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A B S T R A C T   

Background: Exposure to environmental chemicals that interfere with normal estrogen function can lead to 
adverse health effects, including cancer. High-throughput screening (HTS) approaches facilitate the efficient 
identification and characterization of such substances. 
Objectives: We recently described the development of the E-Morph Assay, which measures changes at adherens 
junctions as a clinically-relevant phenotypic readout for estrogen receptor (ER) alpha signaling activity. Here, we 
describe its further development and application for automated robotic HTS. 
Methods: Using the advanced E-Morph Screening Assay, we screened a substance library comprising 430 
toxicologically-relevant industrial chemicals, biocides, and plant protection products to identify novel substances 
with estrogenic activities. Based on the primary screening data and the publicly available ToxCast dataset, we 
performed an in silico similarity search to identify further substances with potential estrogenic activity for follow- 
up hit expansion screening, and built seven in silico ER models using the conformal prediction (CP) framework to 
evaluate the HTS results. 
Results: The primary and hit confirmation screens identified 27 ‘known’ estrogenic substances with potencies 
correlating very well with the published ToxCast ER Agonist Score (r = +0.95). We additionally detected po-
tential ‘novel’ estrogenic activities for 10 primary hit substances and for another nine out of 20 structurally 
similar substances from in silico predictions and follow-up hit expansion screening. The concordance of the E- 
Morph Screening Assay with the ToxCast ER reference data and the generated CP ER models was 71% and 73%, 
respectively, with a high predictivity for ER active substances of up to 87%, which is particularly important for 
regulatory purposes. 
Discussion: These data provide a proof-of-concept for the combination of in vitro HTS approaches with in silico 
methods (similarity search, CP models) for efficient analysis of large substance libraries in order to prioritize 
substances with potential estrogenic activity for subsequent testing against higher tier human endpoints.   

1. Introduction 

Endocrine-disrupting chemicals (EDCs) are a group of exogenous 

substances that interfere with the endocrine system, leading to adverse 
health effects, including cancer (WHO/IPCS, 2002). Global cancer 
burden has substantially increased over the last decades and incidence 
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rates are projected to further rise in the future (Sung et al. 2021; Wild 
et al. 2020). In 2020, female breast cancer has been the most commonly 
diagnosed cancer worldwide (Sung et al. 2021) and estrogens are an 
important risk factor (Yager and Davidson 2006). Thus, the identifica-
tion of exogenous substances that mimic estrogen function and subse-
quent reduction of human exposure to such substances are important 
measures for the effective prevention of endocrine-related cancers such 
as breast cancer. 

Environmental sources of substances with estrogenic activity are 
manifold and include consumer products and food packaging materials, 
preservatives, food additives, and pesticides, but are also naturally 
found in food (e.g. phytoestrogens) (Paterni et al. 2017). In regulatory 
toxicology, the detection of potential substance-related adverse health 
effects still calls for traditional in vivo test guideline studies that mainly 
use rodents to evaluate the potential hazards of single substances (OECD 
2001; 2018a; b; c). However, such cost- and time-consuming in vivo 
studies not necessarily mimic human-relevant physiological and disease 
conditions. In addition, the ethical issues related to animal testing in 
general and the high numbers of test animals needed further fuel the 
rising need and interest in human-relevant alternative in silico, in che-
mico, and in vitro test methods to reduce and eventually replace animal 
testing according to the 3Rs principle (Russell and Burch 1959). 

Following the assumption that structurally similar substances can 
have similar toxicological effects (Maggiora et al. 2014), risk assessment 
commonly uses read-across approaches to effectively reduce costs and 
animal testing (Carrio et al. 2016; Hemmerich and Ecker 2020; Raies 
and Bajic 2016). Indeed, various established QSAR models, which 
represent statistical in silico models that relate a set of structural de-
scriptors of a substance to its biological activity, can support read-across 
(Ma et al. 2015; Tropsha 2010). Still, the prediction of toxicity from 
structural similarity remains challenging for risk assessment because 
in silico predictions alone do not yet sufficiently fulfill information re-
quirements for complex human health endpoints. 

In recent years, machine learning approaches gained momentum, 
which use the increasingly comprehensive in chemico and in vitro test 
data in an iterative process with growing certainty to identify combi-
nations of substance features that may lead to a specific toxicological 
effect (Gayvert et al., 2016; Huang and Xia, 2017; Mayr et al., 2016). A 
special case of machine learning is conformal prediction (CP), which 
adds confidence estimation to the model predictions (Alvarsson et al. 
2021; Norinder et al. 2014; Vovk et al. 2005). The CP framework is built 
on top of a machine learning method and uses an additional calibration 
step based on experimental test results to determine the confidence 
when making predictions on new data. CP models have recently been 
intensively and successfully built and applied to toxicological questions 
(Morger et al. 2020; Morger et al. 2021; Norinder et al. 2016; Svensson 
et al. 2017b; Zhang et al. 2021). 

The increasing quantity and diversity of chemicals that are produced 
and marketed worldwide stimulate the establishment of high- 
throughput screening (HTS) research programs that use in chemico and 
in vitro assays to efficiently generate comprehensive concen-
tration–response information for a large number of substances. For 
example, the U.S. EPA Toxicity Forecaster (ToxCast) project generated 
screening data for over 10,000 environmental chemicals that were 
tested in hundreds of HTS assays addressing toxicological and endocrine 
endpoints in order to rank and prioritize substances for subsequent in 
vivo testing (Dix et al. 2007; Judson et al. 2010; Reif et al. 2010; Rotroff 
et al. 2013). These screening data have further been integrated into an 
in silico ToxCast ER pathway model, which converts results from 18 
automated ER screening assays into a relative ER bioactivity score 
ranging from 0.00 (no activity) to 1.00 (bioactivity of the reference 
substance 17-alpha-Ethinylestradiol) (Browne et al. 2015; Judson et al. 
2015). More recently, Judson et al. demonstrated that a reduced set of 
four out of the originally 18 ER screening assays achieves a comparable 
performance (Judson et al. 2017). Furthermore, the Collaborative Es-
trogen Receptor Activity Prediction Project (CERAPP) developed 

another in silico consensus model for prediction of ER binding, agonistic, 
and antagonistic activities of chemicals (Mansouri et al. 2016). This 
CERAPP ER consensus model integrates 48 individual computational 
models using different QSAR and structure-based approaches, which 
have been trained and optimized using the relative potency information 
from the ToxCast ER Agonist Model (Browne et al. 2015; Judson et al. 
2015). 

The in chemico and in vitro HTS assays that provide the data for the 
ToxCast ER pathway model each cover single, mechanistic events of 
estrogen signaling (ER binding, ER dimerization, regulation of gene 
expression, and cell proliferation) but the immediate relevance of the 
derived data regarding adverse effects, including human cancer, is still 
limited. Hence, development and application of novel cell-based test 
methods that combine HTS capability with more human-relevant, 
functional endpoints can support a more direct extrapolation of the 
test results to the complex signaling events and regulatory mechanisms 
that drive adverse effects including cancer progression and metastasis. 
We have recently shown that the cell-based E-Morph Assay provides 
such an endpoint, i.e., the machine learning-based analysis of estrogen- 
dependent phenotypic changes at adherens junctions (AJ) (Bischoff 
et al. 2020; Kornhuber et al. 2021). The E-Morph Assay is based on the 
observation that the inhibition of ER signaling in an MCF-7 breast cancer 
cell line led to a prominent reorganization of AJs and induced the 
clustering of the AJ protein E-cadherin (E-Cad), which could be reverted 
by co-treatment with estrogenic substances (Bischoff et al. 2020). These 
changes in cell morphology correlated with increased cellular stiffness 
and decreased cell motility, with deregulation of these two parameters 
often being associated with breast cancer progression and metastasis 
(Bischoff et al. 2020). In addition, we could describe comparable 
changes in E-Cad localization in clinical breast cancer tissue samples 
supporting the clinical relevance of the assay endpoint. 

In the present study, we optimized the E-Morph Assay for automated 
robotic HTS and used this advanced E-Morph Screening Assay to analyze 
a substance library comprising 430 toxicologically-relevant industrial 
chemicals, biocides and plant protection products that are reported to 
act through various nuclear hormone receptors. Using our HTS data in 
combination with already publicly available in chemico and in vitro 
ToxCast data as well as in silico prediction approaches using the CP 
framework, we could further identify additional, novel substances with 
potential estrogenic activity. 

2. Materials and methods 

2.1. Cell line and cell culture conditions 

The MCF-7/E-Cad-GFP cell line (de Beco et al. 2009; 2020) that 
stably expresses a fluorescent E-Cadherin-GFP fusion protein was kindly 
provided by Sylvie Coscoy (Laboratoire Physico-Chimie Curie, Institut 
Curie, PSL Research University - Sorbonne Universités, UPMC-CNRS, 
Paris, France). 

Routine cell cultures were maintained at 37 ◦C with 5% CO2 in 
normal-serum medium containing Dulbecco’s modified Eagle’s medium 
(DMEM, low glucose, pyruvate, no glutamine, no phenol red) (Gibco/ 
Thermo Fisher Scientific, Waltham, MA, USA), 10% (v/v) Fetal Bovine 
Serum (FBS, S0615, Estradiol levels: 22.3 pg/ml) (Biochrom/Merck, 
Darmstadt, Germany), 2 mM stable glutamine (Gibco/Thermo Fisher 
Scientific), 100 µg/ml streptomycin / 100 U/ml penicillin (Biochrom/ 
Merck), and 0.4 mg/ml geneticin (Gibco/Thermo Fisher Scientific). 
Cells were sub-cultured over a maximum of 10–12 passages, and regu-
larly tested using the Eurofins Genomics mycoplasma test service 
(Eurofins Genomics, Ebersberg, Germany). 

Experiments were performed in reduced-serum medium as described 
above but containing only 5% (v/v) FBS to minimize background es-
trogen levels and potential test chemical binding to serum lipids and 
proteins in the exposure medium. The final estradiol concentration in 
reduced-serum medium (4.1 pM) was in the range of physiological 
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serum levels of postmenopausal women (Rothman et al. 2011). If not 
otherwise stated, cells were seeded into multi-well plates at suitable 
concentrations to achieve 80–90% confluency after 24 h. Cells were then 
exposed to reduced-serum medium containing the respective test 
chemical in combination with the anti-estrogen Fulvestrant (Fulv, 10 
nM) (Sigma-Aldrich/Merck, Darmstadt, Germany) for 48 h, followed by 
the sample preparation procedure. Experimental controls included the 
solvent control, the Fulv control containing 10 nM Fulv only, and the co- 
treatment (reactivity) control containing 10 nM Fulv + 10 µM Estrone 
(Sigma-Aldrich/Merck) (each in reduced-serum medium). In all exper-
iments, the solvent control corresponds to the respective experimental 
conditions, excluding Fulv and test chemicals. The DMSO (Sigma- 
Aldrich/Merck) concentration in the solvent control was always 
adjusted to the highest DMSO concentration used in the experiment, i.e. 
in the range of 0.1–0.4% depending on the experimental setting. 

2.2. Quantitative PCR 

Cells were seeded into 12-well plates at a concentration of 
4x105 cells/well in 1 ml reduced-serum medium and exposed to test 
substances as described above. RNA extraction (RNeasy Kit, Qiagen, 
Hilden, Germany), cDNA synthesis (High-Capacity cDNA Reverse 
Transcription Kit, Applied Biosystems/Thermo Fisher Scientific, Wal-
tham, MA, USA), and quantitative PCR (qPCR) (PowerUp SYBR Green 
Master Mix, Applied Biosystems/Thermo Fisher Scientific) were con-
ducted according to the manufacturers protocols using a QuantStudio 7 
Flex Real-Time PCR System (Applied Biosystems/Thermo Fisher Scien-
tific) (40 cycles; denaturation for 15 s at 95 ◦C; annealing, extension, and 
fluorescence read for 1 min at 60 ◦C). RNA concentrations (A260) and 
purity ratios (A260/A280 and A260/A230) were determined using a 
NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific). Purity 
ratios of ~ 2.0 (A260/A280) and 2.0–2.2 (A260/A230) were generally 
considered acceptable. cDNA synthesis was performed using 1 µg RNA 
and RT random primers (High-Capacity cDNA Reverse Transcription Kit, 
Applied Biosystems/Thermo Fisher Scientific). For qPCR, 1 µl of 1:10 
diluted (water) cDNA was added to 10 µl master mix containing water, 
primers and SYBR Green. RNA expression levels (fold change) were 
calculated according to the ΔΔCT method (Livak and Schmittgen 2001). 
Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation 
Protein, Zeta (YWHAZ) was used as housekeeping gene. If not otherwise 
stated, each experiment was performed in technical triplicates and in at 
least three independent repetitions. Primers used (5′-3′ orientation): 

BCL2L1 (CAGCTTGGATGGCCACTTAC, 
TGCTGCATTGTTCCCATAGA); 

TFF1 (CATCGACGTCCCTCCAGAAGAG, 
CTCTGGGACTAATCACCGTGCTG); 

PGR (TCAACTACCTGAGGCCGGAT, GCTCCCACAGGTAAGGACAC); 
AREG (TGGATTGGACCTCAATGACA, 

TAGCCAGGTATTTGTGGTTCG); 
ESR1 (CCACCAACCAGTGCACCATT, 

GGTCTTTTCGTATCCCACCTTTC); 
GFP (AAGCTGACCCTGAAGTTCATCTGC, 

CTTGTAGTTGCCGTCGTCCTTGAA); 
CDH1 (AGGAGCCAGACACATTTATGGAA, 

GCTGTGTACGTGCTGTTCTTCAC); 
mCdh1 (AACCCAAGCACGTATCAGGG, 

GAGTGTTGGGGGCATCATCA); 
YWHAZ (ACTTTTGGTACATTGTGGCTTCAA, 

CCGCCAGGACAAACCAGTAT). 

2.3. Western blot 

Cells were seeded into 6 or 12-well plates at a concentration of 1x106 

or 4x105 cells/well in 2 ml or 1 ml reduced-serum medium and exposed 
to substances as described above. For protein extraction, cells were 
washed with ice-cold Phosphate-buffered saline (PBS) and scraped in 

100–200 µl lysis buffer (50 mM Tris/HCl pH 7.4, 150 mM NaCl, 0.1% 
(w/v) Na-deoxycholate, 0.1% (w/v) SDS, 1% (v/v) IGEPAL CA-630/NP- 
40, 5 mM EDTA pH 8.0, 5 mM EGTA, 1X cOmplete Protease Inhibitor 
Cocktail (Roche, Basel, Switzerland), PhosSTOP Phosphatase Inhibitor 
Cocktail (Roche) and incubated for 30 min on ice. Lysates were centri-
fuged at 13,000 g and 4 ◦C for 10 min, and the supernatant was 
collected. Total protein concentrations were determined using a Pierce 
BCA Protein Assay Kit (Thermo Scientific/Thermo Fisher Scientific, 
Waltham, MA, USA) and a BSA standard (Thermo Fisher Scientific) ac-
cording to the manufacturer’s instructions. Protein lysates were sepa-
rated by SDS-PAGE using Mini-PROTEAN precast gels (4–15% 
polyacrylamide) (Bio-Rad Laboratories, Hercules, CA, USA) according to 
the manufacturer’s instructions. Proteins were transferred onto nitro-
cellulose membranes (Bio-Rad Laboratories) using a semi-dry Trans-Blot 
Turbo Transfer System (1.3 A per gel, 25 V for 7 min) (Bio-Rad Labo-
ratories). Membranes were blocked with 5% low-fat milk powder for 60 
min, rinsed in Tris-buffered saline containing Tween 20 (TBS-T) (TBS, 
0.1% Tween 20), and incubated with primary and secondary antibodies 
in 0.6% low-fat milk powder in TBS-T (TBS, 0.1% Tween 20) over night 
at 4 ◦C and for 3 h at room temperature, respectively. Antibodies/dyes 
used: mouse anti-E-Cad (1:1,000) (Clone 36, BD Biosciences, Franklin 
Lakes, NJ, USA) and HRP-conjugated goat anti-mouse secondary anti-
body (1:10,000) (Jackson ImmunoResearch, West Grove, PA, USA). 
Protein detection was carried out using a Pierce ECL Western Blotting 
Substrate (Thermo Scientific/Thermo Fisher Scientific) in a Fusion Solo 
S (VWR, Radnor, PA, USA) imaging system. Coomassie Brilliant Blue 
(Bio-Rad Laboratories) total protein staining of nitrocellulose mem-
branes was used as loading control (Welinder and Ekblad 2011). Semi- 
quantitative densitometric analysis of western blot bands was per-
formed using the FIJI software (Schindelin et al. 2012). The band in-
tensities were normalized to the respective Coomassie total protein 
staining of each lane. The results from each treatment condition were 
then normalized to the solvent control. 

2.4. siRNA knockdown 

Cells were seeded into 6 or 12-well plates at a concentration of 1x106 

or 4x105 cells/well in 2 ml or 1 ml reduced-serum medium and exposed 
to substances as described above. Transfections were carried out using 
the HiPerFect Transfection Reagent (Qiagen) and a mix of four ESR1 
siRNAs (FlexiTube GeneSolution GS2099, Quiagen) (10 nM) with 
different target sequences (SI02781401; SI03114979; SI03065615; 
SI00002527). Cells were transfected at the time of cell seeding according 
to the manufacturer’s reverse-transfection protocol. 

2.5. ER binding experiments 

Cells were seeded into 96-well plates and exposed to substances as 
described above. Transfections were carried out using the FuGENE HD 
Transfection Reagent (Promega, Madison, WI, USA), the pBIND-ERα 
[hRluc] vector (50 ng), and the pGL4.35[luc2P/9XGAL4 UAS/Hygro] 
vector (50 ng) (both Promega) according to the manufacturer’s protocol. 
The binding of a test substance with estrogenic activity to a fusion 
protein containing an estrogen receptor-ligand binding domain (ER- 
LBD) and a yeast Gal4 DNA-binding domain (Gal4-DBD) (pBIND-ERα 
[hRluc] vector) led to the expression of an UAS-controlled Firefly lucif-
erase reporter protein (pGL4.35[luc2P/9XGAL4UAS/Hygro] vector), 
which was detected using the Dual-Glo Luciferase Reagent (Promega). 
The detected Firefly luminescence (pGL4.35[luc2P/9XGAL4UAS/ 
Hygro] vector) was normalized to the Renilla luminescence (pBIND-ERα 
[hRluc] vector) to derive a relative signal intensity. 

2.6. E-Morph Screen: Cell seeding and test substance exposure scenarios 

Cells were seeded into CellCarrier-96 Ultra Microplates (Perki-
nElmer, Waltham, MA, USA) at a concentration of 9x104 cells/well in 
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225 µl reduced-serum medium, grown until 80–90% confluency for 24 
h, and then exposed to 250 µl reduced-serum medium containing each 
test chemical in combination with 10 nM Fulv for 48 h. 

All 430 test substances (Sigma-Aldrich/Merck) of the BfR- 
ChemLibrary were previously dissolved in DMSO (Sigma-Aldrich/ 
Merck) at a stock concentration of 10 mM and stored at the Compound 
Management Unit of the Leibniz Institute of Molecular Pharmacology 
(FMP, Berlin, Germany). For this project, a copy of the BfR-ChemLibrary 
was provided by the FMP on five 96-well microplates (Greiner Bio-One, 
Frickenhausen, Germany) along with an empty column for the assay 
controls. The preparation of the exposure medium and its application to 
cells was performed using a JANUS Automated Liquid Handling Work-
station (PerkinElmer) and customized treatment protocols written in 
WinPREP (PerkinElmer). 

For the hit selection (primary) screen, 2 µl of the test substance (10 
mM) were transferred into an empty 96-well microplate (Greiner Bio- 
One) and then dissolved (1:100) in 198 µl reduced-serum medium 
containing 100 nM Fulv. Subsequently, 25 µl of the exposure medium 
containing the diluted test substance (100 µM) were then transferred 
from the compound plates to the cell culture assay plates containing 225 
µl reduced-serum medium to achieve a final test substance concentration 
of 10 µM and a final Fulv concentration of 10 nM. Considering that the 
nominal concentration of a test chemical does not necessarily reflect the 
concentration at the target site due to potential partitioning of test 
chemicals to other extracellular compartments in in vitro assays (Proença 
et al., 2021), a starting concentration of 10 µM is often used for hit se-
lection in comparable HC/HT screening projects in order to maximize 
exposure of cells to the test substance. Sufficiently high exposure levels 
ensure confidence in negative test results and are particularly important 
for detection of substances with weak estrogenic activities, such as in-
dustrial chemicals, that were, in contrast to pharmaceuticals, not 
designed to act on the ER pathway. 

For the hit confirmation (potency) and the hit expansion screens, 9 µl 
of the test substance (10 mM) were transferred into an empty 96-well 
microplate (Greiner Bio-One) and then dissolved (1:33) in 291 µl 
reduced-serum medium containing 100 nM Fulv. From this start con-
centration (300 µM), serial dilutions were generated at a 1:3 ratio in 
reduced-serum medium containing 100 nM Fulv. Subsequently, 25 µl of 
the exposure medium containing the diluted test substance (300 µM to 
10 pM) was then transferred from the compound plates to the cell cul-
ture assay plates containing 225 µl reduced-serum medium to achieve a 
final test substance concentration of 30 µM to 1 pM and a final Fulv 
concentration of 10 nM. 

For all screening approaches, the three solvent control wells of each 
plate contained 0.2% (primary screen) or 0.4% (hit confirmation screen) 
DMSO, the three Fulv control wells contained 10 nM Fulv, and the two 
co-treatment (reactivity) control wells contained 10 nM Fulv + 10 µM 
Estrone (each in reduced-serum medium). 

2.7. E-Morph Screen: Fluorescence microscopy and quantitative image 
analysis 

The preparation of the cells for fluorescence microscopy was per-
formed using a JANUS Automated Liquid Handling Workstation (Per-
kinElmer) and an ELx405 Select CW Microplate Washer (BioTek 
Instruments, Winooski, VT, USA). After treatment for 48 h, the cells 
were stained in PBS containing 1 µM CellTrace Far Red (Molecular 
Probes/Thermo Fisher Scientific, Waltham, MA, USA) to visualize the 
cell–cell contact morphology according to (Kornhuber et al. 2021) as an 
internal quality control and 2 µg/ml Hoechst 33,342 (Molecular Probes/ 
Thermo Fisher Scientific) to label nuclei for 20 min at 37 ◦C with 5% 
CO2, then washed twice with PBS, fixed with 4% formaldehyde solution 
for 15 min at room temperature, and finally washed again with PBS. 
During this procedure, the E-Cad-GFP signal was preserved and did not 
require additional staining. 

Cells were subsequently imaged with an Opera Phenix High-Content 

Screening System (PerkinElmer) using a 20x air objective (NA 0.4) at 
three standardized positions per well and three or four optical sections 
with 4 µm or 3 µm spacing per position. Image analysis was performed 
using the integrated Harmony software (PerkinElmer) and customized 
image analysis routines (Fig. S1A). First, nuclei were identified using the 
Hoechst 33,342 channel to define each cell. Nuclei touching the edge of 
the image were excluded from further analysis. Next, cell outlines were 
identified using the GFP channel and the E-Cad-GFP signal intensity was 
measured for each cell. Finally, a mean E-Cad-GFP signal intensity was 
calculated across all cells per well. 

For visualization of concentration-response curves of relative E-Cad- 
GFP signal intensities (SIE-Cad-GFP), the mean E-Cad-GFP signal intensity 
(SI) per well (SIwell) was normalized to the average SI (SIavr) of the 
corresponding three solvent control wells on each plate according to 
(Malo et al. 2006): 

SIE-Cad-GFP =
SISubstance

well

SISolv
avr

*100  

2.8. E-Morph Screen: Automated data evaluation 

The process automation software KNIME [v4.1.2] (Berthold et al. 
2008) was used to build a customized pipeline (Fig. S1B; File S1) for fast 
and efficient automated processing, evaluation, and statistical analysis 
of the quantitative image data obtained from the individual screens. 
Briefly, this KNIME workflow retrieved all .txt files that were exported 
from the Harmony software (PerkinElmer) into a specified folder and 
executed the following steps in a loop function: a) import .txt files and 
convert to tables b) adjust table columns and rows (e.g. remove un-
necessary columns), c) merge all measurement tables into a global table, 
and d) join measurement data with the plate assignment metadata (e.g. 
substance name and concentration). 

In order to detect potential cytotoxic substance effects on cell 
viability (CV), the mean number of nuclei (N) per well (Nwell) was 
normalized to the average N (Navr) of the corresponding three Fulv 
control wells on each plate according to (Malo et al. 2006): 

CV =
NSubstance

well

NFulv
avr

*100% 

Substances leading to a CV < 75% (i.e., representing a ≥ 25% 
reduction of the number of nuclei compared to the 10 nM Fulv control) 
in at least two out of three runs were assigned to the group of ‘Toxic 
substances’. For substances leading to a CV ≥ 75%, the mean E-Cad-GFP 
signal intensities were further analyzed. 

To identify potential estrogenic substances, the mean E-Cad-GFP 
signal intensity (SI) per well (SIwell) was normalized to both the average 
SI (SIavr) of the corresponding three solvent control wells (SI = 100) AND 
the three Fulv control wells (SI = 0) on each plate according to (Malo 
et al. 2006): 

SI =
SIFulv

avr − SISubstance
well

SIFulv
avr − SISolv

avr
*100 

Substances leading to an SI ≥ 20 in at least two out of three runs were 
considered as potential estrogenic substances in the primary screen. The 
image data of these substances were furthermore visually assessed for 
ambiguous results and potential imaging artifacts. 

For quality assessment, the signal separation (effect size) between 
the solvent control and Fulv control and the deviation of values within 
each control group was determined for each plate and run. The Z’-factor 
(Z’) was calculated based on the average SI (SIavr) and the standard 
deviation (SIsd) of both the three Fulv control and the three solvent 
control wells on each plate according to (Iversen et al. 2006; Zhang et al. 
1999): 
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Z’ =

(
SISolvent

avr − 3SISolvent
sd

)
−
(
SIFulv

avr + 3SIFulv
sd

)

SISolvent
avr − SIFulv

avr
= 1 −

3
(
SISolvent

sd + SIFulv
sd

)

SISolvent
avr − SIFulv

avr 

The acceptance criterion for a valid run was Z’ > 0.5. 

2.9. Data visualization and statistical analyses 

All quantitative data were exported into Excel (Microsoft, Redmond, 
WA, USA)-readable files. Graphical visualizations and statistical ana-
lyses of data were performed using Prism 8 (GraphPad Software, San 
Diego, CA, USA). Quantitative data were plotted using descriptive sta-
tistical indexes, i.e. mean and standard deviation. SI concen-
tration–response curves from the hit confirmation and hit expansion 
screens were fitted using the non-linear fit algorithm (four parameters, 
variable hill slope) to calculate half-maximal concentrations (EC50). 
The Pearson correlation coefficient (r) has been used to measure the 
strength of association and the direction of the relationship between the 
determined EC50 values of the substances tested in the E-Morph Assay 
and the ToxCast ER Agonist Score. Statistical methods used for 
computational tools are described below in detail. Figures were gener-
ated using Illustrator CC 2020 (Adobe, San Jose, CA, USA). 

2.10. Computational predictions 

The in silico toxicity prediction pipeline follows the main steps from 
the previously published KnowTox project (Morger et al. 2020). In this 
study, the KnowTox pipeline was slightly adapted for the identification 
of substances with estrogenic activities and the individual steps are 
briefly explained in the following. A more detailed description of the 
underlying concepts is available in the original publication (Morger 
et al. 2020). 

2.10.1. Dataset and preprocessing 

2.10.1.1. ToxCast dataset. The publicly available U.S. EPA ToxCast 
dataset, comprising 8,390 chemicals tested against up to 1,092 end-
points, was downloaded from U.S. EPA’s Center for Computational 
Toxicology and Exposure (U.S. EPA, 2017) and used for training of the 
in silico conformal prediction (CP) models and for the similarity search. 
In addition to the data preparation steps described in (Morger et al. 
2020), canonical SMILES were extracted from the PubChem database 
using the PubChem PUG REST API (Kim et al. 2015). If no canonical 
SMILES were available from PubChem, the original ToxCast SMILES 
were retained. 

2.10.1.2. Standardization. First, all instances (molecules and mixtures 
comprising multiple chemicals) were standardized using the IMI eTOX 
project standardizer tool (Atkinson 2014) applying the following steps: 
discard non-organic compounds, neutralize, apply certain structure 
standardization rules (e.g. handling of tautomers, shifting protons be-
tween heteroatoms), neutralize, and remove (mainly organic) salts. 
Second, standardized molecules and mixture components with less than 
four heavy atoms, as well as all remaining mixtures, were discarded. 
This standardized dataset, containing 7,911 molecules, was used as a 
basis for the similarity search. For subsequent read-across support, 
measured activities of these molecules in seven ToxCast screening assays 
covering relevant ER-related endpoints (see Table 4) were considered. 

To train CP models on seven estrogen receptor assay datasets, the 
measured activities (binary) in these assays were assigned to the stan-
dardized molecules. Next, each molecule was represented as InChI (In-
ternational Chemical Identifier), a standardized format, to recognize 
molecules that appear more than once in the dataset. Chemicals with 
duplicate InChIs were merged and measurements were aggregated by 
median (median = 0.5 was discarded). This resulted in a data frame of 
7,135 compounds tested on up to seven endpoints. 

2.10.1.3. Descriptor calculation. As input for similarity search and CP, 
descriptors were calculated for all molecules using the RDKit Python 
library [v.2020.03.1] (Landrum 2006). For similarity search, the 
circular-environment based Morgan fingerprint (1024 bits, radius 3) and 
the SMARTS-pattern based MACCS keys (167 bits) were calculated and 
concatenated. For CP, the above fingerprints were further extended with 
200 physicochemical descriptors calculated using the RDKit library. The 
physicochemical descriptors were normalized based on mean and 
standard deviation of the physicochemical descriptors of substances for 
which ToxCast assay data was available. Further molecular descriptors 
used for the analysis of bisphenols (i.e. MorganCount, MACCS, phar-
macophore fingerprints) were also calculated using the RDKit 
functionalities. 

2.10.2. In silico methods 

2.10.2.1. Similarity search and read-across support. To support read- 
across with in vitro activity information from similar molecules, a simi-
larity search was implemented using RDKit functionalities. For a query 
molecule, the Tanimoto similarity to all molecules in the standardized 
ToxCast data set was calculated, based on the above-described de-
scriptors. The ten most similar compounds were returned together with 
their Tanimoto similarity and the maximum common substructure with 
the query molecule. 

2.10.2.2. Conformal prediction (CP). CP is a framework on top of a 
machine learning algorithm, which has the advantage to provide a 
measure of confidence to the prediction as it includes an additional 
calibration step (Alvarsson et al. 2021; Norinder et al. 2014; Vovk et al. 
2005). Therefore, besides the proper training set, an additional cali-
bration set is needed. By comparing the predictions for a query com-
pound with the predictions already made for the calibration set, the 
algorithm calculates how well the new prediction conforms to the pre- 
calculated data points per class (i.e., binary: active and inactive, mon-
drian classification (Sun et al. 2017)) using calculated p-values. 

Given that the training and test data are exchangeable, conformal 
predictors are designed to conform to a pre-defined maximum error rate. 
This error rate (significance level) functions as a threshold, so the CP 
output is a prediction set, which contains all classes for which the p- 
value is higher than the significance level. For a binary classification 
problem with classes ‘0’ and ‘1’, the possible prediction outputs are: 
‘single class’ ({0},{1}), ‘both class’ ({0,1}), or an empty prediction set 
({}). A more detailed description of CP, and specifically the use of an 
additional normalizer model to improve the applicability of the CP 
models to unseen data, is provided in (Morger et al. 2020). 

For each of the ER related endpoints, CP models (nonconformist 
Python library (Linusson 2015)) were trained and evaluated within a 
fivefold cross-validation. Thus, the ToxCast data was randomly and 
stratified split into five parts. In each fold, 80% training and 20% test 
data were used and an aggregated conformal predictor (ACP) (Carlsson 
et al. 2014) with 20 loops was initialized. In every ACP loop, the training 
data was further split into a proper training (70%) and a calibration set 
(30%) and a random forest model (500 estimators, else default param-
eters, scikit-learn Python library [v.0.22.2] (Pedregosa et al. 2011)) was 
trained on the proper training set. The predictions were calibrated using 
the calibration set, inverse probability error function, and mondrian 
condition (Sun et al. 2017). Furthermore, the predicted values were 
normalized using information from the nearest neighbors of the proper 
set (KNNRegressor [v2.1.0] (Linusson 2015) as described in (Morger 
et al. 2020)). Median was used to aggregate the p-values from the 20 
ACP loops, as recommended by (Linusson et al. 2017). The p-values of 
the cross-validation were averaged by their mean. 

2.10.2.3. CP evaluation. To evaluate the CP ER models and the pre-
dictions of the hit expansion compounds, evaluation measures such as 
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validity, efficiency and accuracy were used. Validity was calculated as 
the percentage of prediction sets containing the correct class, i.e., the 
fraction of all ‘both class’ ({0,1}) and correct ‘single class’ ({0}, {1}) 
predictions. Efficiency of the models was calculated as the ratio of 
prediction sets only containing a single class, i.e., {0} and {1}. Accuracy 
was determined by the ratio of correct ‘single class’ classifications 
compared to all ‘single class’ predictions. 

2.10.2.4. Consensus prediction. To derive a single prediction per com-
pound over all seven CP ER models, the predictions from the individual 
models were merged into a so-called consensus prediction. Thus, for 
each prediction, the prediction set was calculated for a maximum 
accepted error rate of 20%. Only the efficient single class predictions 
were considered and the mode was calculated following a ‘majority 
vote’ principle to obtain one consensus prediction for ER agonism per 
substance. 

2.10.2.5. Comparative docking. Docking is a structure-based modeling 
technique to predict the preferred orientation of a ligand when it is 
bound to a protein, which can be mainly divided into a placement and a 
scoring step (Brooijmans and Kuntz 2003). Docking was performed 
using the Endocrine Disruptor Monitoring tool (2019 EDMonv3) of the 
@TOME-2 platform, an inverse screening pipeline that was developed to 
study interactions between ERα and potentially ER active substances 
(Pons and Labesse 2009). The EDMonv3/@TOME-2 webserver provides 
docking of ligands into several endocrine disruption targets (collected in 
the database “NR_HUMAN_I90_2019M8 (Aug 2019)”). 

In this study, the binding modes of five bisphenol(-like) ligands 
(Bisphenol F, 4-Benzylphenol, 4,4’’-Dihydroxybiphenyl, 4,4’’-Dihy-
droxybenzophenone, and Bisphenol E) were analyzed when docked to 
ERα, for which the database contains 221 different protein structures for 
docking. For the docking experiment, 3D coordinates for each of the five 
compounds were generated using RDKit, and default parameters were 
used for the EDMonv3/@TOME-2 screening on ERα (H_NR3A1_ERa). 

Out of 221 available structural supports for ERα, the server returned 
the 20 best complexes per compound. To be able to directly compare the 
resulting poses for the five compounds, a common target structure that 
was returned as one of the top 20 complexes for all queries was desired. 
Twelve crystal structures were returned for all five query compounds 
consistently. Amongst them, the 3UUA ER agonist PDB structure was 
chosen, which was already investigated in the analysis of bisphenol-ER 
interactions by (Delfosse et al. 2012). Docking results, i.e., the crystal 
structure of 3UUA with the best docked pose of the respective ligand, 
were downloaded (as .pdb file) from the server and further analyzed 
using LigandScout [v4.4.3] (Wolber and Langer 2005). 

2.11. Performance calculations 

For each comparison, the overall concordance of active and inactive 
class predictions, i.e., the proportion of all substances that are correctly 
classified as active (NTrue Actives) or inactive (NTrue Inactives) from all tested 
substances (N), were calculated as follows: 

Concordance =
NTrue Actives + NTrue Inactives

N
*100 

The accuracy of active class predictions (Pactive class), i.e., the pro-
portion of all substances that are correctly classified as active (NTrue Ac-

tives) from all substances that are active in the reference method (NTrue 

Actives + NFalse Inactives), were calculated as follows: 

Pactive class =
NTrue Actives

NTrue Actives + NFalse Inactives
*100 

The accuracy of inactive class predictions (Pinactive class), i.e., the 
proportion of all substances that are correctly classified as inactive (NTrue 

Inactives) from all substances that are inactive in the reference method 
(NTrue Inactives + NFalse Actives), were calculated as follows: 

Pinactive class =
NTrue Inactives

NTrue Inactives + NFalse Actives
*100  

3. Results and Discussion 

3.1. E-Cadherin-GFP cell membrane signal intensity as a novel readout to 
efficiently measure estrogen signaling activity 

As described in (Kornhuber et al. 2021), the E-Morph Assay allows 
the identification and characterization of estrogenic substances based on 
quantitative changes in the morphology of cell–cell contacts at the level 
of AJs in the MCF-7/vBOS breast cancer cell line, which occur 24–48 h 
after exposure to an anti-estrogenic compound such as Fulvestrant 
(Fulv). In this first description of the assay, the cell–cell contact 
morphology was visualized using live-cell staining and analyzed by 
applying a quantitative image analysis pipeline with an integrated 
classification model (Kornhuber et al. 2021). 

In order to improve the HTS capability of the E-Morph Assay and to 
streamline the visualization and analysis procedures, we now selected a 
MCF-7 cell line that stably expressed an E-Cad-GFP transgene encoding 
for the mouse E-Cad fused to GFP, which has been shown to actively 
engage in the AJ assembly, maintenance, and dissociation process (de 
Beco et al. 2009; 2020). Treatment of this MCF-7/E-Cad-GFP cell line 
with the anti-estrogen Fulv for 48 h resulted in an AJ phenotype similar 
to the one observed in the MCF-7/vBOS cell line (Bischoff et al. 2020; 
Kornhuber et al. 2021) (Fig. 1A), and, in addition, influenced the E-Cad- 
GFP signal intensity (SI) (Fig. 1A). The SI increased in a concentration- 
dependent manner upon Fulv treatment (Fig. 1B, light grey) with a mean 
EC50 of 0.95 nM (Fig. 1C, light grey). In turn, co-treatment with 
increasing concentrations of 17β-Estradiol (E2) reduced the effect of 
Fulv on the SI again (Fig. 1B, grey) with a mean EC50 of 32.1 pM 
(Fig. 1C, grey). 

The dependence of the SI on Fulv- or E2-mediated changes of es-
trogen signaling was verified by gene expression analyses of the estrogen 
receptor alpha (ERα) target genes BCL2L1, TFF1, PGR, and AREG. In line 
with results from the MCF-7/vBOS cell line (Bischoff et al. 2020), these 
mRNA expression levels were downregulated or upregulated in MCF-7/ 
E-Cad-GFP cells under anti-estrogenic (Fulv) or estrogenic (Fulv + E2) 
conditions, whereas ESR1 (encoding for ERα) itself was not affected 
(Fig. 1D). Interestingly, the expression of the E-Cad-GFP transgene itself 
clearly increased upon Fulv-treatment on the mRNA and protein level, 
whereas the expression level of the endogenous human E-Cad was 
hardly affected (Fig. 1D-F, Fig. S2A-B). The latter observation is again in 
line with our results from the MCF-7/vBOS cell line (Bischoff et al. 
2020), whereas the interesting effect of estrogen signaling on the 
expression of the E-Cad-GFP transgene has not been described before 
and will be subject of future analyses. As shown by (Bischoff et al. 2020), 
the described changes in ERα target gene expression levels and the 
resulting AJ reorganization process occur at different times and differ in 
their kinetics. Although the authors identified several relevant cellular 
components that are involved in the phenotype formation process, the 
precise mechanisms connecting estrogen signaling activity and AJ 
reorganization is not yet fully understood. 

Importantly, these Fulv-induced effects were indeed directly caused 
by inhibition of ERα activity, since specific depletion of ERα by small 
interfering RNAs (siRNAs) targeting ESR1 sufficed for the formation of 
the AJ phenotype, the increased SI, and the elevated E-Cad-GFP 
expression levels (Fig. 1G-H; Fig. S2B). ERα activity was effectively 
depleted by siESR1 as indicated by the reduction of AREG and the in-
crease of BCL2L1 ERα target gene expression levels (Fig. S2B-C). 
Moreover, the application of Fulv to siESR1 knockdown cells only 
slightly further increased the SI and the E-Cad-GFP expression level 
(Fig. 1G-H). Likewise, addition of E2 could also not rescue these siESR1- 
mediated effects (Fig. 1G-H). 

Together, these data support the conclusion that the MCF-7/E-Cad- 
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Fig. 1. Visualization and quantification of E-Cad-GFP signal intensity (SI) along the cell membrane as an endpoint for estrogenic activity in the E-Morph Screening 
Assay. (A) Fluorescence images showing E-Cad distribution and intercellular spacing in MCF-7/E-Cad-GFP cells upon Fulvestrant (10 nM Fulv) treatment for 48 h as 
compared to the solvent control. Scale bars, 10 µM. (B) Representative concentration–response curves from quantitative image analysis of E-Cad-GFP expressing cells 
under anti-estrogenic (Fulv titration) and estrogenic (10 nM Fulv + 17β-estradiol (E2) titration) conditions (treatment for 48 h). The plot depicts the relative E-Cad- 
GFP signal intensity, which increases under anti-estrogenic conditions and decreases under estrogenic conditions. Signal intensities are normalized to the solvent 
control (Ctrl). Non-linear fit (four parameters, variable hill slope, bottom constrained to Ctrl). Biological replicates, n = 1. Error bars, mean +/- SD from ≥ 3 technical 
replicate experiments. (C) Mean half-maximal concentrations (EC50mean) derived from dose-response curves as described in Fig. 1B. Non-linear fit (four parameters, 
variable hill slope, bottom constrained to the solvent control). Biological replicates, n = 5 (Fulv titration, normalized to the solvent control) and n = 3 (10 nM Fulv +
E2 titration, normalized to the solvent control and the 10 nM Fulv control). (D) Quantitative PCR measurement of mRNA expression levels of typical ERα target genes 
(BCL2L1, TFF1, PGR, AREG), ESR1, GFP, and CDH1 under anti-estrogenic (10 nM Fulv) and estrogenic (10 nM Fulv + 10 nM E2) conditions (treatment for 48 h). 
Relative mRNA expression levels for each treatment condition are normalized to the solvent control (Ctrl). Biological replicates, n ≥ 3. Error bars, mean + SD. (E) 
Quantitative PCR measurement of mRNA expression levels of GFP, murine Cdh1 and human CDH1 under anti-estrogenic (10 nM Fulv) conditions (treatment for 48 
h). Relative mRNA expression levels for each treatment condition are normalized to the solvent control (Ctrl). Biological replicates, n = 3. Error bars, mean + SD. (F) 
Quantification of protein expression levels of endogenous E-Cad (120 kDa) and transgenic E-Cad-GFP (150 kDa) bands from chemiluminescence western blots shown 
in Fig. S2A. Relative protein expression levels under anti-estrogenic (10 nM Fulv) and estrogenic (10 nM Fulv + 10 nM E2) conditions (treatment for 48 h) are 
normalized to the solvent control (Ctrl). Biological replicates, n = 3. Error bars, mean + SD. Loading control, Coomassie total protein staining. G) Quantification of E- 
Cad-GFP signal intensities from cells transfected with ESR1 siRNA or GFP siRNA compared to cells transfected with scrambled control siRNA (siCtrl) for 72 h. Cells 
were additionally grown under anti-estrogenic (10 nM Fulv) and estrogenic (10 nM Fulv + 10 nM E2 or 10 nM E2 alone) conditions (treatment for 48 h). Relative E- 
Cad-GFP signal intensities are normalized to cells treated with scrambled control siRNA and the solvent control (Ctrl). Biological replicates, n = 2. Error bars, mean +
SD. (H) Quantitative PCR measurement of GFP mRNA expression levels of data shown in Fig. 1G. Relative mRNA expression levels are normalized to cells treated 
with scrambled control siRNA (siCtrl) and the solvent control (Ctrl). Biological replicates, n = 2. Error bars, mean + SD. 
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GFP cell line can adequately replace the original MCF-7/vBOS cell line 
in the E-Morph Screening Assay and that the SI represents a novel and 
reliable readout for estrogenic activity. This readout further simplifies 
quantitative image analysis pipelines because it does not require 
training of a supervised machine learning algorithm for image classifi-
cation such as in the original E-Morph Assay readout. 

3.2. Automated high-throughput screening for estrogenic substances 

Besides implementing the novel primary readout of the E-Morph 
Screening Assay, we adapted and optimized the cell treatment and 
staining procedure for automated handling of 96- and 384-well-plates 
using a robotic platform. To speed up the image data analysis and 
evaluation procedure, we further improved the automated imaging and 

quantitative image analysis pipeline and built an automated image data 
evaluation pipeline using the KNIME software (Fig. S1A-B, File S1). In 
this KNIME workflow, substance-related cell death or altered cell pro-
liferation were automatically detected by counting the number of nuclei 
as a readout for the number of cells. In a next step, the measured SI was 
normalized to both the solvent control (SI = 100) and the 10 nM Fulv 
control (SI = 0) for cut-off-based classification of substances with po-
tential estrogenic activity (ER activity: SI ≥ 20, i.e., representing a ≥
20% reduction of the Fulv-mediated increase in E-Cad-GFP membrane 
signal intensity). 

We then applied this automated HTS pipeline to screen a substance 
library comprising 430 toxicologically-relevant industrial chemicals, 
biocides, and plant protection products, as well as reference substances 
with already known, specific activities on different nuclear receptor 

Fig. 2. E-Morph screen workflow and results. Decision tree describing the data interpretation procedure and the results of the three consecutive E-Morph screens 
involving in vitro (E-Morph Screening Assay) and in silico (similarity search, conformal prediction) methods to identify substances with estrogenic activity. See main 
text for details. Rectangular boxes, numbers of substances. Hexagonal boxes, numbers of assays/models. Oval boxes, substance groups based on comparison to the 
published ToxCast ER Agonist Score (see Fig. 3). 
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signaling pathways (Filer et al., 2014; Wetzel et al., 2017; EFSA, 2015; 
OECD, 2017; U.S. NIEHS, 2019). A complete list of these BfR- 
ChemLibrary substances and the corresponding screening results are 
available in Supplementary Table S1. The data interpretation procedure 
for identification of estrogenic substances and the screening results are 
summarized in Fig. 2. The quality and performance of the screens was 
furthermore evaluated in the KNIME workflow based on a commonly 
used statistical parameter, i.e., the Z’-factor (Z’). Each run achieved a Z’- 
factor > 0.5, which indicates a very robust HTS assay according to 
(Iversen et al. 2006; Zhang et al. 1999) and demonstrates the applica-
bility of the E-Morph Screening Assay for HTS purpose. Notably, 
(Kornhuber et al. 2021) already compared the robustness of the selected 
48 h time point with a shorter treatment period of 30 h and concluded 
that the effect size of the assay declined when the test chemical exposure 
time was reduced. 

3.3. Primary screen and hit selection 

In the primary screen (Fig. 2), we tested the 430 substances at a 
single concentration of 10 µM in the presence of 10 nM Fulv for 48 h in 
three independent runs. Of those, 24 substances led to a significantly 

reduced cell viability (CV) < 75% (Figs. 2 and 3, red) and were therefore 
subsequently re-tested at lower concentrations (1 pM - 30 µM) in the hit 
confirmation screen as described below. We identified 60 potential hit 
substances (SI ≥ 20), of which 33 substances clearly influenced the 
characteristic estrogen-dependent AJ morphology in a similar way as 
compared to the Estrone reactivity control (visual assessment), corre-
sponding to an overall hit-rate of 7.7% (Fig. 2). The other 27 substances 
did either not clearly influence the AJ phenotype or caused rather un-
related changes in fluorescence intensity and were therefore first 
considered ‘inactive’ but flagged as ‘ambiguous’ in Table S1. Comparing 
the results for the 33 clear hit substances with the published ToxCast ER 
Agonist score (Browne et al. 2015; Judson et al. 2015) identified 18 
substances with a ToxCast ER Agonist Score ≥ 0.3 that were considered 
verified actives in the primary screen (Figs. 2 and 3, grey). The ToxCast 
ER Agonist Score of the remaining 15 hit substances was < 0.3 or ‘not 
available’ (NA) indicating potential yet undescribed estrogenic activity 
(Figs. 2 and 3, green). Notably, seven of the 373 substances that were 
first classified as ‘inactive’ had a ToxCast ER Agonist Score ≥ 0.3 and 
were therefore included in the subsequent hit confirmation screen to be 
tested at higher concentrations. 

3.4. Hit confirmation screen and potency determination 

In the hit confirmation screen (Fig. 2), we re-tested the 33 primary 
hit substances (SI ≥ 20), the 24 substances displaying cytotoxicity at 10 
µM, and the seven ‘inactive’ substances with a ToxCast ER agonist score 
≥ 0.3 (in total 64 substances) at multiple concentrations ranging from 1 
pM to 30 µM in the presence of 10 nM Fulv for 48 h in multiple inde-
pendent runs. A clear concentration-dependent estrogenic activity was 
detected for 28 out of the 33 primary hit substances (SI ≥ 20), three out 
of the 24 ‘cytotoxic’ substances (CV < 75%) when tested at concentra-
tions < 10 µM, and six out of the seven ‘inactive’ substances (ToxCast ER 
agonist score ≥ 0.3) when tested at concentrations > 10 µM. The 
remaining substances did not show a clear activity in the tested con-
centration range. These data show that the results of the primary screen 
and the hit confirmation screen were concordant to a large extent and 
highlight the need of testing substances in a wide concentration range to 
increase the hit rate. Based on the respective ToxCast ER Agonist Score, 
we grouped the active substances as ‘Known estrogenic substances’ 
(≥0.3; 27 substances) (Fig. 2, grey; Table 1) or potential ‘Novel estro-
genic substances’ (<0.3 or not available (‘NA’); 10 substances) (Fig. 2, 
green; Table 2). Accordingly, the inactive substances were grouped as 
‘True negative substances’ (‘TN’) (<0.3; 299 substances), ‘False negative 
substances’ (‘FN’) (≥0.3; 1 substance), or ‘NA’ if no ToxCast ER Agonist 
Score was available (93 substances) (Fig. 2, white; Table S1). 

Using the concentration–response data that was collected in the hit 
confirmation screen, we further determined the potencies (EC50) and 
relative ER bioactivities (logEC50 normalized to 17-alpha-Ethinylestra-
diol) for 24 out of the 27 ‘Known estrogenic substances’ (Fig. 2, 
{‘Known’,‘Yes’}; Fig. 4A; Table 1), which correlated well with the 
respective ToxCast ER Agonist Scores (r = +0.95) (Fig. 4A-B; Table 1). 
No EC50 values could be determined for the remaining three substances, 
including Tamoxifen, which showed only weak estrogenic activity in the 
hit confirmation screen (Fig. 2, {‘Known’,‘Weak’}; Table 1). The weak 
estrogenic activity of Tamoxifen might reflect its partial agonistic 
function (Jordan 1977), which is further supported by its estrogenic 
activity in the uterotrophic bioassay in rodents (Kleinstreuer et al. 
2016). Overall, the measured activities were also concordant with the 
CERAPP ER consensus model predictions (Table 1). Among the sub-
stances with a ToxCast ER Agonist Score ≥ 0.3, only 2,4′-DDT may have 
been a potential false negative substance in the E-Morph Screen (Fig. 2, 
‘FN’; Table 1). This particular chemical appears to be difficult to detect 
in the tested concentration range as it also showed weak or no activity in 
other ER testing systems according to the Integrated Chemical Envi-
ronment database (Bell et al. 2020; Bell et al. 2017) of the U.S. National 
Toxicology Program. 

Fig. 3. Primary screening and hit selection. Relative E-Cad-GFP signal in-
tensities of 430 test substances that were measured in the hit selection (pri-
mary) screen as compared to the published ToxCast ER Agonist Score. Cells 
were exposed to 10 nM Fulv + 10 µM test substance for 48 h. Each data point 
represents the mean relative signal intensity obtained from three independent 
runs. Relative E-Cad-GFP signal intensities are normalized to the solvent control 
(Ctrl, SI = 100) and the 10 nM Fulv control (Fulv, SI = 0). Substances that 
induce an increase of the relative signal intensity above the assay threshold 
(horizontal dashed line, SI ≥ 20) are considered as primary hit substances. Hit 
substances with a ToxCast ER Agonist Score ≥ 0.3 (vertical dashed line) are 
depicted in grey color and assigned to the group of ‘Known estrogenic sub-
stances’. Hit substances with a ToxCast ER Agonist Score < 0.3 or ‘not avail-
able’ (NA) (vertical dashed line) are highlighted in green color and assigned to 
the group of potential ‘Novel estrogenic substances’. Test substances leading to 
a cell viability (CV) < 75% are indicated in red color and assigned to the group 
of ‘Toxic substances’. Data from substances that were excluded after visual 
assessment of images are not displayed. Biological replicates, n = 3. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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Potencies (EC50) and relative ER bioactivities were also determined 
for all 10 substances that were assigned to the group of ‘Novel estrogenic 
substances’ (Fig. 2, ‘Novel’; Fig. 4C; Table 2). The calcium chelating 
agent EDTA was considered a false positive substance because of its 
known interference with the Ca + -dependent E-Cad activity and 
therefore excluded from further analysis. The two most potent sub-
stances in this hit class were the pesticide Hexythiazox (insecticide) with 

an EC50 of 10 nM, for which no estrogenic activity has been described 
before, and the progestin Norethisterone acetate (NETA) with an EC50 
of 625 nM. The remaining substances showed weaker activities in the 
µM range. The estrogenic activities of NETA, Nandrolone (androgen and 
anabolic steroid (AAS)), Phloretin (flavonoid), and Bisphenol F (indus-
trial chemical), for which no ToxCast ER Agonist Score was available, 
were consistent with previous studies (Branham et al. 2002; Chwalisz 

Table 1 
Screening results for the group of ’Known estrogenic substances’ compared to published in silico ER model data from the U.S. EPA.  

Chemical name CAS No. U.S. EPA in silico ER models E-Morph 
Screening Assay 

Hit confirmation screen 

ToxCast ER 
Agonist Scorea) 

CERAPP ER 
Agonist Modelb) 

Substance group Potency [M] ER Bioactivity 
[rel. LogEC50] 

Comment 

EC50 SD n 

Diethylstilbestrol 56-53-1 0.94 active Known 7.97E- 
10 

6.99E- 
10 

3 1.03 active 

Beta-Estradiol 50-28-2 0.94 active Known 9.00E- 
10 

1.30E- 
10 

3 1.03 active 

Hexestrol 84-16-2 0.99 active Known 1.05E- 
09 

2.59E- 
10 

4 1.02 active 

Ethinyl Estradiol 57-63-6 1.00 active Known 1.56E- 
09 

3.04E- 
10 

3 1.00 active 

Mestranol 72-33-3 0.74 active Known 2.26E- 
09 

7.13E- 
10 

4 0.98 active 

Estrone 53-16-7 0.81 active Known 3.18E- 
09 

2.83E- 
09 

4 0.96 active 

Alpha-Estradiol 57-91-0 1.06 active Known 5.50E- 
09 

1.74E- 
09 

4 0.94 active 

Zearalenone 17924- 
92-4 

0.71 active Known 1.66E- 
07 

6.01E- 
08 

4 0.77 active 

Bisphenol AF 1478- 
61-1 

0.55 active Known 2.96E- 
07 

1.47E- 
07 

3 0.74 active 

Trenbolone-Dea 10161- 
33-8 

0.48 active Known 4.30E- 
07 

1.70E- 
07 

3 0.72 active 

Genistein 446-72- 
0 

0.54 active Known 4.35E- 
07 

4.00E- 
07 

4 0.72 active 

Norethisterone 68-22-4 0.52 active Known 7.71E- 
07 

4.22E- 
07 

4 0.69 active 

Bisphenol B 77-40-7 0.49 active Known 1.07E- 
06 

5.16E- 
07 

4 0.68 active 

5alpha-Androstan-17beta-OL- 
3ON 

521-18- 
6 

0.40 active Known 1.28E- 
06 

1.59E- 
06 

4 0.67 active 

Nonylphenol techn Gemisch 84852- 
15-3 

0.44 active Known 1.39E- 
06 

1.77E- 
07 

2 0.67 active 

Dehydroisoandrosterone 53-43-0 0.37 active Known 1.54E- 
06 

6.70E- 
07 

4 0.66 active 

4-tert.-Octylphenol 140-66- 
9 

0.39 active Known 1.80E- 
06 

5.59E- 
07 

2 0.65 active 

Bisphenol A 80-05-7 0.45 active Known 2.23E- 
06 

4.10E- 
07 

3 0.64 active 

Biochanin A 491-80- 
5 

0.36 active Known 3.09E- 
06 

1.05E- 
06 

4 0.63 active 

Daidzein 486-66- 
8 

0.44 active Known 3.10E- 
06 

9.26E- 
07 

2 0.63 active 

2,2’,4,4’- 
Tetrahydroxybenzophenon 

131-55- 
5 

0.40 active Known 4.26E- 
06 

2.32E- 
06 

4 0.61 active 

17alpha-Hydroxyprogesterone 68-96-2 0.34 active Known 8.22E- 
06 

4.64E- 
06 

2 0.58 active 

Levonorgestrel 797-63- 
7 

0.39 active Known 8.79E- 
06 

2.99E- 
06 

2 0.57 active 

Apigenin 520-36- 
5 

0.31 active Known 2.16E- 
05 

2.16E- 
05 

4 0.53 active 

1,1,1-Tris(4-hydroxyphenyl) 
ethane 

27955- 
94-8 

0.32 active Known NA NA 1 NA weakly active at 30 
µM (22,3 % rescue) 

2,4’-DDT Lösung 789-02- 
6 

0.39 active FN NA NA 1 NA negative 

17a-Methyltestosterone 58-18-4 0.50 active Known NA NA 1 NA weakly active at 10 
µM (21,3 % rescue) 

Tamoxifen 10540- 
29-1 

0.45 inactive Known NA NA 1 NA weakly active at 10 
µM (26,6 % rescue) 

Overall classifications and potencies of 28 substances with a ToxCast ER Agonist Score ≥ 0.3. EC50, mean potency from multiple independent runs (n). SD, standard 
deviation. ER Bioactivity, potency (logEC50) normalized to 17-alpha-Ethinylestradiol (1.00). NA, not available/not applicable. FN, false negative substance. 
a)Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model (Browne et al. 2015) 
b)CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (Mansouri et al. 2016) 
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et al. 2012; Rochester and Bolden 2015; Sirianni et al. 2012), results 
from ER transactivation screening assays (Table S4), as well as the 
CERAPP ER consensus model (Table 2). Nandrolone (19-nortestoster-
one) was further shown to be active in the STTA and VM7Luc ER 
transactivation assays of OECD TG 455 (OECD 2016). For 2,4,6-TTBP 
(industrial chemical), Azoxystrobin (fungicide), Hexythiazox, and 
Diuron (herbicide), the ToxCast ER Agonist Score was 0.00 and they 
were also inactive in the relevant ER screening assays (Table S4) as well 
as the CERAPP ER consensus model (Table 2). Furthermore, these sub-
stances were also classified as ‘non-binder’ in the FW and CERI ER 
binding assays of OECD TG 493 (OECD 2015). In addition, for the 
fungicide Zineb (Zink-ethylen-1,2-bis-dithiocarbamat) no conclusive 
data demonstrating estrogenic activity was available, yet (Table S4). 

These partially discordant results between the E-Morph Screening 
Assay, the ToxCast ER HTS data, and the in silico ER models (ToxCast and 
CERAPP) can have various reasons (including false positive results), but 
may also reflect that, in contrast to the simplifying ER HTS assays con-
ducted in the ToxCast project, the functional E-Morph Screening Assay 
integrates multiple interacting cellular pathways. On the one hand, it 
therefore provides a more complete picture of relevant cellular mecha-
nisms mediating estrogen-dependent effects. On the other hand, inte-
gration of multiple mechanistic events or cellular signaling pathways in 
a single assay increases the degrees of freedom for possible modes of 
action of test substances and necessitates running secondary assays to 
confirm substance-specific effects on distinct signaling pathways. 

3.5. Verification of ‘Novel estrogenic substances’ 

In order to verify the nine (excluding EDTA) potential ‘Novel estro-
genic substances’ (Table 2), we first determined the mRNA expression 
levels of the ERα target genes BCL2L1, TFF1, PGR, and AREG along with 
ESR1 and CDH1. Cells were exposed to each test substance at a con-
centration of 10 µM in the presence of 10 nM Fulv for 48 h and the effects 
were compared to the mRNA expression profiles under anti-estrogenic 
(Fulv) and estrogenic (Fulv + E2) conditions (Fig. 5A; Fig. S2D). Hex-
ythiazox and NETA showed the most similar expression profiles when 

compared to the E2 reference substance, which was in line with the high 
potency that was measured in the E-Morph Screening Assay. Nan-
drolone, Phloretin, and Diuron also showed an estrogenic expression 
profile, albeit to a weaker extent. Bisphenol F slightly inhibited the Fulv 
effect, particularly for TFF1 expression. Importantly, these effects on 
gene expression profiles could be confirmed when cells were only 
exposed to these test substances without Fulv co-treatment (Fig. 5B; 
Fig. S2E). Interestingly, Bisphenol F showed the strongest effect in this 
case. The expression profiles of the phenol 2,4,6-TTBP and the pesticide 
Zineb did not support an estrogenic effect neither in the competitive 
treatment nor in the single treatment scenario (Fig. 5A-B; Fig. S2D-E). 
The gene expression pattern of Azoxystrobin rather showed some sur-
prising anti-estrogenic effect, particularly for TFF1 and PGR, when 
applied to cells without Fulv (Fig. 5B; Fig. S2E). 

To characterize the underlying mechanism of action of the potential 
‘Novel estrogenic substances’ (Table 2), we next performed a ‘pBIND- 
ERα vector assay’, which allows the identification of substances that 
directly bind to the ERα ligand binding domain. In this assay, MCF-7/E- 
Cad-GFP cells were transiently transfected with both the reporter and 
control vector plasmids and subsequently treated with each test sub-
stance at 10 µM for 48 h (Fig. 5C). The results were very similar to the 
detected gene expression profiles. Hexythiazox and NETA showed the 
highest activity in this assay, whereas Nandrolone, Phloretin, Diuron, 
and Bisphenol F showed weaker effects. Again, an estrogenic activity at 
the level of ERα binding could not be identified for 2,4,6-TTBP, Zineb, 
and Azoxystrobin. 

Together, these secondary assay data support the detected estrogenic 
activity of Hexythiazox, NETA, Nandrolone, Phloretin, Diuron, and 
Bisphenol F from the group of potential ‘Novel estrogenic substances’ 
that were identified by the E-Morph Screening Assay (Fig. 2; Table 2). 
These data further underline the importance of running secondary as-
says to identify potential false positive substances, i.e., 2,4,6-TTBP, 
Zineb, and Azoxystrobin. These substances might act on E-cadherin or 
AJs in an estrogen-independent manner that will be addressed in future 
analyses. 

Table 2 
Screening results for the group of ’Novel estrogenic substances’ compared to published in silico ER model data from the U.S. EPA.  

Chemical name CAS No. U.S. EPA in silico ER models E-Morph 
Screening Assay 

Hit confirmation screen 

ToxCast ER 
Agonist Score a) 

CERAPP ER Agonist 
Model b) 

Substance group Potency [M] ER Bioactivity [rel. 
LogEC50] 

Comment 

EC50 SD n 

Hexythiazox 78587–05-0 0.00 inactive Novel 1.01E- 
08 

3.94E- 
09 

4  0.91 active 

Norethindrone acetate 
(NETA) 

51–98-9 NA active Novel 6.25E- 
07 

4.62E- 
07 

6  0.70 active 

EDTA iron(III) sodium 
salt 

15708–41-5 0.00 inactive Novel 1.10E- 
06 

7.34E- 
07 

3  0.68 active 

Nandrolone 434–22-0 NA active Novel 2.04E- 
06 

1.38E- 
06 

6  0.65 active 

Phloretin 60–82-2 NA active Novel 3.36E- 
06 

1.41E- 
06 

5  0.62 active 

2,4,6-Tri-tert- 
butylphenol (TTBP) 

732–26-3 0.00 inactive Novel 4.73E- 
06 

3.12E- 
06 

4  0.60 active 

Bisphenol F 620–92-8 NA active Novel 4.79E- 
06 

1.41E- 
06 

5  0.60 active 

Diuron 330–54-1 0.00 inactive Novel 6.04E- 
06 

2.91E- 
06 

3  0.59 active 

Azoxystrobin 131860–33- 
8 

0.00 inactive Novel 6.34E- 
06 

3.68E- 
06 

6  0.59 active 

Zineb 12122–67-7 NA inactive Novel 8.71E- 
05 

8.48E- 
05 

2  0.46 active 

Overall classifications and potencies of 10 substances that were active in the E-Morph Screening Assay with a ToxCast ER Agonist Score = 0.00 or ‘not available’ (NA). 
EC50, mean potency from multiple independent runs (n). SD, standard deviation. ER Bioactivity, potency (logEC50) normalized to 17-alpha-Ethinylestradiol (1.00). 
NA, not available/not applicable. 
a)Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model (Browne et al. 2015) 
b)CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (Mansouri et al. 2016) 
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3.6. Identification of structurally similar substances and hit expansion 
screening 

Based on the assumption that structurally similar substances can 
interact with similar targets (Bender and Glen 2004), we performed an 
in silico similarity search against the substances for which ToxCast assay 
data was available (Fig. 2). The chemical structures of the nine 
(excluding EDTA) potential ‘Novel estrogenic substances’ (Table 2) were 
used as input for the identification of other structurally similar sub-
stances (Table S2; File S2). Based on the resulting similarity scores 
(Tanimoto index) and literature search, we selected a final set of 20 
similar substances and measured their potential estrogenic activity and 
potency in the E-Morph Screening Assay (Fig. 6; Table 3). Notably, we 
set a relatively low global Tanimoto cut-off (>0.3) for inclusion of 
similar substances into the hit expansion screening in order to account 
for the diverse structural complexities of the input substances. 
Furthermore, the number of selected similar substances per input sub-
stance varied because of the composition of the ToxCast substance 

library. For example, the ToxCast database contains assay data for many 
different bisphenols with relatively high similarity scores (>0.5) to 
Bisphenol F, but no data for substances that are similar to the pesticide 
Hexythiazox with a score above 0.4 (Table 3; Table S2; File S2). 

Of the 20 similar substances, 10 substances had already been tested 
in the primary or hit confirmation screens (Fig. 2; Table 3) and their re- 
testing in the hit expansion screening (5 active, 5 inactive) provided 
concordant results (Table S1). Interestingly, three of these substances 
(4,4′-Dihydroxybiphenyl (92–88-6), 4,4′-Dihydroxybenzophenone 
(611–99-4), Triclocarban (101–20-2)) were initially considered as 
‘ambiguous’ by visual inspection in the primary screen at 10 µM (Fig. 2; 
Table S1). However, based on the hit expansion screening of a wider 
concentration range, these substances could now be re-assignment to the 
group of ‘Novel estrogenic substances’ (Table 3; Table S1). Hence, a 
visual inspection of the AJ phenotype at a single concentration also 
bears the risk of misinterpretation of substance effects, particularly at 
concentrations near the cytotoxic range. Of the remaining 10 newly 
tested substances, six substances were active and four substances were 

Fig. 4. Hit confirmation screening and potency determination. A) Potencies (half-maximal concentrations, EC50) of 24 ‘Known’ hit substances that were active in the 
hit confirmation (potency) screen with a ToxCast ER Agonist Score ≥ 0.3. Each data point represents an individual run. The three ‘Known’ hit substances 1,1,1-Tris- 
(4-hydroxyphenyl)-ethan, Methyltestosterone, and Tamoxifen showed only weak activity (no EC50 value could be determined) and are therefore not shown. Bio-
logical replicates, n ≥ 3. Error bars, mean +/- SD. (B) Correlation between the potencies (half-maximal concentrations, EC50) of 24 ‘Known’ hit substances obtained 
from the E-Morph Assay and the published ToxCast ER Agonist Score. Each data point represents the mean of the relative bioactivities obtained from individual runs 
shown in Fig. 4A. The contour line indicates full correlation. Pearson r = +0.95. (C) Potencies (half-maximal concentrations, EC50) of 10 ‘Novel’ hit substances that 
were active in the hit confirmation (potency) screen with a ToxCast ER Agonist Score = 0.00 or ‘not available’ (NA). Each data point represents an individual run. 
Biological replicates, n ≥ 3. Error bars, mean +/- SD. 
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inactive (Fig. 2; Table 3, Table S1). Interestingly, Norgestrel, a racemate 
of D-Norgestrel and L-Norgestrel/Levonorgestrel enantiomers (Kuhl 
2005), was inactive in the hit expansion screen despite a ToxCast ER 
Agonist Score of 0.39 (Table 3, ‘FN’), whereas the known active enan-
tiomer Levonorgestrel by itself was active in our assay (Table 3, 
‘Known’). Thus, selecting candidate substances based on structural 
similarities to our primary hits, resulted in the identification of in total 

nine additional ‘Novel estrogenic substances’. The measured estrogenic 
activities for most of these substances were supported by the CERAPP ER 
consensus model (Table 3). 

Together, these screening data provide strong support for an estro-
genic activity of NETA, Nandrolone, Phloretin, and Bisphenol F and 
demonstrate that the combination of in silico similarity search and in 
vitro testing supports the identification of estrogenic activities. 

Fig. 5. Verification of ‘Novel’ hit substances. (A) Gene expression profiles from quantitative PCR measurements of ESR1, CDH1, and typical ERα target genes 
(BCL2L1, TFF1, PGR, AREG). Cells were exposed to 10 nM Fulv + 10 µM test substance (competitive treatment) for 48 h. Measurements from estrogenic (10 nM Fulv 
+ 10 nM E2, top) and anti-estrogenic (10 nM Fulv, bottom) conditions provide reference gene expression profiles. Relative mRNA expression levels are normalized to 
cells treated with the solvent control (Ctrl). Biological replicates, n = 3. (B) Gene expression profiles from quantitative PCR measurements of ESR1, CDH1, and typical 
ERα target genes (BCL2L1, TFF1, PGR, AREG). Cells were exposed to 10 µM test substance only (single treatment) for 48 h. Measurements from estrogenic (10 nM E2, 
top) and anti-estrogenic (10 nM Fulv, bottom) conditions provide reference gene expression profiles. Relative mRNA expression levels are normalized to cells treated 
with the solvent control (Ctrl). Biological replicates, n = 3. C) Relative luciferase signal intensities obtained from an ERα reporter gene assay. Cells were co- 
transfected for 72 h with a pBIND-ERα expression vector (Gal4-DBD fused to ERα-LBD, Renilla luciferase) and a target vector expressing a UAS-controlled 
Firefly luciferase. Cells were exposed to 10 µM test substance only for 48 h. The detected Firefly luminescence was normalized to Renilla luminescence. Relative 
signal intensities from estrogenic (10 nM E2, top) and anti-estrogenic (10 nM Fulv, bottom) conditions provide reference measurements. Biological replicates, n = 3. 
Error bars, mean + SD. 
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Although, potential false positive results, like 2,4,6-TTBP, Zineb, or 
Azoxystrobin, are inevitable, the identification of Hexythiazox and 
Diuron as potential estrogenic substances seems to be relevant and 
warrant further investigation. 

3.7. Docking of bisphenols into ERα 

Even though the primary hit substance Bisphenol F shares a very 
similar chemical structure with 4-Benzylphenol (Fig. 7, File S2), the 
latter was inactive in the E-Morph Screening Assay (Table 3; Table S1). 
This was particularly surprising since this substance had the highest 
Tanimoto similarity score of 0.78 as compared to three additional sub-
stances with similarity scores between 0.49 and 0.56 that were active in 
the E-Morph Assay. Here, it needs to be considered that terminal func-
tional group differences in molecules often have less influence on the 
calculated similarity than central atom changes (because of the nature of 
the calculation of the circular environments, such as in the Morgan 
fingerprint). The different activities could neither be explained using 
diverse other molecular fingerprints (MorganCount, MACCS, pharma-
cophore fingerprints), which were very similar for these bisphenols 
(Table S3). In scientific literature, such phenomena are often described 
as activity cliffs (Maggiora et al. 2014) in which, e.g., changes of one 
atom or functional group in otherwise very similar molecules can lead to 
a notable difference in activity. To better understand this effect, we 
performed a docking analysis (Brooijmans and Kuntz 2003) and inves-
tigated potential variations in interaction patterns of the bisphenols with 
ERα using the @TOME-2 web-server according to (Delfosse et al. 2012). 
The docking results showed an apparent difference in the binding of 4- 
Benzylphenol to ERα (Fig. 7, red arrow) as compared to the other four 
tested bisphenols. The latter four substances are all capable of forming 
undirected interactions with the hydrophobic pocket core, while being 
anchored on both sides through hydrogen bonds (see pharmacophoric 
interactions in Fig. 7). Hence, the inactivity of 4-Benzylphenol in the E- 
Morph Screening Assay could be explained by the absence of an 
important hydrogen bond to histidine H524 (because of a missing hy-
droxy (–OH) group), which may significantly reduce the binding ca-
pacity of 4-Benzylphenol to ERα. 

3.8. Generation of in silico models for prediction of estrogenic activities in 
HTS approaches 

Ideally, these kinds of structural analyses will eventually lead to the 
development of highly predictive (Q)SAR tools to identify estrogenic 
activities in environmental chemicals based on structural fingerprints. 
As a proof-of-concept for the application of in silico prediction models in 
HTS approaches, we used ToxCast ER screening data to build seven 
in silico prediction models based on the conformal prediction (CP) 
framework (Morger et al. 2020; Norinder et al. 2014; Vovk et al. 2005) 
for the relevant mechanistic events of estrogen signaling, i.e., ER bind-
ing, ER dimerization, regulation of gene expression, and cell prolifera-
tion (Table 4), that are also included in the ToxCast ER Agonist Model 
(Browne et al. 2015). We trained these CP ER models on all binary 
readouts (active/inactive) of the corresponding in chemico and in vitro 
ER screening assays that were conducted in the ToxCast project. A 
fivefold cross-validation was employed to assess the performance of 
each model (Table 4). The benefit of the CP method over simpler simi-
larity search is thereby two-fold. First, machine learning (ML) models 
are statistical models that relate a set of structural descriptors of a 
chemical compound to its biological activity. Thus, the CP model learns 
which features in the molecule contribute more (or less) to the outcome, 
whereas a simpler similarity search treats all features the same. In other 
words, while similarity search looks for more obvious similarities be-
tween molecules, CP may detect more hidden, and also non-linear, re-
lationships. Second, CP is built on top of a ML framework and adds a 
calibration step. This allows for monitoring the reliability of the pre-
dictions more closely, thus providing a measure of confidence in the 
prediction per molecule. 

All CP ER models were valid at the 0.2 significance level (validity ≥
0.8), i.e., making<20% prediction errors when considering ‘single class’ 
(active or inactive) and ‘both class’ (active and inactive) predictions 
(Table 4). This high mean validity of 0.85 ± 0.01 indicates that the 
models were well calibrated and can therefore be reliably applied to new 
data. The mean efficiency, i.e., the fraction of single class predictions 
made by the models, was 0.39 ± 0.12 (Table 4) and notably lower than 
compared to other CP ER models described before (Ji et al. 2018; Nor-
inder et al. 2016). This can be a consequence of the use of the additional 
normalizer regression model and prior equal size sampling of the proper 
training and calibration set, which was shown to improve the prediction 
performance on external data (Morger et al. 2020). The CP ER models 
had a mean accuracy, i.e., the fraction of correct single class predictions 
made by the models, of 0.71 ± 0.10 (Table 4). Regarding the class-wise 
evaluation, the mean accuracy for prediction of the active class was 
rather high with an average of 0.83 ± 0.03, whereas the mean accuracy 
for prediction of the inactive class was slightly lower with an average of 
0.67 ± 0.13 (Table 4). The reduced mean accuracy for inactive class 
predictions was mainly caused by two rather weakly performing 
endpoint models (aeid_788 and aeid_2) (Table 4, italics). Nevertheless, 
the overall results show that the individual CP ER models can reliably 
predict agonistic ER activity, especially since the focus of this study is to 
detect active substances. 

We then applied the seven CP ER models to classify the nine 
(excluding EDTA) potential ‘Novel estrogenic substances’ (Table 2) from 
primary and hit confirmation screening as well as the selected 20 
structurally similar substances from the hit expansion screening 
(Table 3). The respective p-values, which describe the certainty of the 
active/inactive predictions of the individual models, are summarized in 
Table S4. To facilitate direct comparison of the CP ER model classifi-
cations with the E-Morph Screening Assay results, we converted the 
seven individual CP ER model predictions into an overall ‘consensus 
prediction’ by applying a ‘majority rule’ principle (Table 5; Table S4). 
The in chemico and in vitro test results of the seven corresponding ER 
screening assays included in the ToxCast project were converted in the 
same way to obtain an overall ‘consensus test result’ for each individual 
substance (Table 5; Table S4). Notably, for some of the 29 test 

Fig. 6. Hit expansion screening and potency determination. Potencies (half- 
maximal concentrations, EC50) of nine additional hit substances that were 
active in the hit expansion screen. Each data point represents an individual run. 
Biological replicates, n = 3. Error bars, mean +/- SD. 

S. Klutzny et al.                                                                                                                                                                                                                                 



EnvironmentInternational158(2022)106947

15

Table 3 
Screening results for the hit expansion substances compared to published in silico ER model data from the U.S. EPA.  

Chemical name CAS No. US EPA  

in silico ER models 

Similarity 
search 

E-Morph Screening 
Assay 

Hit expansion screen 

ToxCast  

ER Agonist 
Score a) 

CERAPP  

ER Agonist 
Model b) 

Similarity 
score 

Substance group Potency [M] ER Bioactivity [rel. 
LogEC50] 

Comment Tested in primary 
screen 

EC50 SD n 

Hexythiazox 78587–05-0 0.00 inactive  1.00 Novel 1.01E-08 3.94E-09 4 0.91 active Y 
Iprodion 36734–19-7 0.00 inactive  0.36 TN NA NA  NA inactive Y 
Norethindrone acetate (NETA) 51–98-9 NA active  1.00 Novel 6.25E-07 4.62E-07 6 0.70 active Y 
Ethynodiol diacetate 297–76-7 NA active  0.73 Novel < 1.37E- 

08 
< 1.37E- 
08 

3 NA active – 

Norgestrel 6533–00-2 0.39 active  0.55 FN NA NA  NA inactive – 
Levonorgestrel 797–63-7 0.39 active  0.55 Known 1.97E-05 1.27E-05 2 0.53 active Y 
Norgestimate 35189–28-7 NA active  0.51 Novel 7.27E-07 7.14E-07 3 0.70 active – 
Nandrolone 434–22-0 NA active  1.00 Novel 2.04E-06 1.38E-06 6 0.65 active Y 
Norgestrel 6533–00-2 0.39 active  0.60 FN NA NA  NA inactive – 
Levonorgestrel 797–63-7 0.39 active  0.60 Known 1.97E-05 1.27E-05 2 0.53 active Y 
Phloretin 60–82-2 NA active  1.00 Novel 3.36E-06 1.41E-06 5 0.62 active Y 
Benzophenone-2 131–55-5 0.40 active  0.43 Known 3.55E-06 1.00E-07 3 0.62 active Y 
2,4,4′- 

Trihydroxybenzophenone 
1470–79-7 NA active  0.42 Novel 5.60E-06 1.98E-06 3 0.60 active – 

Diphenolic acid 126–00-1 0.17 active  0.38 Novel NA NA  NA active at ≥ 30 
µM 

– 

2,4,6-Tri-tert-butylphenol 
(TTBP) 

732–26-3 0.00 inactive  1.00 Novel 4.73E-06 3.12E-06 4 0.60 active Y 

Butylhydroxytoluene 128–37-0 0.00 inactive  0.72 TN NA NA  NA inactive Y 
2,5-Di-tert-butylhydroquinone 88–58-4 0.00 inactive  0.60 TN NA NA  NA inactive – 
Bisphenol F 620–92-8 NA active  1.00 Novel 4.79E-06 1.41E-06 5 0.60 active Y 
4-Benzylphenol 101–53-1 NA active  0.78 NA NA NA  NA inactive Y 
4,4′-Dihydroxybiphenyl 92–88-6 NA active  0.56 Novel 1.34E-05 2.59E-06 3 0.55 active Y 
4,4′-Dihydroxybenzophenone 611–99-4 NA active  0.49 Novel 1.17E-05 1.42E-06 3 0.56 active Y 
Bisphenol E 2081–08-5 NA active  0.49 Novel 1.34E-05 6.56E-07 3 0.55 active – 
Diuron 330–54-1 0.00 inactive  1.00 Novel 6.04E-06 2.91E-06 3 0.59 active Y 
Linuron 330–55-2 0.00 inactive  0.67 TN NA NA  NA inactive Y 
Swep 1918–18-9 NA inactive  0.59 NA NA NA  NA inactive – 
Troclocarban 101–20-2 0.00 inactive  0.52 Novel 3.65E-06 2.33E-06 3 0.62 active Y 
Azoxystrobin 131860–33- 

8 
0.00 inactive  1.00 Novel 6.34E-06 3.68E-06 6 0.59 active Y 

Picoxystrobin 117428–22-5 0.00 inactive  0.45 TN NA NA  NA inactive – 
Fluoxastrobin 361377–29-9 0.00 inactive  0.33 Novel 6.23E-06 3.72E-06 2 0.59 active – 
Zineb 12122–67-7 NA inactive  1.00 Novel 8.71E-05 8.48E-05 2 0.46 active Y 
Maneb 12427–38-2 0.00 inactive  1.00 TN NA NA  NA inactive Y 

Overall classifications and potencies of 20 hit expansion substances as compared to the ToxCast ER Agonist Score. The similar substances for the nine (excluding EDTA) potential ‘Novel estrogenic substances’ (bold italic) 
were selected based on their structural similarity and their activity in different ToxCast steroidal nuclear receptor assays. EC50, mean potency from multiple independent runs (n). SD, standard deviation. ER Bioactivity, 
potency (logEC50) normalized to 17-alpha-Ethinylestradiol (1.00). NA, not available/not applicable. FN, false negative substances. TN, true negative substance. 
a)Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model (Browne et al. 2015) 
b)CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (Mansouri et al. 2016) 
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substances, no conclusive (Table S4, ‘NC’) CP ER model classifications 
were achieved, i.e., ‘both class’ predictions were returned by the CP 
framework (no decisions could be made), and not all these substances 
were tested in every of the seven ER screening assays (Table S4, ‘NA’). 

For this small subset of 29 substances, the overall concordance of the 
CP ER consensus model, the E-Morph Screening Assay, and the 
consensus of the ER screening assay test results was in the range of 
71–76% (Table 6). Hence, the performance of the CP ER consensus 
model was comparable to the mean accuracy of the seven individual CP 
ER models (see Table 4) supporting the consensus model approach, 
which integrates multiple relevant mechanistic events of estrogen 
signaling. Importantly, the high predictivity of the CP ER consensus 
model (100%) and the E-Morph Screening Assay (87%) for active class 
substances promotes their future use in HTS frameworks. With regard to 

the evaluation of the E-Morph Assay screening results, the CP ER 
consensus model supported 89% of the active class assignments for the 
subset of 29 substances. The reduced predictivity of the E-Morph 
Screening Assay (54%) for inactive class substances was mainly caused 
by a higher frequency of non-concordant ‘false positive’ results, which, 
however, represent substances with potential estrogenic activity (‘Novel 
estrogenic substances’ group, Table S1) that are of particular interest for 
prioritized follow-up testing. 

Taken together, these data suggest that the generated CP ER models 
are applicable for fast and efficient browsing of large substance libraries 
to prioritize substances with potential estrogenic activity for subsequent 
in vitro testing in HTS approaches, such as E-Morph. Benchmarking the 
CP prediction models and the E-Morph Screening Assay against a larger 
set of reference substances will provide further insights into their 

Table 4 
Development and evaluation (cross-validation) of CP ER models.  

U.S. EPA in chemico/in vitro ER screening assays Conformal prediction ER models 

Assay name Assay ID 
(aeid) 

Biological 
mechanism 

Validity Efficiency Accuracy no. of compounds 

all inactive active all inactive active all inactive active inactive active 

NVS_NR_hER 714 receptor binding  0.85  0.85  0.85  0.40  0.36  0.57  0.73  0.69  0.81 819 204 
OT_ER_ERaERb_1440 745 receptor 

dimerization  
0.86  0.85  0.88  0.32  0.29  0.53  0.68  0.62  0.88 1333 180 

ATG_ERE_CIS_up 75 gene expression, 
mRNA  

0.85  0.85  0.85  0.43  0.40  0.51  0.74  0.71  0.81 2257 792 

ATG_ERa_TRANS_up 117 gene expression, 
mRNA  

0.84  0.84  0.84  0.50  0.47  0.61  0.77  0.75  0.83 2385 681 

TOX21_ERa_BLA_Agonist_ratio 785 gene expression, 
protein  

0.86  0.86  0.84  0.57  0.57  0.57  0.87  0.87  0.84 6465 320 

TOX21_ERa_LUC_VM7_Agonist 788 gene expression, 
protein  

0.85  0.85  0.85  0.25  0.22  0.41  0.58  0.5  0.84 5719 858 

ACEA_T47D_80hr_Positive 2 cell proliferation  0.86  0.87  0.84  0.24  0.20  0.41  0.63  0.54  0.81 1307 266   
Mean  0.85    0.39    0.71  0.67  0.83     
SD  0.01    0.12    0.10  0.13  0.03   

Information on the seven CP models built for seven ER screening assay endpoints conducted in the ToxCast project. Accuracies highlighted in italics indicate reduced 
performance of two CP ER models for prediction of inactive substances. 

Fig. 7. Docking of bisphenols into ERα. Pharmacophoric interactions of different bisphenols with ERα. For each substance, the outcome of the E-Morph Screening 
Assay (active/inactive) and the Tanimoto similarity to Bisphenol F are indicated. The red arrow points to a clear difference in the binding of 4-Benzylphenol to ERα 
(missing hydrogen bond) as compared to the other four tested bisphenols. Visualizations using LigandScout after docking with the @TOME-2 webserver according to 
(Delfosse et al. 2012). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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predictive capacities in future studies. In iterative in silico - in vitro 
screening cycles, the newly generated data could then also be used to 
update and improve the CP ER models. Particularly, additional training 
data that cover the chemical space for which the current models make 
poor predictions could prompt more efficient and accurate predictions, 
which in turn supports the identification of additional active substances 
by HTS (Svensson et al. 2017a). 

4. Conclusion 

Over the years, many organizations worldwide have published 
candidate lists of suspected EDCs, which include hundreds of substances 
that may pose a potential threat to human health and the environment 
(WHO/UNEP, 2012). The identification and regulatory restriction of 
such EDCs is a central goal of chemicals management frameworks and 
policies worldwide. Commitments such as the ‘European Green Deal’ 
even pursue a zero-pollution ambition towards a fully ‘toxic-free envi-
ronment’ in the next decades. This intention is reflected in the recently 

adopted ‘Chemicals Strategy for Sustainability’ (EC 2020), which also 
promotes the ‘safe-by-design’ approach, i.e. the use of substances that 
pose less or no harm to humans and the environment. For now, adverse 
health effects of EDCs are mainly investigated in animal experiments 
(OECD, 2001, 2018a, 2018b, 2018c), although animal data are not 
necessarily directly translatable to (patho-)physiological processes in 
humans (Holen et al. 2017). Moreover, these in vivo assays are not 
necessarily specific for individual endocrine mechanisms or suitable for 
the analysis of ‘real-life’ co-exposure scenarios. The projected doubling 
of the global chemical sales by 2030 (WHO, UNEP, 2019) and, in par-
allel, the intended phasing out of animal experimentation in toxicolog-
ical testing (Grimm 2019) emphasize the need for novel human-relevant 
HTS methods and computational approaches to ensure protection of 
human health and the environment. 

Table 5 
Comparison of results from the E-Morph Screen and CP ER models with published in vitro and in silico ER data from the U.S. EPA.  

Chemical name CAS No. U.S. EPA  

in silico  
ER models 

U.S. EPA 
in chemico/in vitro 
ER screening assays 

E-Morph Screening Assay Conformal prediction  

ER models 

ToxCast  

ER Agonist 
Scorea) 

CERAPP  

ER Agonist 
Modelb) 

Consensus test results Substance 
group 

Potency 
[M] 

Consensus predictions 

active inactive  EC50 active inactive 

Hexythiazox 78587–05-0 0.00 inactive 1 (14%) 6 (86%) Novel 1.01E-08 0 0 
Norethindrone acetate (NETA) 51–98-9 NA active 2 

(100%) 
0 Novel 6.25E-07 6 

(100%) 
0 

Norgestimate 35189–28-7 NA active 2 (100%) 0 Novel 7.27E-07 4 (100%) 0 
Nandrolone 434–22-0 NA active 2 

(100%) 
0 Novel 2.04E-06 7 

(100%) 
0 

Phloretin 60–82-2 NA active 2 
(100%) 

0 Novel 3.36E-06 7 
(100%) 

0 

Benzophenone-2 131–55-5 0.40 active 7 (100%) 0 Known 3.55E-06 7 (100%) 0 
Troclocarban 101–20-2 0.00 inactive 0 6 (100%) Novel 3.65E-06 1 (100%) 0 
2,4,6-Tri-tert-butylphenol 

(TTBP) 
732–26-3 0.00 inactive 1 (20%) 4 (80%) Novel 4.73E-06 4 (80%) 1 (20%) 

Bisphenol F 620–92-8 NA active 4 
(100%) 

0 Novel 4.79E-06 7 
(100%) 

0 

2,4,4′-Trihydroxybenzophenone 1470–79-7 NA active 5 (100%) 0 Novel 5.60E-06 7 (100%) 0 
Diuron 330–54-1 0.00 inactive 0 6 

(100%) 
Novel 6.04E-06 0 5 

(100%) 
Fluoxastrobin 361377–29-9 0.00 inactive 1 (20%) 4 (80%) Novel 6.23E-06 0 0 
Azoxystrobin 131860–33- 

8 
0.00 inactive 1 (17%) 5 (83%) Novel 6.34E-06 1 

(100%) 
0 

4,4′-Dihydroxybenzophenone 611–99-4 NA active 2 (100%) 0 Novel 1.17E-05 7 (100%) 0 
Bisphenol E 2081–08-5 NA active 4 (100%) 0 Novel 1.34E-05 7 (100%) 0 
4,4′-Dihydroxybiphenyl 92–88-6 NA active 2 (100%) 0 Novel 1.34E-05 2 (100%) 0 
Levonorgestrel 797–63-7 0.39 active 6 (86%) 1 (14%) Known 1.97E-05 6 (100%) 0 
Zineb 12122–67-7 NA inactive 0 0 Novel 8.71E-05 0 2 

(100%) 
Ethynodiol diacetate 297–76-7 NA active 2 (100%) 0 Novel < 1.37E-08 5 (100%) 0 
Diphenolic acid 126–00-1 0.17 active 6 (86%) 1 (14%) Novel pos ≥ 30 

µM 
5 (100%) 0 

Norgestrel 6533–00-2 0.39 active 5 (100%) 0 FN inactive 6 (100%) 0 
4-Benzylphenol 101–53-1 NA active 2 (100%) 0 NA inactive 4 (100%) 0 
Picoxystrobin 117428–22-5 0.00 inactive 1 (17%) 5 (83%) TN inactive 1 (100%) 0 
Butylhydroxytoluene 128–37-0 0.00 inactive 1 (17%) 5 (83%) TN inactive 2 (100%) 0 
2,5-Di-tert-butylhydroquinone 88–58-4 0.00 inactive 1 (14%) 6 (86%) TN inactive 4 (100%) 0 
Swep 1918–18-9 NA inactive 0 (0%) 4 (100%) NA inactive 0 5 (100%) 
Linuron 330–55-2 0.00 inactive 0 (0%) 7 (100%) TN inactive 0 1 (100%) 
Iprodion 36734–19-7 0.00 inactive 1 (17%) 5 (83%) TN inactive 0 0 
Maneb 12427–38-2 0.00 inactive 0 (0%) 6 (100%) TN inactive 0 2 (100%) 

Overall classifications and potencies for the nine (excluding EDTA) potential ‘Novel estrogenic substances’ (bold italic) and the 20 hit expansion chemicals that were 
tested in the E-Morph Screening Assay as compared to the ToxCast ER Agonist Score and the available ToxCast ER agonist assay screening data. Consensus predictions 
considering modes of all single class predictions from the individual ER models or ER screening assays. EC50, mean potency from multiple independent runs. NA, not 
available/not applicable. FN, false negative substances. TN, true negative substances. 
a)Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model (Browne et al. 2015). 
b)CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (Mansouri et al. 2016). 
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4.1. The E-Morph screening Assay provides a reliable and robust human- 
relevant readout to determine ER signaling activity by phenotypic HTS 

The E-Morph Assay (Kornhuber et al. 2021) addresses a human- 
relevant functional endpoint of adversity, i.e., the perturbation of 
cell–cell adhesion leading to breast cancer progression and metastasis 
(Bischoff et al. 2020). In the present study, we further developed the 
applicability of the original E-Morph Assay for automated HTS using 
local changes in E-Cad-GFP signal intensity (SI) as a novel, simple and 
reliable HTS-compatible phenotypic readout for estrogenic activity (see 

Fig. 1). The SI readout was very robust, with each valid run in the pri-
mary screen achieving a Z’-factor above 0.5 (Iversen et al. 2006; Zhang 
et al. 1999). The determined EC50 values under anti-estrogenic (Fulv 
treatment) and estrogenic (Fulv + E2 treatment) conditions were 
directly comparable to the results of the original E-Morph Assay 
(Kornhuber et al. 2021) with the advantage that the adapted assay 
avoids both live-cell staining and extensive quantitative image analysis 
procedures. Based on an intact, complete, and interconnected endoge-
nous estrogen signaling pathway, the E-Morph Screening Assay there-
fore facilitates the efficient identification of substances with estrogenic 
activities and the determination of their potencies from concentration- 
response curves. It could therefore help to accelerate the identification 
of new substances of concern and support the comprehensive assessment 
of potential mixture effects of EDCs (Schlotz et al. 2017; Yu et al. 2019). 

4.2. E-Morph phenotypic screening correctly identified 27 ‘known’ 
estrogenic substances and 10 ‘novel’ substances with potential estrogenic 
activity 

We used the E-Morph Screening Assay to analyze a novel substance 
library (BfR-ChemLibrary) comprising 430 toxicologically-relevant in-
dustrial chemicals, biocides, and plant protection products (see Figs. 2 
and 3). We identified 27 estrogenic substances of which the potencies of 
24 substances correlated very well with the ToxCast ER pathway model 
(Browne et al. 2015; Judson et al. 2015) (see Fig. 4, Table 1). We further 
identified 10 additional potential estrogenic substances that have not 
been described as such in ToxCast before (see Fig. 4, Table 2). According 
to a recently proposed human-relevant potency threshold (HRPT) for 
ERα agonism, the minimum relative activity of a test substance must be 
at least 0.01% of strong estrogens (E2 or 17α-Ethinylestradiol) to exert 
adverse effects in humans via an ERα-mediated mechanism (Borgert 
et al. 2018). In the E-Morph Screening Assay, the potencies of the active 
substances (Fig. 4; Table 1 and 2) were in the range of 1 nM (strong 
activity, e.g., E2) to 10 µM (weak activity, e.g., Apigenin) and, thus, 
fitted well into the HRPT with only Zineb displaying a potency slightly 
below. Subsequent hit verification studies, including gene expression 
profiling and ERα binding supported the detected estrogenic activity of 
Hexythiazox, NETA, Nandrolone, Phloretin, Diuron, and Bisphenol F but 
not of 2,4,6-TTBP, Zineb, and Azoxystrobin (see Fig. 5). 

4.3. Use of in silico tools increased the hit-rate and supported the hit 
evaluation 

The E-Morph screening results for the group of ‘novel’ substances 
(Table 2) were further substantiated by additional testing of 20 struc-
turally similar substances that were selected based on an in silico simi-
larity search for subsequent hit expansion screening, which identified in 
total another nine ER active substances (see Fig. 6 and Table 3). While 
being structurally very similar to Bisphenol F, 4-Benzylphenol was 
inactive in the E-Morph Screening Assay. Additional docking studies 
detected a difference in the binding mode (i.e., a missing hydrogen 
bond) to ERα, which could explain the difference in activity of otherwise 
very similar molecules (see Fig. 7). Hence, computational docking an-
alyses can significantly support the interpretation of in vitro screening 
results, particularly regarding the capability of substances to bind to 
nuclear hormone receptors. In addition, we built seven in silico ER 
models using the CP framework and the publicly available ToxCast assay 
data to predict further substances with potential estrogenic activity and 
to support the E-Morph screening results. The high predictivity for 
active substances (see Table 5 and 6), which is particularly important 
from a regulatory point of view to protect human health and the envi-
ronment, support that the E-Morph Screening Assay and the CP ER 
models are fit-for-purpose to be applied to new data in an automated 
manner. 

Table 6 
Predictivity of the E-Morph Screening Assay and CP ER models.     

U.S. EPA in 
chemico/in 
vitro ER 
screening 
assays 

E-Morph 
Screening 
Assay    

Consensus test 
results 

Test results 

Conformal 
prediction 
ER models 

Consensus 
predictions 

N 25 26 
NTrue Actives 15 16 
NFalse Inactives 0 2 
NTrue Inactives 4 3 
NFalse Actives 6 5 

Concordance 76% 73% 
Pactive class 100% 89% 
Pinactive class 40% 38%         

U.S. EPA in 
chemico/in 
vitroER 
screening 
assays 

Conformal 
prediction 
ER models    

Consensus test 
results 

Consensus 
predictions 

E-Morph 
Screening 
Assay 

Test results N 28 26 
NTrue Actives 13 16 
NFalse Inactives 2 5 
NTrue Inactives 7 3 
NFalse Actives 6 2 

Concordance 71% 73% 
Pactive class 87% 76% 
Pinactive class 54% 60%         

E-Morph 
Screening 
Assay 

Conformal 
prediction 
ER models    

Test results Consensus 
test results 

U.S. EPA in 
chemico/in 
vitro ER 
screening 
assays 

Consensus 
predictions 

N 28 25 
NTrue Actives 13 15 
NFalse Inactives 6 6 
NTrue Inactives 7 4 
NFalse Actives 2 0 

Concordance 71% 76% 
Pactive class 68% 71% 
Pinactive class 78% 100% 

Concordance between the E-Morph Screening Assay, the CP ER models, and the 
available ToxCast ER agonist assay screening data was calculated based on the 
results of the nine (excluding EDTA) ’Novel estrogenic substances’ and the 20 hit 
expansion chemicals. Note that the total numbers (n) of substances differ 
because for some of the 29 test substances, no conclusive CP ER model classi-
fications were achieved and not all of the 29 substances were tested in every of 
the seven ToxCast ER screening assays. Consensus predictions considering 
modes of all single class predictions from the individual CP ER models or Tox-
Cast ER screening assays. n, total number of substances. N, number of true/false 
active/inactive substances for each type of comparison. P, predictivity for 
active/inactive substances. 
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4.4. Future applications of the E-Morph screening Assay and the CP ER 
models 

Provided that a future validation study demonstrates transferability 
and inter-laboratory reproducibility, the E-Morph Screening Assay ap-
pears to be generally suitable for inclusion in existing HTS projects, 
where it can be used to identify both substances with estrogenic and 
anti-estrogenic activities using the same phenotypic readout. In ER 
testing batteries, the E-Morph Screening Assay could be used for effi-
cient analysis of comprehensive substance libraries in order to prioritize 
substances for subsequent testing against higher tier endpoints, thereby 
avoiding unnecessary animal testing. ER testing strategies could addi-
tionally benefit from further development and implementation of in si-
lico tools, including similarity search approaches and CP models, in the 
evaluation of screening results and targeted selection of candidate 
substances for follow-up in vitro analysis. Well-trained CP ER models 
may ultimately even replace existing ER HTS assays that resemble the 
complex (patho-)physiological processes in humans to a rather limited 
extent. The combination of human-relevant HTS assays and CP models 
in testing and assessment strategies can ultimately help to increase 
confidence in in vitro results for the regulatory decisions making and 
thus make an important contribution to achieve the goal of a next 
generation risk assessment framework that does no longer depend on 
animal experimentation. 
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