosen according to values used in similar studies (Engelhardt 
et  al.,  2013; Gilfedder et  al.,  2019; Ma et  al.,  2012). Values for bulk densities and specific storage were not 
adjusted during parameter estimation. For specific storage, a literature value was chosen (Engelhardt et al., 2013), 
while bulk densities were set according to the mean of their measured values in riverbed and alluvial sediment 
samples. Because measured values for hydraulic conductivity and porosity were significantly different between 
riverbed and alluvial sediments (Section 3.1), prior parameter ranges were set differently for PPG 0 and PPGs 1 

Model 
scenario Groundwater heads Temperature

 222Rn transport 
formulation

 222Rn production rate 
(γ) Prior range for γ

A x x – – –

B x Explicit Variable Lab and field data

C x x Explicit Constant Lab and field data

D x x Explicit Variable Lab and field data

τapp – – Implicit Constant Field data

Note. All model scenarios used hydraulic heads as model constraints. Additionally, scenario A used temperature as a model 
constraint, scenario B used  222Rn concentrations as model constraints and was based on nonuniform  222Rn production rates, 
scenario C used temperature and  222Rn concentrations as model constrains and was based on a constant  222Rn production 
rate, and scenario D used temperature and  222Rn concentrations as model constraints and was based on nonuniform  222Rn 
production rates.

Table 1 
Overview of the  222Rn Transport Formulation and Data to Condition the Model Used in the Different Model Scenarios A to 
D
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to 4 in set I. Likewise, because measured  222Rn concentrations differed between riverbed and alluvial sediments, 
prior parameter ranges were set differently for PPGs 0 and 1 to 5 within set II.

3.5.  Simulation of River-to-Groundwater Travel Times

Similar to previous studies on travel times from rivers into alluvial aquifers (Engelhardt et al., 2013; Gilfedder 
et al., 2019), the mean travel time from the River Erpe through the model domain (alluvial aquifer), that is, the 
mean groundwater age, was approximated by solving the mean groundwater age equation of Goode (1996). The 
method treats time as “age mass” and simulates the mean groundwater travel time μτ using the advection-disper-
sion equation accounting for mixing along and between flow paths. Aging of water parcels is achieved by imple-
menting a zero-order source term of unity across the entire model domain. The travel time in the inflow is zero. 
During posterior sampling, that is, after convergence of the Markov chains to a stable distribution, groundwater 
travel times were simulated in each realization using the same parameter set as used for heat and  222Rn transport 
(Sections 3.3 and 3.4). This approach results in posterior probability density distributions of the mean travel 
time from the river to locations in the model domain arising from various model realizations during posterior 
sampling. The distribution of mean travel times among the accepted model realizations was further summarized 
by its ensemble median (𝐴𝐴 med𝜇𝜇𝜏𝜏

 ) and ensemble inter-quartile range (𝐴𝐴 IQR𝜇𝜇𝜏𝜏
 ). Note that 𝐴𝐴 IQR𝜇𝜇𝜏𝜏

 expresses the uncer-
tainty in identifying the mean travel time at a given point rather than the mean spread of the travel time distribu-
tion at this point within single realizations.

In addition to μτ, apparent  222Rn ages τapp were calculated using the analytical solution to Equation 1 of Cranswick 
et al. (2014), assuming a uniform spatial distribution of the  222Rn production rate and thus of the corresponding 
equilibrium concentration  222Rn∞:

Parameter Units

Measured values Uniform prior range

Pilot point group
Pilot 

point setMedian, IQR Min–max n Min–max

K riverbed m s −1 10 −5 2.5, 5.8 0.6–11.1 8 0.28–13.9 0 I

K all. aq. m s −1 10 −4 1.9, 3.2 0.44–13.8 18 0.28–13.9 1, 2, 3, 4 I

K NW all. aq. m s −1 10 −8 2.8, n.a. n.a. 1 – – I

θ riverbed m 3 m −3 0.38, 0.05 0.33–0.42 10 0.3–0.45 0 I

θ all. aq. m 3 m −3 0.32, 0.03 0.23–0.37 18 0.2–0.4 1, 2, 3 I

κ0 riverbed W m −1 K −1 2.6, 0.3 2.1–2.8 8 2.1–2.8 0, 1, 2, 3, 4 I

κ0 all. aq. W m −1 K −1 2.8, 0.21 2.6–3.0 12 2.6–3.0 0, 1, 2,3, 4 I

pbcb riverbed MJ m −3 K −1 2.9, 0.1 2.7–3.1 8 2.7–3.1 0, 1, 2, 3, 4 I

pbcb all. aq. MJ m −3 K −1 2.7, 0.2 2.6–2.9 12 2.6–2.9 0, 1, 2, 3, 4 I

 222Rn∞ riverbed Bq L −1 2 1.0–2.0 0 II

 222Rn∞ all. aq. Bq L −1 9 1.3–7.0 1, 2, 3, 4, 5 II

ρb riverbed g cm −3 1.93, 0.08 1.81–2.02 9 1.93* n.a. n.a.

ρb all. aq. g cm −3 2.08, 0.06 1.95–2.17 18 2.07* n.a. n.a.

αL m n.a. n.a. n.a. 0.01–1 e.d. n.a.

Specific yield ratio m 3 m −3 n.a. n.a. n.a. 0.2–1.0 e.d. n.a.

Specific storage m −1 n.a. n.a. n.a. 5.5 × 10 −5* e.d. n.a.

Δh to P0 m n.a. n.a. n.a. −0.1–0.1 e.d. n.a.

Note. Pilot point set I comprises 5 pilot point groups, while set II comprises 6 pilot point groups. n = number of samples; n.a. = not available; e.d. = prescribed over 
entire model domain; * = values were not modified during parameter inference; all. aq. = alluvial aquifer; NW = northwestern; IQR = interquartile range.

Table 2 
Measured Values and Uniform Prior Ranges of Saturated Hydraulic Conductivity (K), Porosity (θ), Thermal Conductivity (κ0), Bulk Volumetric Heat Capacity (pbcb), 
Specific Storage, Specific Yield, Bulk Density (ρb),  222Rn Concentration at Secular Equilibrium ( 222Rn∞), Longitudinal Dispersivity (αL) Specific Storage, Specific 
Yield Ratio, and the Hydraulic Head Prescribed at the General Head Boundary of the Northwestern Model Domain Boundary Expressed as Head Difference to the 
Head Measured in P0 (Δh to P0) Used for Parameter Inference in the Joint MODFLOW and MT3D-USGS Model
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in which  222Rnriv and  222Rnp are the  222Rn concentrations in the river and in the piezometer under study, respec-
tively. To account for the uncertainty in  222Rn concentration at secular equilibrium ( 222Rn∞), a Monte Carlo 
simulation was conducted to estimate distributions of τapp. The uniform range of possible  222Rn∞ concentrations 
was chosen according to measured  222Rn concentrations in groundwater collected from P9, P7, and P11 and thus 
was 3.8–5.2 Bq L −1.

4.  Results and Discussion
4.1.  Site Characteristics, Conceptual Model of Groundwater Flow, and Patterns of Groundwater-Surface 
Water Interactions

Sediments of the riverbed and northwestern and southeastern alluvial aquifer showed considerable differences 
(Table 2). While riverbed sediment and sediment samples in the southeastern alluvial aquifer mainly consisted 
of medium- to coarse-grained sand (d50 median ± interquartile range = 0.48 ± 0.14 mm, n = 10) with varying 
fractions of organic material, the only sample collected from the northwestern alluvial aquifer (Figure S1 in 
Supporting Information S1) predominantly consisted of peat-like organic material. Saturated hydraulic conduc-
tivities (K) ranged between 1.7 × 10 −6 and 1.4 × 10 −3 m s −1 in samples collected from the riverbed and from the 
southeastern alluvial aquifer, while hydraulic conductivity of the peat-like materials found in the northwestern 
alluvial aquifer was considerably lower (<1.0 × 10 −8 m s −1). Moreover, log-transformed hydraulic conductivities 
in the southeastern alluvial aquifer (geometric mean, μg ± σg = 1.8 × 10 −4 ± 7.8 × 10 −4 m s −1, n = 18) were 
significantly higher than in the riverbed around the main transect (μg ± σg = 1.9 × 10 −5 ± 7.2 × 10 −4 m s −1, 
n = 7, Welch's t-test, p < 0.01, t(11.3) = 4.5). On the contrary, porosity (θ) determined from oven dried sediments 
(105°C, 72 hr) and bulk densities (ρb) were significantly lower (Welch's t-test, p < 0.01, t(14.4) = −5.6 and 
Welch's t-test, p < 0.01, t(14.6) = 5.0, respectively) in the riverbed around the main transect (0.38 ± 0.04, n = 9 
and 1.93 ± 0.037 g cm −3, n = 9, respectively) than in the southeastern alluvial aquifer (0.31 ± 0.03, n = 18 and 
2.07 ± 0.06 g cm −3, n = 18, respectively). Thermal conductivities and bulk volumetric heat capacities ranged 
between 2.1 and 3.0 W m −1 K −1 and 2.6 and 3.1 MJ m −3 K −1, respectively.

The bulk resistivity profiles, obtained by FDEM inversion, chloride concentrations, hydraulic heads, and esti-
mated vertical Darcy fluxes were used to conceptualize the general hydrogeological setting and infer the patterns 
of groundwater-surface water exchange flows at the field site (Figures 1b and 1c). The regional groundwater flow 
direction, inferred from groundwater contour lines provided by the Berlin Senate, indicates flow from north to 
south (Figure S2 in Supporting Information S1). Downward Darcy fluxes estimated via the combined McCallum 
ΔφAr method ranged from 0.40 to 1.50 m d −1 at TS4 and from −0.03 to 0.21 m d −1 elsewhere (Figure S3 in 
Supporting Information S1). In comparison, the estimated fluxes using the Hatch Ar method, ranged from 0.43 
to 1.27 m d −1 at TS4 and from −0.47 to 0.29 m d −1, elsewhere. The fluxes estimated from TS4 agree with fluxes 
estimated previously at the same site (Schaper et al., 2019) and with negative hydraulic gradients (i) measured 
between P0 and SW1 (i = −0.15 ± 0.02) and P1 and SW1 (i = −0.22 ± 0.02). Although head gradients between 
P8 and SW1 (i = −0.18 ± 0.02) were also negative, strong vertical fluxes were likely impeded by lower river-
bed hydraulic conductivities measured around TS5 (Figure S1 and Table S1 in Supporting Information S1). In 
contrast, head gradients between P11 and SW1 (i = −0.02 ± 0.00) were small and unlikely to create considerable 
downward fluxes upstream of TS4. It should be noted that because temperature time series recorded in the river-
bed by TS1–TS6 were measured only to a maximum depth of 0.25 m, the downward Darcy fluxes estimated via 
VFLUX 2.0 were not used as model constrains in the numerical heat transport model presented in Sections 3.2 
and Section S3 in Supporting Information S1.

Median (± interquartile range, IQR) chloride concentrations in the River Erpe (115 ± 22 mg L −1, n = 17) and 
the southeastern alluvial aquifer (121 ± 16 mg L −1, n = 44) were largely similar, but were considerably higher 
compared to chloride concentrations measured in the groundwater observation well (BWB, screened section 
−5 to −1 m above sea level, asl, 38.5–42.5 m below land surface, 37 mg L −1, n = 2) of the Berlin Water Works 
located between P3 and P4. It is therefore likely that water sampled from the relatively deep BWB observation 
well represents regional groundwater, which did not mix with infiltrating surface water from the River Erpe.
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The electromagnetics-derived inverted bulk-resistivity data highlight the spatial heterogeneity and extent of the 
alluvial aquifer material along the piezometer transect and beneath the river. The medium- to coarse-grained 
sand of the alluvial aquifer on the southeastern side of the River Erpe extends from 5 to 95 m along the transect 
and has resistivity values that range from 1.8 to 3 Ω-m. Whereas for the more peat-rich, organic material on the 
northwestern side of the river, the resistivity values are lower (<1.25 Ω-m). Measured head gradients and vertical 
Darcy fluxes suggest that surface water infiltration into the southeastern alluvial aquifer was strongest around 
the location of the main piezometer transect (P0–P7). This observation agrees with the  222Rn measurements and 
temperature time series collected in P11, P8, P1, and P3 (compare Sections 3.2 and 4.3). Consequently, a two-di-
mensional vertical cross-sectional model domain was set up along the main piezometer transect between P0 and 
P7, extending from the thalweg of the River Erpe and 80 m into the alluvial floodplain (Figure 1c).

4.2.   222Rn Concentrations in the Alluvial Aquifer

Along the piezometer transect (P0 to P7), mean (± one standard deviation, SD),  222Rn concentrations increased 
from 0 Bq L −1 (n = 2) in the surface water of the River Erpe to 5.0 ± 0.4 Bq L −1 in P7 (Figure 2a) with the excep-
tion of P6, where concentrations were slightly lower compared to P5 and P7. In P11 and P9,  222Rn concentrations 

Figure 2.  (a) Boxplots of measured  222Rn concentrations (Bq L −1) in the southeastern alluvial aquifer (red) and in the 
incubation experiments after 21 days (blue). (b) Violin plots of posterior distributions of estimated  222Rn∞ concentrations 
at the five pilot point groups of set II for model scenarios B and D (Table 1). (c) Violin plot of the posterior distribution 
of estimated uniform  222Rn∞ concentration for model scenario C (Table 1). In both panels, median concentrations and 
interquartile ranges are represented by the horizontal black line and the boxes, respectively. The most extreme data values, 
which are away from the box by less than 1.5 times the length of the box, are shown as whiskers and data values beyond the 
whiskers are plotted as black dots. RB = riverbed.
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were similar to concentrations in P5 and P7, respectively. The highest  222Rn concentrations encountered at the 
field site, however, were found in P8 (6.9 ± 0.1 Bq L −1), despite its location in close vicinity to the River Erpe. 
No notable trend was detected within the four  222Rn measurements conducted between 5 June 2019 and 15 June 
2019, suggesting that with respect to  222Rn, the groundwater system was in a quasi-steady state. This assumption 
is supported by the fact that hydraulic gradients across the field site changed very little between June and Novem-
ber 2019 (Figure S7 in Supporting Information S1).

Upon infiltration of river water into the subsurface,  222Rn concentrations are expected to increase until secular 
equilibrium is reached, that is, final equilibrium concentration, where  222Rn production from sediment emanation 
equals radioactive decay (Equation 1). Acknowledging measurement uncertainty of  222Rn of 5%–10%, secular 
equilibrium in field settings can typically be assumed when mean travel times in the alluvial aquifer are larger 
than four to six times the  222Rn half-life, corresponding to 15.2 days (0.93· 222Rn∞) and 23 days (0.98· 222Rn∞), 
respectively (Gilfedder et al., 2019; Hoehn & von Gunten, 1989). The reactive-transport simulations conducted 
in the present study suggest that along the groundwater flow path from P0 to P7, secular equilibrium was reached 
somewhere between P3 and P4 with corresponding travel times of 15.3 ± 2.3 d and 25.7 ± 4.3 d, respectively 
(compare Section 4.4 and Table 3).

Mean travel times from the river to piezometers P8, P9, and P11, which were not located within the model domain, 
were semiquantitatively estimated by comparing temperature time series recorded between June and November 
2019 to temperature records in the piezometer transect (P0–P7). All temperature time series measured in the allu-
vial aquifer showed a distinct seasonal pattern (Figure S6 in Supporting Information S1). In P8, close to the river, 

Model scenario Units τapp A B C D

 222Rn transport model Implicit – Explicit Explicit Explicit

Calibration constrains Rn H, temp H, Rn H, temp, Rn H, temp, Rn

 222Rn production rate (γ) Constant – Variable Constant Variable

RMSE head cm – 0.71 0.68 0.70 0.72

RMSE temperature °C – 0.21 – 0.25 0.23

RMSE  222Rn Bq L −1 – – 0.12 0.75 0.12

Median (±IQR)

αL m 0.6 ± 0.3* 0.7 ± 0.7* 0.8 ± 0.7* 0.9 ± 0.1*

Specific yield ratio m 3 m −3 0.6 ± 0.2* 0.6 ± 0.2* 0.6 ± 0.2* 0.6 ± 0.2*

Δh = hboundary − hP0 cm 0.06 ± 0.4 0.7 ± 1.0 0.4 ± 0.4 0.3 ± 0.3

Piezometer

𝐴𝐴 med𝜇𝜇𝜏𝜏
 , 𝐴𝐴 IQR𝜇𝜇𝜏𝜏

P0 days 2.1 ± 0.6 2.3 ± 0.8 3.3 ± 2.1 3.5 ± 0.5 3.0 ± 0.6

P1 days 2.5 ± 0.6 4.0 ± 1.0 5.0 ± 3.1 5.1 ± 0.3 4.8 ± 0.9

P2 days 3.3 ± 0.9 9.2 ± 1.6 8.9 ± 4.7 8.6 ± 0.6 8.4 ± 1.3

P3 days 4.3 ± 1.3 18.3 ± 4.2 16.8 ± 6.5 14.9 ± 1.1 15.3 ± 2.3

P4 days 5.1 ± 1.5 32.1 ± 8.6 28.9 ± 8.7 24.8 ± 2.0 25.7 ± 4.3

P5 days 7.8 ± 3.0 52.8 ± 14.9 46.8 ± 12.2 39.9 ± 3.6 41.6 ± 7.5

P6 days 5.2 ± 1.4 79.6 ± 23.3 69.5 ± 16.6 59.3 ± 5.6 61.9 ± 11.5

P7 days n.e. 102.8 ± 30.2 91.5 ± 21.1 76.9 ± 7.3 80.1 ± 14.9

Note. Temp = temperature; H = hydraulic head; Rn =  222Rn; * = posterior indifferent from uniform prior probability density 
distribution; IQR = interquartile range; n.e. = not estimated.

Table 3 
Overview of Median Travel Times (Days, 𝐴𝐴 med𝜇𝜇𝜏𝜏

 ) and Associated Interquartile Ranges (𝐴𝐴 IQR𝜇𝜇𝜏𝜏
 ) to Piezometers P0–P7 

Calculated Using Implicit (Equation 9, τapp) and Explicit (MT3D-USGS, Model Scenarios A to D)  222Rn Transport Models, 
Including Calibration Constrains, Root-Mean-Square Errors (RMSE) of the Different Calibration Constrains and Posterior 
Probability Density Distributions for Longitudinal Dispersivity (αL), Specific Yield to Porosity Ratio, and Δh Used to 
Prescribe the General Head Boundary at the Northeastern End of the Model Domain



Water Resources Research

SCHAPER ET AL.

10.1029/2021WR030635

14 of 22

differences in mean arrival time estimated from EC time series recorded in August 2019 indicated a mean travel 
time of approximately 14 days (Figure S5 in Supporting Information S1). Temperature time series recorded in 
P3 were slightly delayed compared to temperature time series recorded in P8. As differences in thermal sediment 
parameters of the alluvial aquifer were small (compare Section 4.1), this finding is in agreement with calculated 
mean travel times to P3 of 15.3 ± 2.3 d (Table 3, Figure 5) and suggests that the relatively high  222Rn concen-
trations measured in P8 were approaching  222Rn∞. By contrast, temperature time series recorded in P9 and P11 
resembled the temperature time series measured in P7. It is therefore likely that  222Rn concentrations measured in 
P8, P9, and P11 and the concentrations measured in P5–P7 represent  222Rn concentrations at or close to secular 
equilibrium. Assuming that secular equilibrium concentrations are linked to local sediment production rates, this 
finding suggests that the  222Rn production rates vary by a factor of 2 across the field site.

The observation of non-homogenous  222Rn production rates is qualitatively confirmed by the secular equilib-
rium concentrations measured in the incubation experiments ( 222Rn∞, inc).  222Rn∞, inc ranged from 1.4 ± 0.4 Bq 
L −1 (mean ± 1 SD) in sediments collected in the riverbed to 3.9 ± 0.4 Bq L −1 in sediments collected close to 
P7 (Figure 2a). In the present study, correlations between  222Rn∞,inc and resulting emanation rates (E, Bq/kg dry 
sediment, see Section S7 in Supporting Information S1 for details) and sediment characteristics were assessed 
via Spearman rank correlation coefficients.  222Rn∞,inc concentrations were negatively correlated with porosity 
(rs = 0.77, n = 10, p < 0.05), but both  222Rn∞,inc concentrations and resulting emanation rates E were positively 
correlated with the weight fraction of the sediment that was smaller than 0.2 mm ( 222Rn∞,inc: rs = 056, n = 10, 
p < 0.05, E: rs = 0.62, n = 10, p < 0.05) and distance from the river thalweg ( 222Rn∞,inc: rs = 0.71, n = 10, 
p < 0.05, E: rs = 0.64, n = 10, p < 0.05). This finding is in agreement with previous studies which found that  222Rn 
production rates and the emanation fraction increase with decreasing grain size (Greeman & Rose, 1996; Hoehn 
et al., 1992; Sakoda et al., 2011).

Measured  222Rn∞,inc concentrations at P6, P7, P11, and P8 were lower than the direct field measurements of  222Rn 
concentrations in groundwater samples with the largest differences encountered at P8 (Figure 2). This discrep-
ancy may result from different sediment porosity induced during sediment sampling. Because only disturbed 
samples could be used, the ratio of pore water to sediment might have been increased compared to in situ condi-
tions. This explanation would be in line with the observation that the posterior parameter distributions for poros-
ity generally centered around lower values in the alluvial aquifer compared to measured values in the sediment 
samples (Figure 4). The differences could also be due to small-scale heterogeneity and the fact that sediments 
were not sampled from the piezometer screening depth but about approximately 1–2 m above the filter screen. In 
addition, it cannot fully be excluded that the observed discrepancy may have been due to methodological short-
comings (e.g.,  222Rn loss through the silicon tubing during sampling). Such effects, however, would have affected 
all sediment incubations equally.

4.3.  Model Performance and Parameter Estimates

The modeled time series of groundwater levels and temperatures using the maximum-likelihood parameter set 
of the different model scenarios closely fit the observed data (Figure 3, Figures S8–S10 in Supporting Infor-
mation S1) and all have similar root-mean-square errors (RMSE) for hydraulic head and temperature (Table 2). 
Model scenarios B and D, in which  222Rn production rates vary across the domain, captured the measured  222Rn 
concentrations relatively well, indicated by a low RMSE of  222Rn concentrations, which falls within a measure-
ment uncertainty of 10%–15%. However, in model scenario C, the RMSE of  222Rn was considerably higher than 
the measurement uncertainty and also than in the model scenarios B and D. The explicit transport model, which 
assumed a constant  222Rn production rate, was thus not capable to represent the measured spatial variability 
in  222Rn concentration along the transect.

The posterior probability density distributions (posteriors) of hydraulic and thermal transport parameters were 
distinct from their prior probability density distributions (priors) in all model scenarios, suggesting that in 
general, the models were sensitive to these parameters (Figure 4) and the degree of equifinality across the differ-
ent scenarios was low. An exception was porosity (θ), for which the posteriors of scenarios A and B were similar 
to their priors for all PPGs and for PPG 0 and 1, respectively. In all model scenarios, θ correlated with thermal 
retardation (Rth) and dispersion coefficients (DT) as both thermal parameters are lumped parameters, including the 
effects of parameters related to heat transport in porous media, that is, porosity and the thermal conductivities and 
heat capacities of both the bulk sediment and the solid phase (Figures S11–S14 in Supporting Information S1). 
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In scenario A, effects of θ were thus incorporated in Rth and DT as no further constrain on transport was available. 
Accordingly, in scenarios C and D, where both  222Rn and temperature measurements were used to constrain the 
model, the posterior variances of DT and Rth decreased compared to scenario A, particularly for PPGs located in 
the alluvial aquifer. Likewise, the variance of  222Rn production rates and θ in PPG 1 decreased from scenario B 
to D as temperature was added as data. Both the posteriors of specific yield to porosity ratio and of longitudinal 
dispersivity (αL) were not distinct from their uniform priors, indicating that the model was not sensitive to specific 
yield and used a wide range of αL (0.01–1) and transverse dispersivity (0.001–0.1) during transport simulations.

Median values of the posteriors for Rth and DT in PPG 0 were in reasonable agreement with median measured 
values, while for PPG 1 and PPGs 2 and 3, the median values were slightly lower and higher compared to meas-
ured values, respectively. For hydraulic conductivity (K) and porosity (θ), median measured values in the river-
bed were similar to modeled ranges, whereas median posterior values in the alluvial aquifer were, on average, 
considerably higher and lower than the median of measured values, respectively. In particular, K values of the 
last PPG close to P6 tend to cluster around the upper boundary of their prior range, while values of θ are grouped 
around their lower prior range. The question whether the discrepancy between measured and modeled param-
eters is due to the boundary condition prescribed at P7, a lack of transferability of laboratory measurements to 
in situ conditions or issues related to the conceptual groundwater flow model cannot fully be addressed within 
the scope of the present study. However, since prior parameter ranges were constrained by measured sediment 
characteristics and simulated heads matched measured heads closely in all model scenarios tested, all posterior 
model realizations are still considered to be plausible representations of groundwater flow and transport along 
the main piezometer transect.

The median of the posteriors of  222Rn equilibrium concentrations for scenario C, for which a constant  222Rn 
production rate was prescribed across the entire domain was 3.3 Bq L −1 and thus considerably lower compared to 
the concentrations measured in P7, P8, and P9 (Figure 2). In the two scenarios, in which  222Rn production rates 
could vary across the domain (B and D), median posterior values ranged from 1.5 to 1.6 to 6.1 and 6.1 Bq L −1 
in model scenarios B and D, respectively. For the southeastern section of the model domain (PPG 3 to PPG 5), 
posteriors of scenarios B and D were similar, whereas posteriors of PPGs 0 and 1, close to the River Erpe are 
more constrained in scenario D. This finding was expected because temperature time series were available only 

Figure 3.  Measured (crosses) and modeled (lines, none for surface water) times series (scenario D, Table 1) of hydraulic heads (a) and temperature (b) in piezometers 
P0, P1, and P3. Also shown are measured time series in River Erpe (SW1) and in P7, which served as inflow and outflow boundary (CHD) for both groundwater flow 
and temperature transport simulations. Note that the measured and modeled curves for P0, P1, and P3 are hardly distinguishable because they lie on top of each other. 
Note further that data collection in P0 only commenced on 06/07/2019. For temperature transport, only data collected after one mean travel time to the respective 
piezometer are depicted. Modeled time series of scenario A to C are shown in Figures S6–S8 in Supporting Information S1; sw = surface water.
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in P0, P1, and P3 and thus transport characteristics between P4 and P7 were only defined by measured  222Rn 
concentrations and heads.

4.4.  Estimation of Water Travel Times in the Alluvial Aquifer

The ensemble median of the mean travel times (𝐴𝐴 med𝜇𝜇𝜏𝜏
 ) estimated in the different model scenarios A (hydrau-

lic heads and temperature), B (hydraulic heads,  222Rn, and variable γ), C (hydraulic heads, temperature,  222Rn, 
and constant γ), and D (hydraulic heads, temperature,  222Rn, and variable γ) increased from P0 (𝐴𝐴 med𝜇𝜇𝜏𝜏

,A : 2.3 d, 
𝐴𝐴 med𝜇𝜇𝜏𝜏

,D : 3.0) to P7 (𝐴𝐴 med𝜇𝜇𝜏𝜏
,A : 102.8 d, 𝐴𝐴 med𝜇𝜇𝜏𝜏

,D : 80.1, Table 3, Figure 5).

The travel times estimated by explicitly simulating  222Rn transport were by factors ranging from 1.4 (at P0) to 11.9 
(at P6) larger than the mean apparent  222Rn ages (Table 3). This finding can be explained by dispersive mixing 
leading to a distribution p(τ) of travel times at an observation point. Already in the simplest case of one-dimen-
sional advective-dispersive-reactive transport with uniform coefficients, the recovery of the decaying compound 
is affected by dispersion, namely 𝐴𝐴 exp

(

−2𝜆𝜆𝜆𝜆∕

(

𝑣𝑣 +

√

𝑣𝑣2 + 4𝐷𝐷𝐷𝐷

))

 , but interpreted in the apparent-age interpreta-

tion of the data by exp(−2λx/vapp), so that the apparent velocity is 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 = (𝑣𝑣 +

√

𝑣𝑣2 + 4𝐷𝐷𝐷𝐷)∕2 , which is bigger than 

the true velocity v for any combination of positive D and λ. Any other distribution p(τ) of travel times at observation 

points, except for the Dirac delta function, would also lead to a  222Rn-age 𝐴𝐴 𝐴𝐴app = −ln

(

∞

∫
0

𝑝𝑝(𝜏𝜏)exp(−𝜆𝜆𝜆𝜆)𝑑𝑑𝑑𝑑

)

∕𝜆𝜆 that 

differs from the mean groundwater age 𝐴𝐴

∞

∫
0

𝜏𝜏𝜏𝜏(𝜏𝜏)𝑑𝑑𝑑𝑑 . To evaluate the effect of dispersive mixing on τapp, a test case 

scenario was constructed in which, μτ, simulated using the median parameter values for hydraulic conductivity 

Figure 4.  Measured values (boxplots) in the riverbed (RB) and the alluvial aquifer (AA) and posterior probability density distributions (violin plots) of saturated 
hydraulic conductivity (K), porosity (θ), thermal dispersion, and thermal retardation coefficients estimated by DREAM runs for the different pilot point groups and all 
four model scenarios (Table 1). In the boxplots and violin plots, median values and interquartile ranges are represented via the horizontal black line and the boxes and 
the three horizontal lines, respectively.
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and porosity of scenario D, was compared to τapp, estimated from explicitly simulated  222Rn concentrations and 
a uniform  222Rn production rate. Apparent  222Rn ages increasingly underestimate μτ as dispersivity increases 
(Figure S3 in Supporting Information S1), a finding that is in agreement with simulations conducted by Gilfedder 
et al. (2019). However, even for a longitudinal dispersivity of 5 m, μτ in the present study is larger than τapp by 
factors that do not exceed 1.3. The deviation between τapp and μτ can thus not be attributed to dispersive mixing 
alone, but is also caused by relatively low  222Rn production rates in the riverbed sediments and at P1 compared 
to  222Rn production rates in the alluvial aquifer.

It is reasonable to assume that the median groundwater travel times of scenario D are the most realistic esti-
mates, because this scenario is conditioned on hydraulic heads,  222Rn concentrations, and temperature measure-
ments and relied on  222Rn∞,inc laboratory data to constrain prior ranges for the  222Rn production rate. The median 
groundwater travel times in scenarios A and B were higher compared to those in scenario D with the exception of 
P0 in scenario A, where 𝐴𝐴 med𝜇𝜇𝜏𝜏 ,𝐴𝐴

 was lower than 𝐴𝐴 med𝜇𝜇𝜏𝜏 ,𝐵𝐵
 and P1, where median travel times were relatively similar 

for all scenarios (Table 3). Using only temperature or  222Rn alone in combination with hydraulic heads as data 
would thus have resulted in an average overestimation of the travel time of 10%. For P2–P7, the median ground-
water travel time in scenario C was similar to that of scenario D but was smaller for P0 and P1. The differences 
in travel time between scenarios D and C close to the river are attributed to an increase in  222Rn production rates 
with distance from the river. Differences between scenarios D and A and D and B, however, are likely due to a 
lack of calibration data in scenarios A and B compared to scenario D, resulting in wider posterior distributions 
of μτ and thus larger 𝐴𝐴 med𝜇𝜇𝜏𝜏

 values.

Figure 5.  (a) Posterior probability density distributions of mean travel times to P0 to P7 estimated for scenarios A (based on measured hydraulic heads and 
temperature), B (based on measured hydraulic heads,  222Rn, and variable γ), C (based on measured hydraulic heads, temperature,  222Rn, and constant γ), and D (based 
on measured hydraulic heads, temperature,  222Rn, and variable γ). Note the difference in x-axis scales.
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In the present study, uncertainty in identifying the mean travel time at a given point was estimated as the inter-
quartile range (𝐴𝐴 IQR𝜇𝜇𝜏𝜏

 ) of the posterior distribution of mean groundwater travel times. In scenario D, the relative 
uncertainty ranged between 15% and 20% of the median travel time (Table 3). Compared to scenario D, the 
relative uncertainty was slightly lower in scenario C (6%–14% of 𝐴𝐴 med𝜇𝜇𝜏𝜏 ,𝐶𝐶

 ) but higher in scenarios A (17%–35% 
of 𝐴𝐴 med𝜇𝜇𝜏𝜏 ,𝐴𝐴

 ) and B (24%–62% of 𝐴𝐴 med𝜇𝜇𝜏𝜏 ,𝐵𝐵
 ). The uncertainty in identifying the mean travel time mainly arises from 

parameter equifinality, which is indicated by strong correlations among model parameters and relatively wide 
posterior parameter distributions. In scenario D, nonuniform  222Rn production rates were partly correlated to sedi-
ment porosity (Figure S14 in Supporting Information S1), while no such correlations were observed in scenario 
C. The relatively low uncertainty in scenario C can thus be attributed to the prescription of one uniform  222Rn 
production rate for the entire model domain. The relatively high uncertainty associated with 𝐴𝐴 med𝜇𝜇𝜏𝜏

 in scenarios 
A and B, however, reflects correlations among porosity and thermal sediment parameters and among hydraulic 
conductivity and  222Rn production rates, respectively (Figures S11 and S12 in Supporting Information S1). This 
finding suggests that the joint inversion of  222Rn concentrations and temperature can reduce the relative uncer-
tainty in identifying the mean travel time by up to 42% and thus can at least partly compensate the uncertainty 
induced by nonuniform  222Rn production rates.

It should be noted that the accuracy of our estimates of parameters and mean groundwater travel time is also 
influenced by conceptual model uncertainty and that our approach assumes time-invariant transport coefficients 
and accounts for the effects of mixing along and between distinct flow paths only via a uniform range of disper-
sivities. Mixing between flow paths of distinct ages, however, can not only result from transverse dispersion 
(Castro & Goblet, 2005), but also from exchange with aquitards (Cornaton & Perrochet, 2006; Sanford, 1997) and 
dual-domain transport (Neumann et al., 2008; Sanford et al., 2017). These effects can lead to erroneous estimates 
of groundwater travel time derived from concentrations of radiometric tracers as outlined above (see also J. L. 
McCallum et al., 2015). By setting up a cross-sectional model domain, the assumption was made that there was no 
lateral inflow of groundwater into the model domain and that the general groundwater flow direction in the south-
astern alluvial aquifer was perpendicular to the River Erpe (i.e., within the transect of piezometers). The relatively 
high K values estimated for the southern part of the model domain could be indicative for lateral groundwater 
inflows, which would result in an underestimation of travel times, particularly in P6 and P7. The possibility that 
flow paths circumvent piezometers and are thus located outside of the model domain cannot fully be excluded. 
However, the geophysical data as well as the sediment analysis suggest that the aquifer materials at the field site 
were relatively homogenous. Vertical seepage fluxes and hydraulic gradients indicate that surface water infiltra-
tion into the alluvial aquifer was strongest around the location of the main transect, an observation that is further 
supported by temperature time series and  222Rn concentrations. Furthermore, distances from the piezometers 
along the River Erpe are shortest along the course of the main transect and sampled water in the piezometers P0 
to P7 was chemically distinct from regional groundwater. Despite the slight decrease in groundwater heads during 
the model simulation period, head gradients remained relatively constant and the measured  222Rn concentrations 
showed no trend over time, thus justifying the steady-state assumption implied in the direct simulation of mean 
groundwater travel time. It is therefore reasonable to assume that there is a high level of congruence between the 
modeled transect and the actual groundwater flow field and that the median groundwater travel time simulated 
by scenario D, particularly the ones estimated for the northern part of the transect, is relatively close to the actual 
mean of the travel time distribution.

5.  Conclusions and Implications
 222Rn is distinct from other radiogenic tracers, such as  3H/ 3He and  14C, because its input concentration function 
is typically well known and it is produced in the sediment matrix. The present study, however, demonstrates that 
along alluvial groundwater flow paths,  222Rn production rates may vary by a factor of 2 across relatively short 
distances (<100 m). As a consequence, differences between apparent  222Rn ages and mean river-to-groundwa-
ter travel times can be substantial and likely exceed differences induced by dispersive mixing in two-dimen-
sional flow fields. The fact that  222Rn production rates can be nonuniform within alluvial aquifers and may differ 
between riverbed sediments and aquifer material presents a major disadvantage of the method, particularly in 
settings in which the flow paths under study span across sediments with different grain size distributions, poros-
ity, or mineral composition. If the observed  222Rn concentrations deviate from an exponential ingrowth model 
as predicted by Equation 3 or if field measurements of  222Rn concentrations or other tracers suggest that  222Rn∞ 
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concentrations differ substantially, implicit  222Rn transport formulations should be avoided. Under such condi-
tions, the spatial distribution of  222Rn production rates can be constrained by laboratory investigations on  222Rn 
production rates or by employing additional tracers.

The present study further shows that  222Rn transport can explicitly be simulated using the open-source software 
packages MODFLOW-NWT and MT3D-USGS. To reduce the uncertainty of travel times induced by sediment 
heterogeneity and to improve the accuracy of travel time estimates, we suggest to combine  222Rn with other natu-
ral tracers, such as heat or electric-conductivity fluctuations, and jointly calibrate transport models of all tracers. 
Heat as a tracer has the particular advantage that temperature can easily be measured in riverbed sediments, where 
estimates of  222Rn production rates can only be obtained from sediment incubations. In this context, Bayesian 
analysis provides a useful tool to quantify uncertainty originating from aquifer heterogeneity including sediment 
porosity, hydraulic conductivity, and the spatial variation in  222Rn production rates. More research, however, is 
needed to investigate the effects of mixing between flow paths and transient flow on the estimation of travel time 
distributions from rivers to alluvial aquifers when heat and  222Rn are used as tracers. Future research should also 
aim at comparing different methods to more reliably and accurately determine  222Rn∞ concentrations in sediment 
samples.

Data Availability Statement
The data in this paper are published as Schaper et  al.  (2021) and can be found https://doi.org/10.5281/
zenodo.4956781.
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