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Abstract

In extensive cohort studies, the ascertainment of covariate information on all individuals can
be challenging. In hospital epidemiology, an additional issue is often the time-dependency of
the exposure of interest. We revisit and compare two sampling designs constructed for rare
time-dependent exposures and possibly common outcomes – the nested exposure case-
control design and exposure density sampling. Both designs enable efficient hazard ratio esti-
mation by sampling all exposed individuals but only a small fraction of the unexposed ones.
Moreover, they account for time-dependent exposure to avoid immortal time bias. We evalu-
ate and compare their performance using data of patients hospitalised in the neuro-intensive
care unit at the Burdenko Neurosurgery Institute in Moscow, Russia. Three different types of
hospital-acquired infections with different prevalence are considered. Additionally, inflation
factors, a primary performance measure, are discussed. We enhance both designs to allow
for a competitive analysis of combined and competing endpoints compared to the full cohort
approach while substantially reducing the amount of necessary information. Nonetheless,
exposure density sampling outperforms the nested exposure case-control design concerning
efficiency and accuracy in most considered settings.

Adequate assessment of the clinical and administrative burden of hospital-acquired infections
(HAIs) is of major epidemiological interest [1–4]. In a time-to-event analysis, the influence of
these exposures on an outcome of interest, often alongside other risk factors, is usually
assessed with a Cox regression model. The resulting hazard ratio (HR) relates the hazard of
exposed individuals to that of unexposed individuals at the event times. Conventional epi-
demiological cohort studies require complete covariate information on all individuals irre-
spective of the exposure and outcome prevalence. The ascertainment of these risk factors is
often expensive and may be a huge endeavour. To decrease the economic burden, conventional
sampling designs that require covariate information from all patients with an outcome event,
but only from a small proportion of individuals without an outcome event have been intro-
duced. More specialised, sampling designs for time-to-event data require covariate information
from all patients with an outcome event, but only from a small proportion of individuals with-
out an outcome event. Popular examples are the nested case-control (NCC) [5, 6] and the
case-cohort design [7]. Those designs result in competitive estimates compared to the full
cohort analysis while at the same time remarkably reducing the necessary resources allocated
to the study.

Rare time-dependent exposures but frequent subsequent outcome events are common
when assessing the burden of HAIs. In such a situation, nested-case control or case-cohort
designs no longer result in the emphasised reduction of resources [8]. Two-phase sampling
designs form more informative samples to assess the association of the exposure by exploiting
information on the risk factors of primary interest [9, 10]. They even enable the use of cohort
(phase I) data in an estimation based on subsampled (phase II) data [11, 12]. Nonetheless,
while conventional two-phase designs reduce the required information based on observed out-
come events, they frequently result in too large sample sizes [8]. Recently, Ohneberg et al. [13]
and Feifel et al. [8] proposed two schematically different sampling methods, namely exposure
density sampling (EDS) and the nested exposure case-control (NECC) design. Being capable of
a robust HR estimation while utilizing only limited resources, both NECC and EDS offer
researchers an attractive alternative to the expensive full cohort analysis [14] while avoiding
one of the most serious types of bias – the immortal time bias [15].
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Moreover, in epidemiological studies, cases and controls are
often matched on risk factors that are uncomplicated to ascertain.
Both exposure-related sampling schemes permit additional
matching. Therefore, they enable an estimation that is adjusted
for confounders. The model flexibility is increased by matching
as assumptions that usually have to be fulfilled for all variables
in a statistical model, are not necessary for the matched variables.

This paper revisits NECC and EDS sampling for rare expo-
sures but common and uncommon outcome events. First, we
introduce the theoretical background of the two methods. Then,
we analyse patients hospitalised in the neuro-intensive care unit
(ICU) at the Burdenko Neurosurgery Institute (NSI) in
Moscow, Russia [16]. Here, the association of three rare time-
dependent infections with different prevalence on length-of-stay
in ICU as the outcome event is investigated.

Another frequently observed type of bias is the competing risk
bias [17], which can be adequately addressed by both NECC and
EDS. To evaluate their performance in this situation, we extend
the data analysis to investigate ICU mortality considering dis-
charge alive as a competing risk.

Methods

The two sampling schemes are outlined in Figure 1.
NECC [8] allocates for each exposed individual i who experi-

ences the outcome of interest at time t a predefined number of
controls, denoted by m. Additionally, a small fraction (q) of unex-
posed individuals that experience the outcome of interest controls
are selected. For both exposed and the randomly chosen unex-
posed individuals, the controls are sampled at the event times
accordingly and information on the risk factors is ascertained.
Eligible controls are all individuals that have not experienced
the outcome of interest before the time t and have not been cen-
sored. They are referred to as risk set R(t). For example, when
hospital discharge is the outcome, the R(t) comprises all indivi-
duals with a length of stay at least as long as that of the individual
discharged at time t. NECC corresponds to the conventional NCC
design if q is chosen to be one [5, 6].

EDS [13] selects for each exposed individual at time s, the time
of exposure, m unexposed individuals from R(s) as reference
patients. Although showing similarities to controls in nested
(exposure) case-control designs, reference patients are allowed
to change their exposure status if the exposure is acquired at a
later time point than the sampling time. All exposed individuals
and all sampled reference patients constitute one cohort, denoted
by C. Herein, all individuals are observed until the outcome or a
censoring event. The difference compared to a full cohort is, that
patients enter with left-truncated entry times. Left-truncated
cohorts or delayed entry studies allow for increasing and decreas-
ing risk sets with progressing time. For EDS, the delayed entry
takes place upon sampling.

Figure 2 illustrates the fundamental concepts of the NECC and
EDS design on a fictional ICU cohort with individuals A–J. Here,
we provide only a brief description of the sampling. A more
detailed explanation also including the estimation concept is in
the appendix provided in the Supplementary material.

For the NECC design, patient A is included as an unexposed
individual with outcome event, and we randomly allocate one
control from B, C,…, J, the persons at risk. I is selected and the
sampled risk set R̃(t3) consists of A and I. This concept is similar
for patients having an outcome event with prior exposure like
C. Here, H and C form the set R̃(t6). For patients with censored

observation (see patient E) or with unobserved outcome event
that is not selected, no controls are sampled and they will be
excluded.

For EDS design, the time of exposure is essential. The first
exposure in the fictional cohort takes place at t1. Here, the cur-
rently unexposed referent F is allocated to patient G, having the
exposure event at that moment. The delayed entry time of G
and F is t1. At the time t2, the exposed individual C and matched
patient A enter the cohort. All individuals except for C and G
serve as potential matching candidates. The latter is exposed
already, therefore, not eligible as a reference patient anymore.
Now, the cohort C contains the individuals G, F, C, and A. The
final EDS cohort C with left-truncated entry times is A, C, F, G,
I, and J. The sampling scheme of EDS focuses on exposure
times. Thus, individuals with outcome event not yet included in
the EDS cohort remain unconsidered.

HR estimation

A cohort of n individuals, where the hazard rate αi(t) for each
individual i follows a Cox proportional hazards [18] model
ai(t) = a0(t) exp (b1xi1(t)+ b2xi2 + . . .+ bkxik), is assumed
with the time since admission to the hospital as a time scale.
The exposure of primary interest xi1(t), is time-dependent and
characterises whether the exposure of individual i has occurred
by time t, xi1(t) = 1, or not xi1(t) = 0. The other covariates are
time-independent baseline covariates [19]. The regression coeffi-
cients β1, …, βk describe the association between the k covariates
and the baseline hazard. A maximum likelihood estimator for
partial likelihood determines the (log-)HR of the Cox regression
[20]. At each event time t, the covariates of the individual with
the outcome event are compared to those of individuals in R(t).
The standard error (S.E.) may be obtained from the inverse of
the information matrix.

The estimation of the log HR utilizing NECC and EDS data is
also based on a partial likelihood [8]. Both likelihoods are evalu-
ated at the times when the outcome of interest occurred. The sam-
pling and event times coincide for NECC designs. For EDS the
sampling time and the time of exposure acquisition are the same.

NECC data can, equivalent to the partial likelihood, be evalu-
ated with a conditional logistic regression as explained in Borgan
and Samuelsen [21] and extended in Feifel et al. [8]. The NECC
analysis is stratified in time with the sampled risk sets R̃(t) form-
ing the strata. In these sampled risk sets each case is explicitly
compared to its allocated controls. The latter aims at approximat-
ing all patients still at risk R(t). This approximation is supported
by weights to mimic the multitude of individuals at risk, which
usually would have been considered. For each individual i the
weight is q if the individual is currently unexposed and one if
not. This weight varies with the exposure status and requires alter-
ation even within individuals.

EDS data are analysed in the same way as a full cohort. The
only difference is that the patients enter the analysis with left-
truncated entry times. Therefore, both designs respect the time-
dependent nature of the exposure.

Additional matching for sampled cohorts

A stratified version of the Cox model accounts for additional cov-
ariates like confounders. Here, the baseline hazard is allowed to
differ, whereas the HR of the exposure of interest presumably
stays the same for all strata. For an individual i the hazard rate
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in stratum c takes the form αi(t) = α0c(t)exp (β1xi1(t)). For a strati-
fied baseline hazard α0c, restricted sampling of eligible controls or
reference individuals is necessary. For NECC, suitable controls are
in R(t) and have the same (or similar) covariates as the individual

that experiences the event of interest. For EDS, the eligible refer-
ents are all not yet exposed to patients at risk with currently simi-
lar covariates as the individual who becomes exposed. This
procedure is referred to as additional matching.

Fig. 1. Outline of the two sampling schemes NECC and EDS. The time since study entry is denoted by t. The risk set at time t for the full cohort is R(t) and for the
NECC cohort is R̃(t). The time-dependent exposure state at time t is denoted by x(t), with x(t) = 1 indicating that the patient has acquired the exposure by time t and
x(t) = 0 indicating otherwise. Finally, C denotes the EDS cohort, which is all exposed individuals and the sampled reference patients. NECC, nested
exposure case-control design, EDS, Exposure density sampling.
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The partial likelihood for NECC still applies. The stratification
is already adjusted for when considering the sampled risk sets.
Thus the estimation of the HR remains the same as before. The
analysis of the EDS requires an adjustment on the stratification
variable. A stratified Cox regression is comparable to a conven-
tional full cohort approach but accounts for the left-truncated
entry times to analyse the EDS cohort.

Both designs allow the matching to be performed only in some
of the baseline covariates. The remaining covariates can then be
adjusted within the stratified regression model.

Competing risks

When competing risks are present (for simplicity, we assume two
competing events), a cause-specific Cox model is fitted for each com-
peting event. Separate sampling designs are performed as described
previously. Now, an individual experiencing event 1 is not at risk for
event 2 anymore (and vice versa). In the cause-specific analysis, they
are treated similarly to censored individuals. NECC allows for further
modifications to enhance the performance at the sampling phase.
Different inclusion probabilities q1 and q2 can be chosen for each
competing event. For example, selecting a larger inclusion probability

for rare events compared to common outcomes (see also the results
section). The weights for each event type are then calculated using q1
or q2, respectively. Different numbers of controls are also possible.

The competing risk scenario mainly affects the estimation
stage. NECC considers the sampled risk sets only for the particu-
lar event to estimate the HR. Thus, the NECC partial likelihood
for one of the competing events considers only the risk sets
with the corresponding outcome event. As in the full cohort ana-
lysis, the EDS cohort censors all individuals that experience a
competing event when focusing on the HR for the event of inter-
est. This analysis is performed for each competing event. An
evaluation of the partial likelihood is done at every event time
of the particular event type. Nevertheless, as sampling is exposure
rather than outcome-based, all unexposed individuals at risk are
eligible as reference patients. This implies primarily that the
cause-specific Cox regressions for all event types can be per-
formed on the same EDS subsample.

Results

We analyse patients from the neuro-ICU at the Burdenko NSI in
Moscow, Russia. The prospective single-centre cohort study was

(a)

(b)

Fig. 2. Illustration of the NECC design and the EDS using a fictional cohort of 10 individuals (A–J). NECC, nested exposure case-control; EDS, exposure density
sampling.
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conducted between 2010 and 2018 and includes 2249 patients
who stayed in the ICU for more than 48 h, thus at risk of acquir-
ing an HAI during the ICU stay [16]. In other words, patients
enter the study conditional on being in the ICU for at least
48 h. During the follow-up time of 60 days, 685 (30%) patients
captured a hospital-acquired urinary tract infection, 211 (9%) a
central nervous system infection and 92 (4%) a wound infection.
At 60 days, patients are administratively censored (n = 122).
Among the 2127 patients with an observed event, 304 patients
died in the ICU and 1823 were discharged alive. We use NECC
and EDS to study the association between different HAIs and
the length of ICU stay, the combined endpoint discharge alive
and hospital death. The time of infection is considered both in
the sampling design and in the Cox regression to avoid immortal
time bias. To adjust for confounding by severity of illness, we con-
trol for the Charlson comorbidity score by matching or respectively
stratification for the full cohort. The two designs are compared to
the full cohort and each other using one, two and four controls/ref-
erence patients. To show the differences in efficiency and perform-
ance, we also present the results of the conventional NCC. For
NECC, we use a sampling probability of 10% (i.e. q = 0.1) for unex-
posed individuals who experience the outcome of interest.

To obtain a complete picture of the performance of the two
designs and the full cohort approach, we draw 1000 bootstrap
samples (with replacement) from the original full cohort data
[22]. For each bootstrap sample, we estimate the HR using the
full cohort approach, the NECC, the EDS and the NCC with
the number of controls/reference patients mentioned above.
Bootstrap analysis has several advantages. First, each design’s
empirical S.E.s can be compared to the mean model-based S.E.s.
Second, the results provide not only information on the average
performance and efficiency of the sampling designs compared
to the full cohort approach, but they also allow for an understand-
ing of how well the various methods (including the full cohort)
estimate the true HR of the population [8, 13]. In contrast, a com-
parison of the designs solely based on the original samples would
only allow for a comparison of the NECC’s and EDS’s estimates
and S.E.s with those of the full cohort as reference (gold standard).

We present the mean of the log-HR, the HR and the S.E.s. of the
1000 bootstrap samples. Moreover, we show the mean number of
individuals used for the analysis and the mean number of observed
events for these individuals. The results for the length of stay are in
Table 1. As no differences are observable between the mean model-
based S.E.s and sampling S.E.s, we only present the sampling S.E.s.

Overall, the differences between the mean HR of the sampling
designs and the full cohort are marginal. For the EDS, the largest
difference is observed for urinary tract infections (full cohort:
1.09, EDS: 1.11). The largest S.E. of EDS occurs for wound infec-
tions with one control/reference patient (S.E. of EDS: 0.19, S.E. of
full cohort: 0.11). NECC performs a bit less accurate. The most
substantial different HR compared to the full cohort is found
for wound infections with one allocated individual (mean
HR of NECC: 0.75, mean HR full cohort approach: 0.70). This
setting is also the one with the largest S.E., being 0.36 for the
NECC. The sample size of the NECC and EDS depends on the
prevalence of exposure and the predefined number of sampled
controls/reference patients. The higher the prevalence, the more
controls/reference patients must be sampled and matched to the
exposed patients. As to be expected, the S.E.s decrease with an
increasing number of controls/reference patients.

Comparing NECC and EDS, we observe that EDS outperforms
NECC in all settings. For exposures with a high prevalence

(urinary tract infection), the sample size is comparable.
Nonetheless, the S.E.s of EDS are much smaller. For exposures
with a low prevalence, estimation with EDS is based on fewer
observations. Yet, the S.E.s of EDS remain below those of
NECC. The efficient use of controls/reference patients explains
this. After sampling with EDS, all reference patients and cases
enter the analysis and contribute to the risk set until their event
time. In contrast, at each event time, the NECC risk sets are
based only on the case, and the controls matched for this specific
case. As the outcome is observed for practically all patients, the
NCC includes even for the 1:1 sampling almost all patients. Thus,
compared to the NCC, the NECC is a more suitable extension of
this conventional two-sampling design. The results for NCC designs
with more controls are not shown, as they do not provide any add-
itional information.

Regarding the clinical interpretation of the results, we find that
both central nervous system and wound infections increase the
length of ICU stay. Here, the HR is smaller than one (full cohort
95% confidence interval central nervous system infection: 0.62,
0.85; wound infection: 0.56, 0.88), implying a reduction of the dis-
charge hazard compared to uninfected patients. The sampling
designs lead dependent on the number of controls or reference
patients m to comparable results. Surprisingly, the acquisition of
urinary tract infections shows a tendency to be negatively asso-
ciated with the length of stay (full cohort 95% confidence interval:
0.97, 1.23). The following analysis provides more details on
whether this potential decrease is attributable to death rather
than earlier discharge alive.

The dataset provides the opportunity to perform a competing
risks analysis and to investigate the performance of the two
designs for ICU mortality, which is an outcome with a rather
low prevalence (≈14%). Thus, we employ two cause-specific
Cox regression models, one for discharge alive and one for
death in the ICU. To account for the small number of observed
deaths, we use a NECC with q1 of 20% for the cause-specific ana-
lysis of in-ICU mortality. For discharge alive in the cause-specific
analysis we apply q2 = 0.1. The results of the competing risks ana-
lysis are in Table 2 for the event type death. As most patients are
discharged alive (≈81%), the performance of the sampling designs
for this event type are similar to the performance observed for
length of stay (see Table S1 in the appendix provided in the
Supplementary material). Regarding ICU mortality, both sam-
pling designs provide valid approximations of the results for the
full cohort approach despite the additional reduced number of
observed outcome events. Nonetheless, the results are less accur-
ate than for frequent outcomes. The most substantial difference
between the mean HR of EDS and the full cohort occurs for
wound infections with one reference patient (EDS: 1.13, full
cohort: 1.06). The S.E. is accordingly the highest in this setting
(S.E. of EDS: 0.44, S.E. of full cohort: 0.28). However, also the sam-
ple size is significantly decreased (EDS: 176, full cohort: 2249).

Considering the NECC, the most substantial difference com-
pared to the full cohort approach is found for central nervous sys-
tem infections (mean HR NECC: 1.77, mean HR full cohort:
1.58). The highest S.E. of the NECC again occurs for wound infec-
tions with one control (S.E. of NECC: 0.61, S.E. of full cohort
approach: 0.28). The loss of power is paid off by an apparent
increase in cost-effectiveness. 1:1 NECC uses, on average, only
144 patients for the estimation of the HR.

Compared to EDS, we find that NECC has larger S.E.s in all set-
tings, implying that EDS provides on average more precise esti-
mates of the HR. However, despite a larger inclusion probability
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chosen for NECC (q = 0.2 rather than 0.1), EDS leads to larger
sample size for those exposures with a high prevalence (urinary
tract infections and central nervous system infections). Given
the amount of ascertained covariate information, the NECC
may be an attractive alternative here. For urinary tract infections
a 1:4 NECC has 45% higher S.E. while using one 49% of the indi-
viduals sampled for the 1:1 EDS. Thus, there may be a beneficial
trade-off between cost-effectiveness and loss of power when
choosing the NECC over the EDS in settings with a rare outcome
and a more frequently observed exposure.

The clinical interpretation of the HRs (Table S1 in the
Supplementary material) indicates that both central nervous

system and wound infections lead to a decreased discharge hazard
(full cohort 95% confidence interval central nervous system infec-
tion: 0.50, 0.71; wound infection: 0.49, 0.82). The death hazard for
central nervous system infections is increased (full cohort 95%
confidence interval central nervous system infection: 1.13, 2.21),
and thus, the risk of death in the ICU. The association is direct
via an increased death hazard and indirect via a decreased dis-
charge hazard. The decreased discharge hazard leads to an
extended length of stay, implying that infected patients are longer
at risk of dying in the ICU. In contrast, the tendency for a reduced
length of stay we previously found for patients acquiring urinary
tract infections (or increased for wound infections) cannot finally

Table 1. Average results based on 1000 bootstrap samples of the original data for the composite endpoint length of ICU stay

HAI (prevalence) Design No. samplea No. eventb log (HR)c HR total S.E.d

UTI (P = 30%) Referent

Full cohort 2249 2127 0.09 1.09 0.06

Sampling

1:1 NCC 2240 2125 0.10 1.11 0.08

1:1 EDS 985 864 0.10 1.11 0.08

1:1 NECC 1004 732 0.11 1.12 0.20

1:2 EDS 1173 1049 0.10 1.11 0.07

1:2 NECC 1151 730 0.11 1.12 0.17

1:4 EDS 1408 1284 0.10 1.11 0.06

1:4 NECC 1328 726 0.10 1.11 0.14

CNSI (P = 9%) Referent

Full cohort 2249 2127 −0.32 0.73 0.08

Sampling

1:1 NCC 2240 2125 −0.31 0.73 0.11

1:1 EDS 393 345 −0.30 0.74 0.11

1:1 NECC 625 375 −0.28 0.76 0.26

1:2 EDS 549 488 −0.31 0.73 0.10

1:2 NECC 804 374 −0.30 0.74 0.19

1:4 EDS 803 722 −0.31 0.73 0.09

1:4 NECC 1046 373 −0.29 0.75 0.16

WI (P = 4%) Referent

Full cohort 2249 2127 −0.35 0.70 0.11

Sampling

1:1 NCC 2240 2125 −0.34 0.71 0.16

1:1 EDS 176 147 −0.34 0.71 0.19

1:1 NECC 492 279 −0.29 0.75 0.36

1:2 EDS 253 215 −0.34 0.71 0.15

1:2 NECC 657 278 −0.32 0.73 0.27

1:4 EDS 390 335 −0.34 0.71 0.13

1:4 NECC 899 277 −0.32 0.73 0.22

EDS and NECC designs with one, two and four controls/reference patients, NCC design and Cox regressions on the full cohort, have been performed. ICU, intensive care unit; NCC, Nested
case-control; EDS, Exposure density sampling; NECC, Nested exposure case-control; CNSI, Central nervous system infection; UTI, Urinary tract infection; WI, Wound infection.
aNumber of distinct individuals included.
bNumber of events included.
cAdjusted log-hazard ratio of infection.
dTotal empirical standard error of log-hazard ratio.
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be explained by a higher (lower) mortality rate. We cannot detect
a significant association with the death hazard. In contrast, the
discharge-alive hazard is significantly increased, resulting in a
decreased length of stay due to faster discharge. However, as we
only adjusted for the Charlson score and not, for e.g., other poten-
tial infections, we refrain from drawing any clinical conclusion
and suspect that additional confounding is still unaccounted.

Inflation factors

The inflation factor (IF) of an exposure-related cohort sampling
method is the ratio of the S.E.S of the sampling design and the

full cohort. It quantifies the information obtained in the sampled
data compared to the full cohort. An IF of 2 suggests that two-
sampled cohorts are of the same statistical power as one full
cohort. Especially prior to the sampling, the IF provides a
rough assessment of the loss of statistical power. The squared
reciprocal IF is referred to as relative efficiency [21, 23]. In studies
considering a negligible association between a single exposure and
the outcome event, the formula-based IF of NECC is
IFNECC = ����������������������������

(m+ 1)/(m(P − qP + q))
√

. Here, q is the NECC’s
inclusion probability for unexposed individuals who experience
the outcome of interest. The number of controls is m. The preva-
lence of the exposure is P. As the exposure is time-dependent,

Table 2. Average results based on 1000 bootstrap samples of the original data for the endpoint ICU mortality

HAI (prevalence) Design No. samplea No. eventb log (HR)c HR Total S.E.d

UTI (P = 30%) Referent

Full cohort 2249 304 0.00 1.00 0.16

Sampling

1:1 NCC 529 303 0.01 1.01 0.21

1:1 EDS 985 137 0.00 1.00 0.20

1:1 NECC 242 132 0.07 1.07 0.39

1:2 EDS 1173 165 −0.01 0.99 0.17

1:2 NECC 334 132 0.04 1.04 0.32

1:4 EDS 1409 199 −0.01 0.99 0.16

1:4 NECC 479 130 0.06 1.06 0.29

CNSI (P = 9%) Referent

Full cohort 2249 304 0.46 1.58 0.17

Sampling

1:1 NCC 529 303 0.46 1.58 0.26

1:1 EDS 392 75 0.47 1.60 0.27

1:1 NECC 194 103 0.57 1.77 0.51

1:2 EDS 548 94 0.46 1.58 0.22

1:2 NECC 273 102 0.51 1.67 0.40

1:4 EDS 802 125 0.46 1.58 0.20

1:4 NECC 410 101 0.50 1.65 0.31

WI (P = 4%) Referent

Full cohort 2249 304 0.06 1.06 0.28

Sampling

1:1 NCC 529 303 0.08 1.08 0.39

1:1 EDS 176 29 0.12 1.13 0.44

1:1 NECC 144 75 0.12 1.13 0.61

1:2 EDS 253 40 0.09 1.09 0.38

1:2 NECC 206 75 0.18 1.20 0.55

1:4 EDS 389 57 0.09 1.09 0.32

1:4 NECC 319 75 0.16 1.17 0.47

EDS and NECC designs with one, two and four controls/reference patients, NCC design and Cox regressions on the full cohort, have been performed. ICU, intensive care unit; NCC, Nested
case-control; EDS, Exposure density sampling; NECC, Nested exposure case-control; CNSI, Central nervous system infection; UTI, Urinary tract infection; WI, Wound infection.
aNumber of distinct individuals included.
bNumber of events included.
cAdjusted log HR of infection.
dTotal empirical standard error of log-HR.
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P refers to the proportion of exposed patients at the end of
follow-up. The IFNECC with q = 1 equals the IF of the NCC������������
(m+ 1)/m

√
. This factor holds independent of the censoring

and exposure distribution [24].
Ohneberg et al. [13] derived for the EDS

IFEDS =
��������������������
(1− P)(m+ 1)/m

√
. Here, m is the number of reference

patients per exposed individual. Note the formula-based IF yields
a rough approximation, since the time-dependence of the expos-
ure is not taken into account. Additional covariates in the model
or large HRs of the time-dependent exposure further alter the
proposed designs’ efficiency. The precision of the IFs is also
affected.

Table 3 shows the formula-based and empirical IFs for the
combined endpoint. Dividing the total S.E. of the sampling design
by the total S.E. of the full cohort derives the latter. The loss in
statistical power for EDS is smaller than for NCC and NECC.
Especially, for high prevalence and four controls/reference
patients, EDS performs comparably to the full cohort with only
60% of the sample size (1409 vs. 2249). Here, the full cohort
S.E. for UTI is 0.0613 (refer to Table 1). The S.E. for the EDS
with four reference patients is 0.0638 resulting in an IF of
1.0408. The NECC’s IF indicates an increase in efficiency com-
pared to the full cohort for decreasing prevalence: the IF is 2.17
for urinary tract infections and 1.92 for wound infections when
sampling four controls. Nonetheless, EDS outperforms both the
NECC and the NCC, having a smaller IF for the same number
of controls/reference patients. For lower prevalence, the IF of
1:1 EDS is smaller than the IF of 1:4 NECC.

Comparing formula-based to the empirical IF, it becomes
apparent that the formulas are merely an approximation of the
expected IFs. These estimates are closer to the empirical IFs, if
the HR is close to one (see urinary tract infection). The strongest
deviation occurs for wound infections. Interestingly, while EDS’s
formula seems to underestimate the empirical IF, the IF-formula
of NECC is more conservative by overestimating the empirical
IFs. For EDS the IF may become even smaller than one (urinary
tract infection, four reference patients).

Discussion

The NECC and EDS are parsimonious competitors to a full
cohort analysis when analysing rare time-dependent exposures
and not necessarily frequent outcomes. They complement the
prominent class of sampling design tailored for studying the asso-
ciation between exposures, that may or may not be rare, and rare
outcomes.

For data on HAIs, the NECC and EDS reveal a significant
decrease in the required resources while providing accurate HR
estimates. Case-control designs like the NCC or the NECC stratify
for the risk sets and appear to be a natural choice. Nonetheless, in
the considered settings with a common outcome, the EDS outper-
formed the NECC irrespective of the prevalence of exposure. EDS
had smaller S.E.s for a lower number of reference patients.

In the analysis of the competing risks, the benefit of EDS over
NECC was not as clear. Especially, in settings with a rather rare
outcome (ICU mortality) and a rare exposure prevalence NECC
uses substantially fewer controls. Thus, even though the EDS results
in smaller S.E.s, the NECC may be the preferred sampling scheme
in these settings as it provides accurate estimates at meager costs.

In competing risks analysis, the EDS has the advantage that it
utilises the same reference patients to study all competing event
types. Eventhough this is also possible using the NECC, we
show that an adaption of the inclusion probability q for the out-
come prevalence leads to better results for rare outcomes.

We present IFs, that roughly quantify the loss of statistical
power of NECC or, respectively, EDS compared to the full cohort.
The IF for the EDS has been already proposed by Ohneberg et al.
[13], for the NECC, this manuscript gives the first expression. The
IFs confirm the observed performance difference between EDS
and NECC designs. However, we also noted that the IFs of the
EDS are somewhat optimistic, while the IFs of NECC are rather
conservative compared to the empirical IFs.

Finally, we conclude that both designs are attractive alterna-
tives to the full cohort analysis. They are both flexible designs

Table 3. Inflation factor (IF) of the standard errors

HAI (prevalence) Design IF empirical IF formula

UTI (P = 30%) Referent

Full cohort 1.00 1.00

Sampling

1:1 NCCa 1.40 1.41

1:1 EDSb 1.30 1.18

1:1 NECCc 3.23 2.31

1:2 EDS 1.12 1.02

1:2 NECC 2.66 2.00

1:4 EDS 1.04 0.93

1:4 NECC 2.17 1.83

CNSI (P = 9%) Referent

Full cohort 1.00 1.00

Sampling

1:1 NCC 1.35 1.41

1:1 EDS 1.47 1.35

1:1 NECC 3.13 3.29

1:2 EDS 1.24 1.17

1:2 NECC 2.43 2.85

1:4 EDS 1.11 1.06

1:4 NECC 1.91 2.60

WI (P = 4%) Referent

Full cohort 1.00 1.00

Sampling

1:1 NCC 1.36 1.41

1:1 EDS 1.61 1.38

1:1 NECC 2.18 3.82

1:2 EDS 1.34 1.20

1:2 NECC 2.15 3.31

1:4 EDS 1.17 1.09

1:4 NECC 1.92 3.02

The empirical IF is defined as total S.E.(sampling design)/total S.E.(full cohort). For the NECC,
we present the results for q = 0.1. IF, inflation factor; NCC, Nested case-control; EDS,
Exposure density sampling; NECC, Nested exposure case-control; CNSI, Central nervous
system infection; UTI, Urinary tract infection; WI, Wound infection.
aNCC design.
bEDS.
cNECC design.
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that consider the most commonly observed biases: immortal time
bias and competing risks bias. Similar to Bang et al. [25] and
Nelson et al. [26], where EDS-like sampling was conducted in
cooperation with a propensity score, EDS and NECC allow for
propensity score-adjusted matching. In future applications, this
adjusted sampling enables comparable control/reference groups
that differ only for the exposure and can account for additional
confounders. Our data example indicates that overall the EDS
results in more precise estimates of the HR. However, for rare out-
comes and rare exposures NECC outperformed EDS concerning
economic burden while maintaining a dependable estimate of
the HR.
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