
The diffusion metrics of African Swine Fever in Wild
Boar

Hartmut H. K. Lentz, Hannes Bergmann, Franz J. Conraths,
Arwed J. Herrmann, Carola Sauter-Louis

Institute of Epidemiology, Friedrich-Loeffler-Institut, Südufer 10, 17493
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Abstract. To control African Swine Fever (ASF)
efficiently, easily interpretable metrics of the out-
break dynamics are needed to plan and adapt the
required measures. We found that the spread pat-
tern of African Swine Fever cases in wild boar follows
the mechanics of a diffusion process, at least in the
early phase, for the cases that occurred in Germany.
Following incursion into a previously unaffected area,
infection disseminates locally within a naive and
abundant wild boar population. Using real case data
for Germany, we derive statistics about the time
differences and distances between consecutive case
reports. With the use of these statistics, we gener-
ate an ensemble of random walkers (continuous time
random walks, CTRW) that resemble the properties
of the observed outbreak pattern as one possible
realization of all possible disease dissemination pat-
terns. The trained random walker ensemble yields
the diffusion constant, the affected area, and the
outbreak velocity of early ASF spread in wild boar.
These quantities are easy to interpret, robust, and
may be generalized or adapted to different regions.
Therefore, diffusion metrics can be useful descriptors
of early disease dynamics and help facilitate efficient
control of African Swine Fever.

1 Introduction

African swine fever virus (ASFV) causes an interna-
tionally spreading haemorrhagic pig disease with a
massive socio-economic impact [1, 2]. The current
African swine fever (ASF) pandemic originated from
disease incursion of genotype 2 ASFV in Georgia
during 2007 [3]. From there, ASF spread northwards
into the Caucasus region then further disseminated

westwards into Europe, eastwards into Southeast
Asia [2], and even jumped across the Atlantic to
threaten the Americas with outbreaks reported in
the Dominican Republic and Haiti in 2021 [4]. Since
the start of the pandemic, an estimated quarter of
the world domestic pig population has been deci-
mated by the disease, causing food insecurity and
economic losses on an unprecedented global scale
[5, 6, 7]. Particularly during the early phases follow-
ing new ASF incursion, well informed anticipation of
disease spread is critical for controlling the disease
efficiently.

As a consequence of the incursion into Georgia
in 2007, ASF (genotype 2) reached the territory of
the European Union (EU) in 2014, when first ASF
cases were reported in wild boar in Lithuania and
Poland [8, 9, 10]. Since then, and despite ongoing
control efforts as well as intensive study of disease
dynamics, ASF has been moving predominantly in
western direction, affecting many more EU countries
[11]. Among them, in 2020, ASF has also reached
Germany [12], where the disease continues to spread
in initially distinct spatial clusters [13].

In eastern and central Europe, wild boar seem to
represent the predominant, disease-sustaining reser-
voir host in the current European ASF scenario. This
is based on the spatial extent of cases in this pig type
[14], as well as their critical role in disease transmis-
sion through persistence of virus in the environment
([15, 16, 2, 17], and others). Infected wild boar that
succumb to the disease, which is characterized by a
case/fatality ratio of > 90 %, may harbor infectious
virions for weeks, if not months, after the death of
the animals.

Unexpected occurrences of wild boar-ASF cases in
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locations that are a long distance away from the near-
est previously affected area, such as suspected point
incursions into the Czech Republic [18], Belgium [19],
into the western part of Poland [17], or most recently
into Northern Italy [4], indicate that ASF can be relo-
cated in association with human activities. However,
typically ASF spreads in a gradual manner through
infections and dissemination of disease in wild boar
at a local scale. Whilst ASF outbreaks in domestic
pigs appear to be manageable in most countries, the
gradual disease spread in wild boar is very difficult
to control and often persists [20, 21, 22]. Based on
historic ASF case reports, average disease spread ve-
locities of approximately 1 to 1.5 km per month have
been estimated [23, 11, 24]. Control measures that
efficiently manage ASF dissemination following new
incursions require risk-based allocation of limited
resources and rely on disease spread predictions that
are locally applicable to the acute outbreak situation
in the field.

Most models for African Swine Fever in wild boar
depend on a large number of parameters and as-
sumptions (see [25] for a comprehensive overview).
Therefore, they suffer from high complexity and it
is difficult to draw practical conclusions from these
models. For controlling African Swine Fever, simple
and easily understandable metrics are needed, such
as the following: Given a new occurrence of ASF:
(1) What is the affected area for the next time?, (2)
How far does the epidemic reach from the index case
over time?, and (3) What is the velocity of spread?

In order to answer these questions, we take a per-
spective different from most predictive models: What
if the underlying process is not relevant, and the out-
break points are just generated by a random-process?
If we understand this process, we can compute all
the desired metrics that are described above.

Even though ASF dynamics seem to be complex
in general, disease dissemination appears to follow
a remarkably simple pattern when considered on
a local scale. In fact, the local dynamics of cases
appear as growing areas of new cases emerging, and
long distance jumps are extreme events [11]. On the
one hand, long distance jumps are extremely hard
to predict as they are presumably caused by human
activity [3]. On the other hand, short distance spread
is mainly caused by wild boar and understanding
its dynamics is crucial for efficient counter measures.
Therefore, robust metrics are needed to quantify the
dynamics of local ASF outbreaks.

In order to provide such metrics, we follow the idea
to describe the epidemic as a pure diffusion process.
Logically, an epidemic is actually not a pure diffusion

process – i.e. a reaction-diffusion process – but if an
epidemic can be modeled in an accurate way by a
diffusion process, this allows to interpret the results
mathematically in a relatively simple fashion.

Diffusion is a macroscopic process that can be mi-
croscopically described as a stochastic process, also
known as Brownian motion [26, 27, 28]. In the con-
text of ASF, the microscopic process is the single
local outbreak. Once the logic of this microscopic
process is understood and calibrated for the data, dif-
fusion of disease spread can be extrapolated spatially
and over time.

For a purely diffusive process, a similar approach
has been used on human mobility data [29]. In the
context of ASF, a probabilistic model considering
random walks by wild boar with infection dynam-
ics has been proposed previously [30]. However, in
contrast to that model, we consider the outbreak
pattern generating process itself as a random walk.

Another model considers the diffusion around a
primary case and including a habitat-suitability com-
ponent [31]. The diffusion component in [31], how-
ever, is not time dependent and therefore the model
is not suitable for temporal predictions. A predic-
tive model for ASF has been proposed in [32]. This
approach is based on a compartment model and is
therefore suitable for a prediction, even though it is
mainly driven by assumptions instead of data which
is typical for this model type. Moreover, it does not
consider a spatial component.

Besides mathematical models, individual based
models have been used in order to estimate the tran-
sition parameters of ASF, based on real outbreak
data [33]. This model contains detailed data, and
the movement and infection dynamics are considered
explicitly. In contrast to the model proposed in the
present paper, however, the model in [33] requires
a rather large number of assumptions. Finally, the
local wave front velocity of ASF has been modeled
for Belgium in [34].

All of the mentioned models provide good insights
on the dynamics of ASF. What has been missing
so far is a model capturing the ’physics’ behind the
outbreak pattern. As stated above, despite the fact
that ASF is an infection process, it appears as a
pure diffusion process on the map. For this reason,
we fit a diffusion model to the outbreak data in
order to measure the diffusion parameters of the
ASF epidemic directly.
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2 Material and Methods

2.1 Data

We use the official case data for Germany cover-
ing all cases from 10th September 2020 to 9th July
2021 from the national animal disease database
(Tierseuchennachrichtensystem) [35]. Being in the
early phase of the outbreaks, the data can be sepa-
rated into clusters [13], which are shown in Figure
1. In this paper, we will analyze one representative
cluster in detail (Cluster 1), for reasons of clarity. All
other clusters show similar microscopic patterns and
we compare all clusters briefly in the results section.

Each instance in the data set represents a case, i.e.
time and coordinates of a positive detected wild boar.
We refer to every such instance as an event, and use
this term in particular for the random walk model
instead of cases. For clarity, in this work we refer to a
multiplicity of ASF-cases in wild boar as an outbreak
(which should not be confused with occurrence of
ASF in domestic pigs).
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Figure 1: Outbreak data and its separation into clusters.

In order to get a first simple estimate of the out-
break velocity, we consider the distance to the index
case for each event over time. This is shown in Fig-
ure 2. Using a linear fit with vanishing intercept,
we obtain a velocity of 0.042km/day. As we show
below, this approach gives a good first estimate of
the velocity, although it does not capture all features
of the dynamics.

For a deeper understanding of the outbreak pat-
tern, we have to consider the causal ordering of the

data
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Figure 2: Distance to index case as a function of time.
Every data point represents one event. In
case there were multiple events at one day,
the y-axis is the mean distance. Fitted slope is
0.042km/day.

events in more detail. It is important to stress the
fact that the data set does not contain any causal
information between the events in the first place. In-
deed, the measured data points represent an underly-
ing – and unknown – infection tree that describes in
detail, which event has caused which other event(s).

Since the exact relationships in this infection tree
data are unknown, we estimate causality in the fol-
lowing way (a similar idea was used in [36]):

1. Sort events by time.

2. Generate a directed acyclic graph (DAG) T =
(V (t), E) with edge set E = ∅, where each node
v(t) ∈ V (t) is an event with time stamp t.

3. Connect nodes in T with directed edges from
event s to event t as follows: whenever the target
event t is after or at the same time as the source
event s, draw a directed edge (s, t). Thus, the
added edges E 6= ∅ in T comprise all possible
causal connections between the events.

4. Weight all edges with the reciprocal geographical
distance between the respective nodes/events.
(Vanishing distances are assigned a weight of
zero.)

5. Finally, compute a minimum spanning tree
on the now weighted DAG. For this, we used
the Chu-Liu/Edmond Algorithm [37, 38] imple-
mented in [39].

This procedure arranges the events in a causally
and geographically plausible order. Using the mini-
mum spanning tree, we obtain the distances between
the events. This yields the jump length distribution.
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The empirical distribution of waiting times follows
directly from the outbreak data. We sort the events
by time and compute the differences between consec-
utive events yielding the waiting time distribution.

2.2 Brownian Motion

In the present work we consider the outbreak data
as points that are seemingly generated randomly in
space. The only constraint is that new data points
are generated in geographical and temporal closeness
to existing points. We hereby underlie the simple
assumption that new data points are somehow related
to existing data points. If we assume in the first place
that every existing data point generates exactly one
new data point at the next time step, the generating
process would be Markovian. On closer consideration,
however, this assumption is not valid, since waiting
times occur between the cases, and thus secondary
outbreaks can be later in the future.

Random walk processes considering waiting times
are called continuous time random walks (CTRW).
Such a process works as follows: A random walker
is initiated at time t = 0 (time of the first case)
at a location, say (x0, y0) = (0, 0) (location of the
first case). Then it waits for a random time τ1 and
makes a jump of random length l1 in a random
direction. Thereafter, it waits for a random time τ2
and performs another jump of random length l2 and
so forth. We assume that jump lengths and waiting
times are uncorrelated. Jump lengths are sampled
from a distribution φ(l) and the waiting times from
a distribution ψ(τ). In this work, we determine
the forms of φ(l) and ψ(τ) from the outbreak data.
Hence, we generate synthetic outbreak data that is
statistically equivalent to the observed data.

The CTRW is implemented as follows:

• Start at the coordinates of the index case. Set
these (x0, y0) = (0, 0).

• Sample time jumps from the waiting-time dis-
tribution ψ(τ) and generate a sequence of time
points (event points) following the time jumps.

• For each event point: sample a jump length from
the jump-length distribution φ(l) and perform
a step in a random direction.

The latest event determines the duration T of the ran-
dom walk. We refer to one realization as a trajectory
X(t).

It is important to stress the fact that, in contrast
to an epidemic process, a random walker trajectory
can only be at one location at a time. In order to

address this factor, we will correct the available time
for the random walker.

2.3 Time correction in random walk

Besides the above-mentioned waiting times, another
crucial assumption for Markovian random walks does
not hold for the outbreak data. On the one hand,
there can be multiple cases at every time step, that is,
an epidemic can be at multiple locations at the same
time. On the other hand, a classic random walker
can only be at one location at a time. In order to
resolve this issue, we use the following idea: Let the
random walk have a maximum duration of T . In the
easiest case exactly one event would occur at each
day. However, considering the case where on average
M events occur per day, the random walker must
have the ability to generate these events without
spending time. We call M the multiplicity of the
process. As an example, if we have M = 3 events per
day and the maximum duration is T = 100 days, then
the random walker has MT = 300 available days for
generating the 300 events in total. Finally, in order
to return to the original time scale, we rescale the
new maximum duration (300 days) back to the initial
value (100 days).

2.4 Diffusion Coefficient, expected radius,
and velocity

The Brownian motion described above is a single
realization of a microscopic random process. Averag-
ing over a large number of random walks yields the
macroscopic properties of the process. Since every
random walker can walk in a different direction, the
expected location is 〈X(t)〉 = (x0, y0) = 0 for all
times t (the brackets 〈·〉 refer to the average over all
random walkers).

For large times t a random walker is expected
to be located at a great distance from the origin.
Therefore, the mean squared displacement (MSD)〈
X(t)2

〉
increases with time. The detailed form of the

MSD has to be determined empirically. In case the
MSD follows a linear relation, i.e.

〈
X(t)2

〉
∼ t, the

corresponding macroscopic process is called normal
diffusion. In that case〈

X(t)2
〉

= 4Dt (1)

and the constant D is the diffusion coefficient. Equa-
tion (1) represents roughly the variance of the ran-
dom walkers’ positions after time t.

The square root of the MSD is the expected radius,
on which all random walkers are expected to be after
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time t, i.e.

r(t) =
√
〈X(t)2〉 =

√
4Dt. (2)

We identify this quantity with the radius of the af-
fected area or the distance between the index case
and the wave front.

Finally, the velocity of the wave front v(t) can be
defined as the change of the radius with respect to
time, thus

v(t) =
dr(t)

dt
=

√
D

t
. (3)

Note that r(t) and v(t) are not linear.

Our implementation of the mentioned methods is
available online [40].

3 Results

To bring all events (cases) in a plausible order, we
first sort the outbreak data by detection time and
compute the minimum spanning tree. This tree
provides us with the distribution of shortest jump
lengths. The waiting time distribution follows from
the outbreak data directly. Both distributions are
shown in Figure 3.
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Figure 3: Jump length distribution (A) and waiting time
distribution (B) of one outbreak. (Respective
values are for events ordered using the mini-
mum spanning tree. Cluster 1).

As mentioned above, a random walker cannot be
at multiple locations at the same time, as opposed
to epidemic processes, where multiple events can
occur simultaneously. This is exemplarily shown for
Cluster 1 in Figure 4.

Multiplicity
Events
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en
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Day
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Figure 4: Number of events per day of cluster 1. The
multiplicity is 3.4.

On average 3.4 events occur per day over 300
days in total, i.e. the multiplicity of the process is
M = 3.4. Therefore, we multiply the available time
for the random walker by M . This yields 1020 time
steps which are afterwards rescaled to 300 days.

Using the distributions from Figure 3 and the
multiplicity M we generate an ensemble of 10,000
random walkers. In order to get an intuition of the
microscopic properties of the random walks, we show
one realization in Figure 5.

Outbreak Data
Random Walkers

y

−5

0

5

10

15

x
−5 0 5 10

Figure 5: Real outbreak data vs. one realization of a
random walk. The index case is set to coor-
dinates (0, 0). Outbreak data from 300 days,
random walk with multiplicity 3.4 resulting in
1020 steps that represent 300 days.

Apparently, this realization shows great structural
similarity to the observed outbreak data, in the sense
that both points set appear to be sampled from a
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similar distribution. Note that a random walk is
an isotropic process, i.e. all directions are equally
likely. It is therefore on purpose that the outbreak
data and the synthetic data points can be in different
directions as long as they have a similar structure.

We now study the macroscopic (diffusion) proper-
ties of the random walker ensemble. Figure 6 shows
the mean squared displacement (MSD) over an en-
semble of 10,000 random walkers. The MSD follows
a linear form indicating that the measured distri-
butions result in a normal diffusion process. Us-
ing a linear fit, we obtain a diffusion coefficient of
D = (0.22± 0.01) km2/day. This value is a median
over all realizations and the error is the inter-quartile
range.

4Dt
Random Walkers
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Figure 6: Mean squared displacement for an ensemble
of 10,000 random walkers (red line). The
resulting diffusion constant D follows from
a linear fit (blue dashed line) which gives
D = (0.22± 0.01) km2/day.

The radius of the affected area follows the square
root shaped relation shown in Figure 7 A. After a
steep increase in the early phase of the epidemic,
the radius grows over time, but the front velocity
decreases. Note that the slowing down of the wave
front cannot be captured by the simple linear ap-
proach used in Figure 2. The wave front velocity
over time is shown in Figure 7 B. The latter shows a
quasi constant behavior in the time scale of interest,
i.e. roughly 0.04 km/day 150 days after the first case.

3.1 Comparison between the clusters

So far, we have only studied one selected cluster. In
Figure 8 we show the diffusion coefficients for all clus-
ters. Each value is a median over 10,000 simulations.
The error bars represent the inter quartile ranges.

The figure demonstrates that even if there are
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certain differences in the clusters, their diffusion coef-
ficients show a remarkable similarity. Most diffusion
constants lie in a band between 0.2 and 0.5 km2/day.

We provide a detailed description of the diffusion
metrics for all clusters in the Supplementary Infor-
mation.

4 Discussion

In the present study we have considered the outbreak
propagation of African Swine Fever as a diffusion
process. Instead of making assumptions on wild boar
movements, we focussed on the process generating
the outbreak data directly. Although this is an ab-
stract concept, it allows us to measure the physical
properties of the observed outbreak pattern.

Assuming that the outbreak propagation follows
a random walk appears drastic, since in contrast to
a random walk, new cases can appear at multiple
locations at the same time. This could be modeled
by a branching process, where the random walker can
reproduce itself. As it has turned out, however, such
a branching process becomes irrelevant, whenever all
random walkers are not restricted in their possible
location. This property of the model is supported
by the fact that infected animals can freely return
to already infected areas, that is, the disease can
not be pushed out of already infected areas in the
considered early phase of the outbreak.

Although our results provide simple metrics for the
propagation of ASF, the computation of these metrics
is not trivial in general. On the one hand, estimat-
ing the wave front velocity using the simple linear
distance to the index case has turned out to give a
value remarkably similar to that of our model. On
the other hand, this simple approximation does not
capture the slowing down of the wave front over time
that is predicted by our model. For the random walk
model, besides the needed Monte-Carlo-simulations,
finding the distributions for waiting times and jump
lengths requires manual adjustments. These could be
optimized using a hyper-parameter-tuning scheme.
To obtain interpretable results, the real outbreak
clusters should be not constrained, as it may be
the case due to geographical barriers (rivers, roads,
fences, etc.). The more the real outbreak clusters are
constrained, the more manual adjustment is required.
Considering the time data for the events, the random
walk approach has proven useful, although we have
used the date, when ASF infection in dead wild boar
were confirmed – and not the date, when the animals
died. In a next step, the estimated death times of the

wild boar could be used, by applying the minimal
postmortem-interval [41].

As we have demonstrated in Figure 8, the proper-
ties of the different clusters are remarkably similar.
This seems to be reasonable, as the counter measures
implemented overall are similar in all of the clusters.

Nevertheless, Clusters 4 and 6 show higher diffu-
sion coefficients. In the case of Cluster 4, this could
be due to the fact that the time needed for fences
to be erected was longer than in other cluster areas.
Moreover, the first cases occurred along an extended
area of the border without any expansion for the
first 80 days. For Cluster 6, this could be caused by
the fact that the disease occurred in an urban area,
which did not allow to implement the same control
measures as in the other clusters. Moreover, the
different diffusion coefficient might be caused by the
fact that the cases occurred along an extended area
at the German-Polish border, thus showing a high
degree of constraint (see Figure 1, and Supplemen-
tary Information for more details) It is important to
stress the fact that this constraint is caused primarily
by the data availability and not by the underlying
process. That is, we would expect to get a more
consistent picture here, if Polish data would have
been included in the analysis.

Consequently, we state that the observed patterns
follow a general mechanism, at least for this data
set representing a particular area in Germany. In
conclusion, it seems possible to derive a general dif-
fusion law for this kind of setting, which might be
helpful for disease control.
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6 Supplementary Information

6.1 Wave front velocities

We compare the estimated velocities found by simple
linear regression as done in the main text (Figure 2).
The result is shown in Figure A.1. As expected, the
velocities are related to the diffusion coefficients for
the considered clusters, i.e. they show similar values,
except Clusters 4 and 6.
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Figure A.1: Velocities for all clusters estimated using
linear regression of the distances to the in-
dex case.

6.2 Mean squared displacements of
Clusters 2–6

6.2.1 Cluster 2

Figure A.2 shows a realization of a random walk
trained on the outbreak data. The multiplicity of
the process is 4.1.
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Figure A.2: Real outbreak data vs. one realization of a
random walk for Cluster 2. The index case
is set to coordinates (0, 0). Outbreak data
from 265 days, random walk with multiplic-
ity 4.1 resulting in 1087 steps.

We show the mean squared displacement in Fig-
ure A.3. The diffusion coefficient is D = (0.30 ±
0.01) km2/day.
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Figure A.3: Mean squared displacement for Cluster 2.
Mean over 10,000 random walkers (red
line). The resulting diffusion constant is
D = (0.30± 0.01) km2/day.

6.2.2 Cluster 3

Figure A.4 shows a realization of a random walk
trained on the outbreak data. The multiplicity of
the process is 3.6.
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Figure A.4: Real outbreak data vs. one realization of a
random walk for Cluster 3. The index case
is set to coordinates (0, 0). Outbreak data
from 245 days, random walk with multiplic-
ity 3.6 resulting in 882 steps.

We show the mean squared displacement in Fig-
ure A.5. The diffusion coefficient is D = (0.50 ±
0.01) km2/day.

6.2.3 Cluster 4

Figure A.6 shows a realization of a random walk
trained on the outbreak data. The multiplicity of
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Figure A.5: Mean squared displacement for Cluster 3.
Mean over 10,000 random walkers (red
line). The resulting diffusion constant is
D = (0.50± 0.01) km2/day.

the process is 4.7.
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Figure A.6: Real outbreak data vs. one realization of a
random walk for Cluster 4. The index case
is set to coordinates (0, 0). Outbreak data
from 249 days, random walk with multiplic-
ity 4.7 resulting in 1170 steps.

We show the mean squared displacement in Fig-
ure A.7. The diffusion coefficient is D = (1.69 ±
0.09) km2/day.

6.2.4 Cluster 5

Figure A.8 shows a realization of a random walk
trained on the outbreak data. The multiplicity of
the process is 3.0.

We show the mean squared displacement in Fig-
ure A.9. The diffusion coefficient is D = (0.16 ±
0.01) km2/day.
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Figure A.7: Mean squared displacement for Cluster 4.
Mean over 10,000 random walkers (red
line). The resulting diffusion constant is
D = (1.69± 0.09) km2/day.
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Figure A.8: Real outbreak data vs. one realization of a
random walk for Cluster 5. The index case
is set to coordinates (0, 0). Outbreak data
from 121 days, random walk with multiplic-
ity 3.0 resulting in 363 steps.
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Figure A.9: Mean squared displacement for Cluster 5.
Mean over 10,000 random walkers (red
line). The resulting diffusion constant is
D = (0.16± 0.01) km2/day.
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6.2.5 Cluster 6

Figure A.8 shows a realization of a random walk
trained on the outbreak data. The multiplicity of
the process is 6.2.
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Figure A.10: Real outbreak data vs. one realization of a
random walk for Cluster 6. The index case
is set to coordinates (0, 0). Outbreak data
from 127 days, random walk with multi-
plicity 6.2 resulting in 787 steps.

We show the mean squared displacement in Fig-
ure A.11. The diffusion coefficient is D = (1.54 ±
0.07) km2/day.
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Figure A.11: Mean squared displacement for Cluster 6.
Mean over 10,000 random walkers (red
line). The resulting diffusion constant is
D = (1.54± 0.07) km2/day.

6.2.6 Summary and discussion of Clusters 2–6

The Clusters 2, 3, and 5 show a behavior similar to
Cluster 1 in the main text. Their multiplicities are
relatively low and most realizations of random walks
appear very similar to the real outbreak data.

Clusters 4 and 6 show remarkable differences be-
tween synthetic and real outbreak data, as shown

in Figures A.6 and A.10. The figures demonstrate
that the generated data points cover a larger area
when compared to the more compact outbreak data.
This is caused by the fact that both clusters – and
Cluster 6 in particular – are strongly geographically
constrained by data being restricted to within the
German country borders. In particularly, Cluster 6
is located along the river Oder. This implies that a
large proportion of cases on the polish side is missing
in the cluster.

Since the random walk model does not take into
account such geographical constraints, the random
walkers move in all directions ignoring the constraints.
As a consequence, they cover a much larger area (take
the eastern regions in Figure A.10 as an example)
and thus the diffusion constant is magnified. Cluster
4 shows a similar behavior, even if to a weaker extent
(Figure A.6).

An additional bias in Cluster 6 is the high mul-
tiplicity of 6.2. This is the highest value among all
clusters and it causes a strong bias in the random
walk model, since the random walker has to cover
more than 6 events occurring in the data each day.
However, the random walk assumption only holds
for multiplicities close to 1. Moreover, Cluster 6 is
located in an urban area and consequently this re-
striction did not allow for the same control measures
as in the other clusters.
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