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Abstract [ 106 / about 100 words ] 16 

We present a chromosome-scale annotated assembly of the rye (Secale cereale L. inbred line ‘Lo7’) 17 

genome, which we use to explore Triticeae genomic evolution, and rye’s superior disease and stress 18 

tolerance. The rye genome shares chromosome-level organization with other Triticeae cereals, but 19 

exhibits unique retrotransposon dynamics and structural features. Crop improvement in rye, as well as in 20 

wheat and triticale, will profit from investigations of rye gene families implicated in pathogen resistance, 21 

low temperature tolerance, and fertility control systems for hybrid breeding. We show that rye 22 

introgressions in wheat breeding panels can be characterised in high-throughput to predict the yield 23 

effects and trade-offs of rye chromatin.  24 
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Main Text [ 3979/4000 words (excl methods, captions); 7/8 visual 25 

items] 26 

Rye (Secale cereale L.) is a member of the grass tribe Triticeae and close relative of wheat (Triticum 27 

aestivum L.) and barley (Hordeum vulgare L.), grown primarily for human consumption and animal feed. 28 

Rye is uniquely tolerant of biotic and abiotic stresses and thus exhibits high yield potential under 29 

marginal conditions. This makes rye an important crop along the northern boreal-hemiboreal belt, a 30 

climatic zone predicted to expand considerably in Eurasia and North America with anthropogenic global 31 

warming1. Rye chromatin introgressions into bread wheat can significantly increase yield by conferring 32 

disease resistance and enhanced root biomass2-5. Rye also possesses a unique bi-factorial self-33 

incompatibility system6, and rye genes controlling self-compatibility and male fertility have enabled the 34 

establishment of efficient cytoplasmic male sterility (CMS)-based hybrid breeding systems that exploit 35 

heterosis at large scales7. Implementation of such systems in cereals will be invaluable to meeting future 36 

human calorific requirements. 37 

Rye is diploid with a large genome (~7—8 Gbp)8 compared even to the diploid barley genome and the 38 

subgenomes of the hexaploid bread wheat9. Like barley and wheat, rye entered the genomics era very 39 

recently. A virtual gene-order was released in 201310, and a shotgun de novo genome survey of the same 40 

line became available in 201711. Both resources have been rapidly adopted by researchers and 41 

breeders12-14, but cannot offer the same opportunities as the higher quality genome assemblies available 42 

for other Triticeae species9,15-19. 43 

We report the assembly of a chromosome-scale genome sequence for rye line ‘Lo7’, providing insights 44 

into rye genome organisation and evolution, and representing a comprehensive resource for genomics-45 

assisted crop improvement. 46 
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Results 47 

An annotated chromosome-scale genome assembly 48 

 49 
Figure M-FISH. FISH of mitotic rye chromosomes with ScSat44, ScSat18 and ScSat20-537-specific probes (left) and in silico predicted repeat 50 
distribution (right), showing agreement between real and predicted hybridization sites. Chromosomes are counterstained with DAPI (blue), 51 
ScSat44 in green (chromosome 5R is arrowed), ScSat18 and ScSat20-537 in red. Arrows mark chromosome-specific binding of ScSat44 to 52 
chromosome 5R. Darkness is scaled evenly between the maximum and minimum densities of each repeat across all assembled chromosomes 53 
(Methods). 54 
 55 
We estimated the genome size of 15 rye genotypes by flow-cytometry (Methods, Note S-FLOWCYT) and 56 

found ‘Lo7’ among the smaller of these at 7.9 Gbp. We de novo assembled scaffolds representing 6.74 57 

Gbp of the ‘Lo7’ genome (Table 1) from >1.8 Tbp of short read sequence (Methods; Notes S-PSASS, S-58 

ASSDATA). The scaffolds were ordered, oriented and curated using a variety of independent data 59 

sources including: (i) chromosome-specific shotgun (CSS) reads10, (ii) 10X Chromium linked reads, (iii) 60 

genetic map markers11, (iv) 3D chromosome conformation capture sequencing (Hi-C)20, and (v) a 61 

Bionano optical genome map (tbls. S-ASSSTATS—S-OPTSTAT). After intensive manual curation, 83% of 62 

this assembled sequence (i.e. ~75.5% of the total genome size) was arranged first into super-scaffolds 63 

(N50 >29 Mbp) and then into pseudomolecules. Annotation of various features (Methods) yielded 64 

34,441 high confidence genes, which we estimate comprises 97.9% of the entire gene complement (tbl. 65 
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S-ANNOTSTAT), 19,456 full-length DNA LTR retrotransposons (LTR-RTs) from six transposon families (tbl. 66 

S-TEANNOT)21, 13,238 putative miRNAs in 90 miRNA families (tbls. S-miRNA_sequences—S-miRNA 67 

target_table), and 1,382,323 tandem repeat arrays (tbls. S-TANDREPCOMPN-S-SAT_ANNOT). 68 

Fluorescence in situ hybridisation (FISH) to mitotic ‘Lo7’ chromosomes using probes targeting tandem 69 

repeats showed that scaffolds for which assignment to a chromosome pseudomolecule was difficult are 70 

highly enriched in short repeats (Methods; Note S-REP). 71 

Gene collinearity among the Triticeae 72 

We used the assembly to closely assess gene-level collinearity between rye, barley and bread wheat 73 

(Methods; figs. M-TRACKSa, Note S-COLLIN)9-11,15,22-24. As previously reported, Triticeae chromosome 74 

groups 1–3 appear essentially collinear across all three species9,10,15. Rearrangements such as those 75 

between 4R and 7R are observable at high resolution, along with several inversions (e.g. on 1RL and 3RL; 76 

fig. M-TRACKSa). Rearrangements affecting subtelomeres were reflected in the absence of hybridisation 77 

signals from two subtelomere-specific FISH probes developed in this study (Note S-FISH; tbl. S-FISH). 78 

Regions of rye-barley collinearity contrast with distinct low-collinearity ‘modules’ (henceforth denoted 79 

LCMs) that surround the centromeres of chromosomes. Such regions, in which enough gene synteny is 80 

conserved to demonstrate identity by descent but the order of orthologs significantly differs among 81 

relatives, can now be observed in the sequenced genomes of many species25,26 (figs. M-TRACKSa; Note 82 

S-COLLIN). While centromeres can suffer from assembly difficulties, the LCM boundaries extend well 83 

into the pericentromeres, and on several chromosomes occur within large scaffolds validated by 84 

multiple sources of data including optical maps. The LCMs of rye, wheat, and barley differ in length, but 85 

curiously (i) the sets of genes that fall inside and outside the LCMs are almost the same in all three 86 

species, (ii) The LCMs distinctly correlate with regions of low gene density (fig. M-TRACKSb), and (iii) 87 

possess a distinct and characteristic repetitive element population (figs M-TRACKSd-g, Note S-REP). We 88 

explore these observations in more detail below. 89 
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Assembly  Raw scaffolds (after 

chimera breaking) 

In chromosome-scale

pseudomolecules 

Scaffolds  109,776 476 

Total length (Mbp)  6,670.03 6,206.74 

N50 length (Mbp)  15.16 29.44 

% length with chromosome assignment  95.3% 100% 

Optical genome map   

Maps  5,601 

Total length (Mbp)  6,660.18 

N50 length (Mbp)  1.671 

Total aligned length (Mbp)  6,248.60 

Uniquely aligned length (Mbp)  6,029.11 

Gene feature annotation  High confidence set Low confidence set 

Number of genes  34,441 22,781 

Mean gene length  2,892 946 

Mean exons per gene  4.42 1.79 

Proportion of complete BUSCO set  96.4% 5.8% 

LTR-RT annotation  Superfamily Full-length copies Mean age 

(Mya) 

RLC_Angela  Copia 11,128 0.53 

RLG_Cereba  Gypsy 934 1.24 

RLG_Sabrina  Gypsy 3,996 2.10 

RLG_WHAM  Gypsy 1,457 2.06 

DTC_Clifford  CACTA 1,480 N.A. 

DTC_Conan  CACTA 516 N.A. 
Table M-STATS. Genome assembly and annotation statistics. CSS=Chromosome Specific Shotgun. BUSCO=Benchmarking universal single-copy 90 

orthologs (v3; https://busco.ezlab.org/). 91 

Evolutionary dynamics of the intergenic space 92 

Transposable elements, especially long terminal repeat retrotransposons (LTR-RTs), exert a primary 93 

influence on Triticeae genome structure and composition27-29. Full-length LTR-RTs represent the same 94 

proportion of the total assembly size as exhibited by other major Triticeae reference assemblies (fig. S-95 

RPT_ASSCMP, tbl. S-TE_ASSCMP_ANNOTSTATS), indicating similar assembly completeness30. Past LTR-RT 96 

activity can be inferred by estimating the insertion ages of individual LTR-RT elements, and the 97 

evolutionary relationships among LTR-RT families (Methods; Note S-REP). 98 
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 99 

Figure M-TRACKS. Selected information tracks for ‘Lo7’ chromosomes 1R to 7R (left-to-right). Twin vertical grey lines in each chromosome 100 

denote the boundaries of the LCMs for each chromosome. A) Gene collinearity with barley (cv. Morex), with the position on the Morex 101 

pseudomolecules on the vertical axis. Text and point colours represent barley chromosomes as labelled. B) Density of annotated gene models. 102 

C) Genetic map positions of markers used in assembly. Scaffold boundaries marked by grey vertical lines. D-G) Positions and ages of four LTR 103 

retrotransposon families in the genome, represented as a heatmap. Binned ages are on the vertical axis (from 0 Mya at the bottom), and bin 104 

positions are across the horizontal. Heat represents the number of TEs in each age/position bin (see legend inset). Red arrows mark notable 105 

changes in LTR-RT profiles. 106 

 107 

As in barley and wheat, rye LTR-RT show clear niche specialisation across genomic compartments 108 

27,28(fig. M-TRACKSc—f; Note S-REP): RLC_Sabrina, RLG_WHAM, and RLC_Angela are depleted in 109 

centromeres and pericentromeres, with the depleted region normally corresponding closely to the LCMs 110 
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(fig. M-TRACKSb-f). RLC_Cereba strictly occupies centromeres31. The long arm termini of chromosomes 111 

4RL and 6RL bear distinct tandem repeat (Note S-REP) and LTR-RT profiles (fig. M-TRACKSc,d; figs. S-112 

TETERMPROF, S-KMERREP): DTC_Clifford elements are two to four times more abundant than on the 113 

long arm termini of the other chromosomes, while RLG_Sabrina and RLG_WHAM elements are almost 114 

absent. We suspect such changes are most likely the result of ancestral chromosome arm translocations 115 

from a close relative. In the case of 4RL the profile changes are particularly clear and we can ascertain 116 

that: (i) since the altered TE profile boundaries do not coincide with a collinearity break with wheat or 117 

barley (figs. M-TRACKSa, S-KMERREP; Note S-COLLIN), the donor is likely of rye lineage; (ii) since in the 118 

donated segments, DTC_Clifford is more abundant than RLG_Sabrina and RLG_WHAM, the donors must 119 

have diverged from the ‘Lo7’ ancestor prior to the expansion of the latter elements in earnest, around 120 

3.5 Mya; and (iii) since the recent RLC_Angela expansion is recorded across 4R, the introgressions 121 

occurred before its beginning around 1.8 Mya. 122 

 123 

The timing of expansions differs markedly between LTR-RT families of the rye genome, demonstrating 124 

that older families degrade as younger families expand. Repetitive insertion into the centromere 125 

suggests a centromere-outwards chromosome expansion mechanism, as is most apparent for 126 

chromosomes 2R, 4R, and 6R, by the distribution of older Cereba elements being more distant from the 127 

centromere than the younger. Comparing rye with wheat and barley, the variously curved and straight 128 

slopes of collinear runs of genes (Note S-COLLIN) suggest physical genome expansion acted quite 129 

uniformly across the rye genome since its split from wheat. Conversely, the size changes that separate 130 

rye from wheat and barley are pronounced near telomeres, indicating that genome expansion 131 

mechanisms alter over million year timescales and likely contribute to both speciation and ancient 132 

hybridisation events32. In rye, barley and in each individual wheat subgenome, the TE superfamilies 133 

Gypsy (RLG) and Copia (RLC) expanded in the same order27,28, but not at the same time: The Gypsy-to-134 
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Copia progression was probably set in motion by the LTR-RT composition of a shared ancestral genome, 135 

but the rates of expansion and suppression of each superfamily would have depended upon functional 136 

and selective peculiarities of each genome or sub-genome (arguments expanded in note S-TEEXP). 137 

Structural variation and Secale genome evolution 138 

 139 

 140 
Figure M-PHYLO. Diversity and relationships among Secale taxa. The population structure corresponds to the structure of three taxa as 141 
presented in Schreiber et al. 2019 but gives a clearer grouping due to the additional wild accessions, especially with regard to S. vavilovii, the 142 
wild progenitor, which was previously indistinguishable from domesticated rye but is now forming a subgroup within S. cereale. a) Neighbour-143 
joining tree, with taxonomic assignments to subspecies level, according to genebank passport data. b—d) The first three prinicipal components 144 
of genetic variance within the dataset, with samples coloured according to species. 145 
 146 
The many Triticeae gene-collinearity disruptions observable as inversions and pericentromeric LCMs 147 

suggest rapid accumulation of structural variations (SVs) that might segregate in rye populations causing 148 
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undesired linkage in breeding and mapping efforts. To investigate further, we used Hi-C data from single 149 

individuals of four rye species to identify candidate SVs among S. cereale and three other Secale species. 150 

We included a second S. cereale genotype, ‘Lo225’, an inbred line from which the mapping population 151 

used for assembly was derived. To provide phylogenetic context, we extended the Secale phylogeny of 152 

Schreiber et al. (2019)33, adding 347 genotypes, and calling variants against the new genome assembly 153 

(Methods; fig. M-PHYLO). Many inversions (>10) were observed to segregate among non-‘Lo7’ Secale 154 

genotypes, making assembly artefacts a highly unlikely source of error (Note S-SV). One such 'Lo7’—155 

‘Lo225’ inversion on 5RL corresponds to a distinct local plateau in the genetic map (fig. M-SV), 156 

representing complete linkage between the 382 annotated high confidence genes in this region. Rye 157 

pericentromeres are especially prone to large-scale SVs (p<0.001; Note S-SV), in agreement with 158 

previous findings29,34. This confirms SV as one possible mechanism for the formation of LCMs, and helps 159 

to explain the lack of genes in these regions, since recombination-suppressed genes are evolutionarily 160 

disadvantaged by Muller’s ratchet35. Such SVs likely contribute to phenotypic diversity (and potentially 161 

heterosis, as suspected for maize36,37), and influence Secale evolution by creating postpollination 162 

reproductive barriers that enable allopatric speciation38. 163 

 164 

Figure M-SV. Hi-C asymmetry detects SVs between the reference genotype ‘Lo7’ and S. cereale ‘Lo225’ on four chromosomes. a) SVs result in 165 

discontinuities in r, the ratio of Hi-C links mapping left:right relative to ‘Lo7’. Large inversions (marked) typically produce clean, diagonal lines. 166 

Visually-identified candidate SVs are shaded, but shading is omitted from some r anomalies around centromeres where missing sequence 167 

causes artefacts. b) The rightmost inversion marked on 5R corresponds to a region of reduced recombination on chromosome 5R. 168 
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Revised hypotheses on ancient translocations and the origin of the rye genome 169 

It has been proposed that the cereal rye genome is a mosaic of Triticeae genomes resulting from 170 

reticulate evolution because variations in the degree of gene sequence divergence between various 171 

regions of the genome and their Triticeae orthologs indicate a number of distinct translocation donors10. 172 

We have presented evidence that the LTR-RT profile (figs. M-TRACKSd—e, Note S-REP) is a result of such 173 

reticulation within the rye lineage. It remains to be established whether significant chromatin 174 

introgressions occurred involving genera besides Secale. We exploited the new assembly to more closely 175 

investigate the cause of differential sequence divergence rates by estimating the divergence rate of 176 

synonymous coding sequence sites between rye and the wheat D genome (Methods, Note S-REP). The D 177 

genome was selected because it (i) contains no large chromosomal translocations relative to ancestral 178 

Triticeae karyotype (Note S-COLIN), and (ii) diverged from the ancestral rye genome only after the split 179 

from barley, meaning R-D divergence places a coarse lower bound on how much divergence it is possible 180 

to accumulate since the R-H split. The rates we recorded (~0.06—0.14 subs/synonymous site/year) can 181 

account for the ~5—15% identity spread of divergences that Martis et al. (2013) measured between rye 182 

and barley, without recourse to introgressions from beyond the R-D split. No cleanly-delimited 183 

divergence-level blocks are immediately evident to support extra-Secale introgressions. While some of 184 

the variation in divergence levels might yet be caused by such ancient translocations, inferring to what 185 

degree is confounded by other sources of random variation, probably including segregating 186 

recombination-suppressing SVs as observed in this study. We conclude that the mosaic hypothesis is 187 

indeed necessary to explain rye evolution, and currently most parsimonious when limited to 188 

introgressive hybridisations primarily between divergent Secale populations. 189 

 190 
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Enhancing the benefits of rye germplasm in wheat breeding lines 191 

 192 

Figure M-INTROG. Combined reference mapping as a means to classify wheat and wheat-rye introgression karyotypes. a) Colour key for 193 

subfigures b, c, e. b) Normalised read mapping depths for 1 Mbp bins of chromosomes 1A, 1B, and 1R, for a selection of wheat lines (including 194 

also some Aegillops tauschii accessions which contain no A or B subgenome) with various chromosome complements and introgressions (rows). 195 

The value r denotes the difference between the log2 reads per million mapping to a bin, compared to T. aestivum cv. Chinese Spring. c) Visual 196 

representation of an SVM classifier, with the two selection features shown on the x and y axes. Points represent training samples, with colour 197 

corresponding to human-designated classification, and size proportional to the total number of mapped reads for the sample. Background 198 

colours represent the hypothetical classification that would be given to a sample at that position. d) Results of cross-validation testing the 199 

accuracy of the classifier and its relationship to the size of the training set. e) Comparison of yields between non-ambiguous predicted 200 
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karyotypes, modelled using an MLM with testing year and location as random effects and rye introgressions as fixed effects. Results are shown 201 

for panels maintained by two institutions, USDA-RPN (left) and KSU (right). Bar height = Predicted yield effect of introgressions, +/- 1SD. 202 

Significant differences (Student’s t) given as: ‘**’ p<.01; ‘***’ p<.001. 203 

 204 

The transfer of rye chromatin into bread wheat can provide substantive yield benefits and tolerance to 205 

biotic and abiotic stressors39, though at the expense of bread making quality40. These transfers are 206 

thought to have involved a single 1BL.1RS Robertsonian translocation originating from cv. Kavkaz and a 207 

single 1AL.1RS translocation from cv. Amigo (fig. M-INTROGa)3,4. Breeding efforts face a trade-off 208 

between yield and quality. Breeders must screen breeding panels for rye introgressions, an effort 209 

hitherto dependent upon arduous cytogenetics or marker genotyping, which has limited resolution and 210 

is sensitive to genetic variation among lines. With a full reference genome, inexpensive low-density high 211 

throughput sequencing (HTS) of a wheat panel proved sufficient to identify the positions of rye 212 

introgressions41. We implemented an HTS approach on four expansive wheat germplasm panels (KSU, 213 

USDA-RPN, CIMMYT, WHEALBI; Methods) segregating for both 1RS.1AL and 1RS.1BL. Translocations into 214 

wheat can be observed as obvious changes in normalised read depth across both the translocated and 215 

replaced chromosomal regions (fig. M-INTROGb; Note S-INTROG). A range of translocation junctions and 216 

karyotypes can be distinguished. 217 

The power of this sequence-based approach over previous markers was validated by confirming the 218 

karyotype of the novel 1AL.1RS—1BL.1RS recombination line KS090616K-1 (KSU panel; Note S-INTROG) 219 

that produces high yields, without sacrificing bread making quality. We confirmed that the KS090616K-1 220 

breeding line carried a 1R translocation on group 1A, and after re-sequencing the wheat parents that 221 

carry donors of 1A.1R and 1B.1R, used high-density polymorphisms in the translocated 1R arm to 222 

precisely identify the recombination breakpoints, which fall at around 6 Mb from the tip of 1RS (Kavkaz-223 

derived) onto the 1AL.1RS (Amigo-derived) line (Note S-INTROG). Moreover, this analysis conclusively 224 
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confirmed the universal common origins of the Kavkaz- and Amigo-derived translocations respectively 225 

(Methods; Note S-INTROG). 226 

Visual classification of a whole panel of karyotypes is still time-costly, so we developed an automated 227 

support vector machine classifier to alleviate this bottleneck (Methods; figs. M-INTROGc). Automatic 228 

classification consistently replicated human assignment with over 97% accuracy (fig. M-INTROGd). We 229 

then proved that the automated classifications predict yield. A mixed-effects linear model applied to 230 

yield data available for the USDA-RPN and KSU panels showed that 1R introgressions could produce ~3—231 

5% better yields on average (Methods; fig. M-INTROGe; tbls. S-INTROGPHENO—S-GLMRES). The 1A.1R 232 

karyotype outyielded 1B.1R in the KSU panel, but the reverse was true of the USDA panel. This likely 233 

owes to the diversity of wheat genotypes and environmental conditions used in the trials; the effects of 234 

foreign chromatin are highly non-uniform and influenced by diverse factors, in particular the wheat 235 

genetic background40,42. Only one multi-site study has, to our knowledge, studied yield in 1RS-236 

introgressed wheats on a large scale (Note S-1RS_PUBLIC), in which the best overall yield was achieved 237 

by a 1RS.1AL introgression line, both with and without the application of fungicidal treatments and 238 

during a drought year, while a 1RS.1BL line in the same panel performed less well, similarly suggesting 239 

significant variability in the pathogen resistance and root morphology traits that 1RS can confer to 240 

improve yield. Improved knowledge of the individual rye genes that confer these benefits is required to 241 

help untangle these factors. 242 
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Rye genes for enhanced breeding and productivity 243 

 244 

Figure M-GENES. Comparative genomics of rye genes with agricultural significance. a—e) Density (instances per Mbp) of mTERFs, PPRs, and 245 

NLRs across the pseudomolecules (see also tables S-NLR to S-MTERF). For visualisation, the y-axis is transformed using x → x
⅓
. f) Genes and loci 246 

discussed in the text (see also table S-QTLs). Colours correspond to box outlines in panels g—m; g—j) Physical organisation of selected NLR 247 

gene clusters compared across cultivated Triticeae genomes. k) Organisation of RFL genes at the ‘Lo7’ Rf
multi

 locus compared to its wheat 248 

(Chinese Spring) counterpart. Flanking markers are shown on either end of the rye sequence. Two full-length wheat RFLs and a putative rye 249 

ortholog are labelled. PPR genes are coloured red. l—m) CNV between ‘PUMA-SK’ and ‘Lo7’ revealed by 10X Genomics linked read sequencing. 250 
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(Dup)lications and (Del)etions flagged by the Loupe analysis software are marked. The estimated copy number differences between ‘Lo7’ and 251 

‘Puma’ are shown for Cbf genes within the Fr2 interval. 252 

 253 

Enhanced fertilisation control: Rye as a model for hybrid breeding systems in Triticeae 254 

Efficient hybrid plant breeding requires lines exhibiting either self-incompatibility (SI), switchable fertility 255 

control mechanisms, or gynoecy. Unlike wheat and barley, rye naturally enables both pollen guidance 256 

via SI, and switchable fertility via CMS and restorer-of-fertility (Rf) genes. 257 

Rye’s SI is controlled by a two-locus system typical in Poaceae species. Pollen tube germination is 258 

suppressed when both stigma and pollen possess identical alleles at two SI loci, termed the S- and the Z-259 

locus6, previously mapped to chromosomes 1R and 2R43-45 respectively. The breakdown of SI is poorly 260 

understood, yet essential for the development of inbred lines, which is in turn indispensable for 261 

producing heterotic seed and pollen parent lines in hybrid breeding. A DOMAIN OF UNKNOWN 262 

FUNCTION gene, designated DUF247, is a prime candidate for the S-locus in the related ryegrass (Lolium 263 

perenne, Poaceae, Tribe Poeae)46. We mapped the rye S-locus-controlled SI phenotype to an interval on 264 

1R, which falls about 3 Mbp from the rye ortholog of L. perenne’s DUF247 (SECCE1Rv1G0014240; 265 

Methods; tbls. S-QTLS—S-1RSTS). Similarly, the Z-locus-linked marker TC116908
45 mapped within about 266 

0.2 Mbp of two other DUF247 homologs (SECCE2Rv1G0130770; SECCE2Rv1G0130780) on 2R. This 267 

proximity suggests that DUF247 might have been involved in SI since at least the time of the Triticeae—268 

Poaceae split, making it a candidate for investigation relevant to barley and wheat47,48. 269 

Turning to fertility control, mitochondrial genes that selfishly evolve to cause CMS prompt the evolution 270 

of nuclear Rf genes to suppress their expression or effects. Known Rf genes belong to a distinct clade 271 

within the family of pentatricopeptide repeat (PPR) RNA-binding factors, whose encoded proteins are 272 

referred to as Rf-like (RFL)49,50. Members of the mitochondrial transcription TERmination Factor (mTERF) 273 

family are likely also involved in fertility restoration in cereals51. The repertoire of restorer genes is 274 

predicted to expand in outcrossing species35,52. We investigated this hypothesis by comparing RFL and 275 
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mTERF gene counts between rye and several closely and distantly allied species including barley and the 276 

subgenomes of various wheat species. The numbers of rye RFLs (n=82) and mTERFs (n=131) place it 277 

clearly within the range occupied almost exclusively by outcrossers (i.e. nmTERF > 120 and nRFL > 65; tbls. S-278 

PPR_BREEDINGSYS; Note S-OUTIN), an indicator that rye’s younger RFL/mTERF genes evolved under 279 

selection to suppress CMS. The ‘Lo7’ sequence assembly reveals strong overlap in the distribution of 280 

PPR-RFLs and mTERF gene clusters, and strong correlation of these clusters with known Rf loci 281 

(Methods; fig. M-GENESa—f; tbls. S-QTL, S-PPR, S-MTERF). A PPR-RFL/mTERF hotspot on 4RL coincides 282 

with known Rf loci for two rye CMS systems known as CMS-P (the commercially predominant ‘Pampa’-283 

type) and CMS-C7,14,53,54 (fig. M_GENESb,e,f; tbls. S-PPR, S-QTL). We determined, as previously 284 

hypothesised, that these two loci, Rfp and Rfc, are indeed closely linked but physically distinct55 (tbl. S-285 

QTLS). Two members of the PPR-RFL clade reside within 0.186 Mbp of the Rfc1 locus (tbls. S-PPR, S-QTL). 286 

The Rfp locus is, in contrast, neighboured by four mTERF genes (tbls. S-MTERF, S-QTL), in agreement 287 

with previous reports that an mTERF protein represents the Rfp1 candidate gene in rye56. 288 

While the most commonly used restorer cytoplasm in wheat hybrid breeding is derived from Triticum 289 

timopheevii Zhuk. (CMS-T)57, alternative sterility-conferring cytoplasms acquired from Aegilops kotschyi 290 

Bois., Ae. uniaristata Vis. and Ae. mutica Bois.58 can be efficiently restored by the wheat locus Rf
multi 291 

(Restoration-of-fertility in multiple CMS systems) on chromosome 1BS. Replacement of the Rf
multi locus 292 

by its rye ortholog produces the male-sterile phenotype59,60. Characterising this pair of sterility-switching 293 

genes could expedite flexible future solutions for the development of exchangeable wheat restorer 294 

lines. At the syntenic position of Rf
multi, the wheat B subgenome and rye share a PPR-RFL gene cluster—295 

with almost twice the number of genes in wheat9 (fig. M-GENESm; tbl. S-QTLs; Notes S-OUTIN—S-296 

RFMULTI). Only two wheat RFL-PPR genes in the cluster, TraesCS1B02G071642.1 and 297 

TraesCS1B02G072900.1, encode full length proteins with only the latter corresponding to a putative rye 298 

ortholog (SECCE1Rv1G0008410.1). Thus, the absence of a TraesCS1B02G071642.1 ortholog in the non-299 

.CC-BY 4.0 International licenseIt is made available under a 
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.11.869693doi: bioRxiv preprint first posted online Dec. 12, 2019; 

http://dx.doi.org/10.1101/2019.12.11.869693
http://creativecommons.org/licenses/by/4.0/


Page 18 of 59 
 

restorer rye suggests it as an attractive Rf
multi candidate. The only current implementations of a wheat-300 

rye Rf
multi CMS system involve 1RS.1BL translocations5,58,61, which are typically linked to reduced baking 301 

quality40. Breaking this linkage may now benefit from marker development and/or genome editing 302 

approaches targeting TraesCS1B02G071642.1. 303 

 304 

New allelic variety in NLR genes and opportunities for pathogen resistance 305 

Nucleotide-binding-site and leucine-rich repeat (NLR)-motif containing genes commonly associate with 306 

pest and pathogen resistance62. We annotated 792 full-length rye NLR genes (tbls. S-NLR—S-RLOC), 307 

finding them enriched in distal chromosomal regions, similar to what has been seen recently in the 308 

bread wheat genome9,63 (fig. M-GENESa; Note S-NLR). Distal parts of chromosomes 4RL and 6RL, which 309 

bear a distinct TE composition, are also particularly rich in NLR genes, further corroborating a unique, 310 

evolutionary-distinct origin for these segments. 311 

We compared the genomic regions in rye that are orthologous to resistance gene loci Pm2, Pm3, Mla, 312 

Lr10 from wheat and barley (tbl. S-RLOC; fig M_GENESg-j; Note S-NLR). Besides the Lr10 locus, all loci 313 

contained complex gene families with several subfamilies that were present or absent in some genomes, 314 

indicating either functional redundancy, or the evolution of distinct resistance pathways or targets. For 315 

example, the wheat Pm3 and rye Pm8/Pm17 genes are orthologs and belong to a subfamily (clade A, fig. 316 

M_GENESi) which is absent in barley, whereas a different distinct subfamily (clade B, fig. M-GENESi) of 317 

the Pm3 genes is present in wheat and barley but absent in rye (fig. M-GENESi, Note S-NLR). A similar 318 

case occurs in the Mla family: One of two main identified clades (clade B, fig. M_GENESj) contains 319 

known wheat resistance genes TmMla1
64, Sr33 and Sr50

65 and yet is absent in barley, while a second 320 

Mla subfamily (clade C, fig. M_GENESj) contains all known barley Mla resistance alleles66, yet the clade is 321 

absent from rye (Note S-NLR). Rye inbred line ‘Lo7’, therefore appears to have lost whole subclades of 322 

pathogen resistance genes since its split from wheat. 323 
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The genetic basis of cold tolerance in rye, and its applications to wheat 324 

 325 

Figure M-COLD. Cold tolerance region Fr2 in ‘Puma’ and ‘NorstarPuma5A:5R’ translocation line. a) Chromosome labelling (top) using wheat and 326 

rye specific probes for chromosome 5A in ’Norstar’ and 5A:5R in the ‘Puma’/’Norstar’ translocation line confirms the presence of a rye 327 

translocation (red box). Read depth (bottom) of group 5 chromosomes confirms the balanced translocation event, gain of a large region of 328 

chromosome 5R from ‘Puma’ (rye - light read line) and loss of a large region on chromosome 5A of ‘Norstar’ (wheat - light blue line) in 329 

‘NorstarPuma5A:5R’. White bars = 10 µm. b) Confirmation of the 5A.5R translocation into ‘Norstar’ using the combined reference mapping 330 

method. Read depth is given in log2 reads per million vs Chinese Spring. c) Gene expression analysis of rye Cbf genes with copy number 331 

variation in ‘Puma’ (blue line) and ‘NorstarPuma5A:5R’ (orange line). Plants were grown in a time series with decreasing day length and 332 

temperature over a 70 day period and the temperatures at which fifty percent lethality was observed (LT50) were recorded (heatmap). 333 

 334 

As the most frost tolerant crop among the Triticeae67, rye is an ideal model to investigate the genetic 335 

architecture of low temperature tolerance (LTT) in cereals. Genetic mapping has revealed a locus Fr2 on 336 

the group 5 chromosomes controlling LTT68 in rye69, T. monococcum
70, bread wheat71,72, and barley73. In 337 

cold-tolerant varieties, the Fr2 locus up-regulates LTT-implicated Cbf genes during seedling development 338 

under cold conditions74. Cbf genes are highly conserved in the Triticeae75. We identified the Fr2 locus as 339 
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a cluster of 21 Cbf-related genes at 614.3—616.5 Mbp on 5R (tbl. S-FR2). The region also contained 12 340 

other genes that have been implicated in plant development, such as MYB transcription factors and a 341 

FAR1-related gene (tbl. S-FR2). A comparison of annotated Triticeae protein sequences within Fr2 342 

suggest the Cbf gene family expanded in rye, a mechanism for rye’s LTT, consistent with findings from 343 

other Triticeae76 (Note S-COLD). 344 

To identify variation that may be important for cold acclimation we used recurrent selection to develop 345 

an Fr2 homozygous line of the self-incompatible rye variety ‘Puma’, which exhibits exceptional LTT. We 346 

sequenced 10X Genomics Chromium libraries of this line (designated ‘Puma-SK’) and performed a 347 

comparison to the ‘Lo7’ reference sequence as a control since ‘Lo7’ has comparatively poor LTT. 348 

Mapping depth analysis detected copy number variation (CNV) patterns in four Fr2 Cbf genes 349 

(SECCE5Rv1G030450, SECCE5Rv1G030460, SECCE5Rv1G030480, and SECCE5Rv1G030490; fig. M-COLDm; 350 

tbl. S-CNV; Note S-COLD). Encouragingly, all four are members of the Cbf subfamily (‘group IV’, see fig. S-351 

CBFPHYLO) for which CNV has been previously implicated in LTT in wheat76. Interestingly, we also 352 

detected a 597 bp deletion in the promoter of ‘Puma’’s Vrn1 (SECCE5Rv1G0353290) allele. Although the 353 

effect of this deletion on LTT is not yet established, Vrn1 is known to progressively down-regulate the 354 

expression of LTT genes during the vegetative/reproductive transition, impairing the plant’s ability to 355 

acclimate to cold stress77,78. 356 

 357 

We also assessed LTT-implicated genes’ potential for transfer to other members of the Triticeae, mainly 358 

wheat. ‘Norstar’ winter wheat is an important Canadian line with LTT sufficient to allow experiments in 359 

the Canadian winter—but weaker than ‘Puma’’s LTT, making it suitable for a comparison of LTT between 360 

wheat and rye77. A locus influencing ‘Norstar’’s superior LTT occurs on chromosome 5A71 and, like ‘Lo7’, 361 

contains tandemly repeated Cbfs
79. We thus developed a 5A.5RL translocation line in the ‘Norstar’ 362 

winter wheat genetic background using ‘Puma’ as the 5R donor, which we confirmed using cytogenetics 363 
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and combined reference mapping (Methods; fig. M-COLDa,b). As a result of the translocation, the wheat 364 

Cbf and Vrn1 cluster is replaced completely by the orthologous rye locus (fig. M-COLDb; tbl. S-CNV). 365 

However, the LTT of ‘Norstar’ was not significantly altered by the translocation (fig. M-COLDc), 366 

suggesting that the rye Cbf gene cluster is activated in wheat, but it is differentially regulated in the 367 

wheat background, as previously suggested by Campoli et al. (2009)74. We used RNAseq to confirm that 368 

expression of ‘Puma’ Vrn1 and those Cbfs with CNV were indeed attenuated during treatments of cold 369 

stress in ‘Norstar5A:5R’ (fig. M-COLDc; Note S-COLD). Characterisation of these important regulatory 370 

factors is an ongoing effort, necessary to facilitate improvement of wheat temperature tolerance using 371 

rye cytoplasm introgressions. 372 

Discussion 373 

The high-quality chromosome-scale assembly of rye inbred line ‘Lo7’ constitutes an important step 374 

forward in genome analysis of the Triticeae crop species, and complements the resources recently made 375 

available for different wheat species16,26,80-82 and barley15,83. This resource will help reveal the genomic 376 

basis of differences in major life-history traits between the self-incompatible, cross-pollinating rye and 377 

its selfing and inbreeding relatives barley and wheat. Our comparative genomic exploration 378 

demonstrates how LTR-RT movement histories influence genome expansion and record ancient 379 

translocations. The precise nature and origin of the LCMs remains an opportunity for future research, 380 

requiring harmonisation of knowledge about the mechanics of pericentromeric structural variation, and 381 

the evolutionary effects of gene order disruption. The joint utilisation of the rye and wheat genomes to 382 

characterise the effects of rye chromatin introgressions may provide a short-term opportunity to 383 

breeders as they continue to better separate confounding variables from the genetic combinations that 384 

best improve yield in various environments; but these benefits will ultimately be limited by negative 385 

linkage so long as whole chromosome arm translocations are involved. Discoveries at the single-gene 386 

level—such as the contributions offered here to pathogen resistance, LTT, the root system (tbl. S-QTLs), 387 
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SI, and male fertility restoration control—will be best tested and exploited by finer-scale manipulation in 388 

dedicated experiments14. This is an indispensable pre-requisite for the development of gene-based 389 

strategies that exploit untapped genetic diversity in breeding materials and ex situ gene banks to 390 

improve small grain cereals and meet the changing demands of global environments, farmers and 391 

society. 392 

 393 

  394 
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Methods 395 

‘Lo7’ genome assembly  396 

Descriptions of the assembly methods are given in notes S-PSASS—S-ASSDATA, and figures S-ASSOVER—397 

S-HICSV. 398 

Gene annotation 399 

We performed de novo gene annotation of the rye genome relying on a previously established 400 

automated gene prediction pipeline15,82. The annotation pipeline involved merging three independent 401 

annotation approaches, the first based on expression data, the second an ab initio prediction for 402 

structural gene annotation in plants and the third on protein homology. To aid the structural annotation, 403 

RNAseq data was derived from five different tissues/developmental stages, and IsoSeq data from three 404 

(Supplementary Note 3). 405 

IsoSeq nucleotide sequences were aligned to the rye pseudomolecules using GMAP84 (default 406 

parameters), whereas RNASeq datasets were first mapped using Hisat285 (arguments --dta) and 407 

subsequently assembled into transcript sequences by Stringtie86 (arguments -m 150 -t -f 0.3). All 408 

transcripts from IsoSeq and RNASeq were combined using Cuffcompare87 and subsequently merged with 409 

Stringtie (arguments --merge -m 150) to remove fragments and redundant structures. Transdecoder 410 

github.com/TransDecoder) was then used to find potential open reading frames (ORFs) and to predict 411 

protein sequences. BLASTp88 (ncbi-blast-2.3.0+, arguments -max_target_seqs 1 -evalue 1e-05) was used 412 

to compare potential protein sequences with a trusted set of reference proteins (Uniprot 413 

Magnoliophyta, reviewed/Swiss-Prot) and hmmscan89 was employed to identify conserved protein 414 

family domains for all potential proteins. BLAST and hmmscan results were fed back into Transdecoder-415 

predict to select the best translations per transcript sequence. 416 
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Homology-based annotation is based on available Triticeae protein sequences, obtained from UniProt 417 

(uniprot.org). Protein sequences were mapped to the nucleotide sequence of the pseudomolecules 418 

using the splice-aware alignment software GenomeThreader (http://genomethreader.org/; arguments -419 

startcodon -finalstopcodon -species rice -gcmincoverage 70 -prseedlength 7 -prhdist 4). Evidence-based 420 

and protein homology based predictions were merged and collapsed into a non-redundant consensus 421 

gene set. Ab initio annotation using Augustus90 was carried out to further improve structural gene 422 

annotation. To minimise over-prediction, hint files using IsoSeq, RNASeq, protein evidence, and TE 423 

predictions were generated. The wheat model was used for prediction. 424 

Additionally, an independent, homology-based gene annotation was performed using GeMoMa 91 using 425 

eleven plant species: Arabidopsis thaliana (n=167), Brachypodium distachyon (314), Glycine max (275), 426 

Mimulus guttatus (256_v2.0), Oryza sativa (323), Prunus persica (298), Populus trichocarpa (444), 427 

Sorghum bicolor (454), Setaria italica (312), Solanum lycopersicum (390), and Theobroma cacao (233). 428 

All versions were downloaded from Phytozome (phytozome.jgi.doe.gov/pz). Initial homology search for 429 

coding exons was done with mmseqs292. These results were then combined into gene models with 430 

GeMoMa using mapped RNAseq data for splice site identification. The resulting eleven gene annotation 431 

sets were further combined and filtered using the GeMoMa module GAF. The following filters were 432 

applied: a) complete predictions (i.e. predictions starting with Methionine and ending with a stop 433 

codon); b) relative GeMoMa score >=0.75; c) evidence>1, (i.e. predictions were perfectly supported by 434 

at least two reference organisms), or tpc=1 (i.e., predictions were completely covered by RNA-seq 435 

reads), or pAA>=0.7 (i.e., predictions with at least 70% positive scoring amino acid in the alignment with 436 

the reference protein). 437 

All structural gene annotations were joined with EvidenceModeller93, and weights were assigned as 438 

follows: Expression-based Consensus gene set (RNAseq, and IsoSeq and protein homology-based): 5; 439 

homology-based (GeMoMa), 5; ab initio (augustus), 2. 440 
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In order to differentiate candidates into complete and valid genes, non-coding transcripts, pseudogenes 441 

and transposable elements, we applied a confidence classification protocol. Candidate protein 442 

sequences were compared against the following three manually curated databases using BLAST: firstly 443 

PTREP (botserv2.uzh.ch/kelldata/trep-db), a database of hypothetical proteins that contains deduced 444 

amino acid sequences in which, in many cases, frameshifts have been removed, which is useful for the 445 

identification of divergent TEs having no significant similarity at the DNA level; secondly UniPoa, a 446 

database comprised of annotated Poaceae proteins; thirdly UniMag, a database of validated 447 

magnoliophyta proteins. UniPoa and UniMag protein sequences were downloaded from Uniprot 448 

(www.uniprot.org/) and further filtered for complete sequences with start and stop codons. Best hits 449 

were selected for each predicted protein to each of the three databases. Only hits with an E-value below 450 

10e-10 were considered. 451 

Furthermore, only hits with subject coverage (for protein references) or query coverage (transposon 452 

database) above 75% were considered significant and protein sequences were further classified using 453 

the following confidence: a high confidence (HC) protein sequence is has at least one full open reading 454 

frame and has a subject and query coverage above the threshold in the UniMag database (HC1) or no 455 

BLAST hit in UniMag but in UniPoa and not TREP (HC2); a low confidence (LC) protein sequence is not 456 

complete and has a hit in the UniMag or UniPoa database but not in TREP (LC1), or no hit in UniMag and 457 

UniPoa and TREP but the protein sequence is complete. 458 

The tag REP was assigned for protein sequences not in UniMag and complete but with hits in TREP. 459 

Functional annotation of predicted protein sequences was done using the AHRD pipeline 460 

(github.com/groupschoof/AHRD). Completeness of the predicted gene space was measured with BUSCO 461 

(v3; https://busco.ezlab.org/). 462 
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RNA isolation and sequencing 463 

RNA-seq for annotation 464 

 465 

Seeds of ‘Lo7’ were sown in a Petri dish on moistened filter paper and treated with cold stratification (4 466 

°C) for two days during imbibition. After an additional day at room temperature (~20 °C) seedlings were 467 

transferred to a 40-well tray containing a peat and sand compost and propagated in a Conviron BDW80 468 

cold environment room (CER; Conviron) with set points of 16 h day/8 h night and temperatures of 20/16 469 

°C for a further three days. Tissues were sampled at six stages, described in table S-RNAGROWTH. Plants 470 

for sampling timepoints 1—3 were transferred to a CER set at 16-hour photoperiod (300 μmol m−2 s−1), 471 

temperatures of 20 and 16 °C, respectively, and 60% relative humidity. Plants for sampling timepoints 472 

4—6 were transferred to a vernalisation CER running at 6 °C with 8 hours photoperiod for 61 days. After 473 

this period the plants were transferred to 1 L pots containing Petersfield Cereal Mix (Petersfield, 474 

Leicester, UK) and moved to the CER with settings as described above. Total RNA was extracted from 475 

each of the six organ/stages using RNeasy plant mini-kits (Qiagen). For the RNAseq data sets used for 476 

the annotation. RNA from 3 biological replicates for each organ/stage was pooled and for the 6 pooled 477 

samples, library construction and sequencing on the Illumina NovaSeq platform was performed by 478 

Novogene using a standard strand specific protocol (en.novogene.com/next-generation-sequencing-479 

services/gene-regulation/mrna-sequencing-service) and generating >60 M 150 PE reads per sample. 480 

 481 

For the IsoSeq data used in the annotation RNA from root and shoot samples were used (timepoints 1 482 

and 2 in table S-RNAGROWTH). The IsoSeq libraries were created starting from 1µg of total RNA per 483 

sample and full-length cDNA was then generated using the SMARTer PCR cDNA synthesis kit (Clontech) 484 

following PacBio recommendations set out in the IsoSeq method (pacb.com/wp-485 

.CC-BY 4.0 International licenseIt is made available under a 
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.11.869693doi: bioRxiv preprint first posted online Dec. 12, 2019; 

http://dx.doi.org/10.1101/2019.12.11.869693
http://creativecommons.org/licenses/by/4.0/


Page 27 of 59 
 

content/uploads/Procedure-Checklist-Iso-Seq-Template-Preparation-for-Sequel-Systems.pdf). PCR 486 

optimisation was carried out on the full-length cDNA using the KAPA HiFi PCR kit (Kapa Biosystems) and 487 

10—12 cycles was sufficient to generate the material required for SMRTbell library preparation. The 488 

libraries were then completed following PacBio recommendations, without gel-based size-selection 489 

(pacb.com/wp-content/uploads/Procedure-Checklist-Iso-Seq-Template-Preparation-for-Sequel-490 

Systems.pdf).  491 

The library was quality checked using a Qubit Fluorometer 3.0 (Invitrogen) and sized using the 492 

Bioanalyzer HS DNA chip (Agilent Technologies). The loading calculations for sequencing were 493 

completed using the PacBio SMRTlink Binding Calculator v5.1.0.26367. The sequencing primer from the 494 

SMRTbell Template Prep Kit 1.0-SPv3 was annealed to the adapter sequence of the libraries. Each library 495 

was bound to the sequencing polymerase with the Sequel Binding Kit v2.0. Calculations for primer and 496 

polymerase binding ratios were kept at default values. Sequencing Control v2.0 was spiked into each 497 

library at ~1% prior to sequencing. The libraries were prepared for sequencing using Magbead loading 498 

onto the Sequel Sequencing Plate v2.1. The libraries were sequenced on the PacBio Sequel Instrument 499 

v1, using 1 SMRTcell v2 per library. All libraries had 600-minute movies, 120 minutes of immobilisation 500 

time, and 120 minutes pre-extension time (tbl. S-DATACCESS). 501 

 502 

RNA-seq for expression profiling of ‘NorstarPuma5A:5R’ and ‘Puma’ 503 

Total RNA was extracted from 48 samples, representing both ‘NorstarPuma5A:5R’ and ‘Puma’ lines at 504 

each sampling date of the 12 time points during cold acclimation (Note S-COLD), using the Plant RNA 505 

Isolation Mini Kit (Agilent Technologies). The yield and RNA purity were determined 506 

spectrophotometrically with Nanodrop 1100 (Thermfisher), and the quality of the RNA was verified by 507 

Agilent 2100 Bioanalyzer (Agilent Technologies). Purified total RNA was precipitated and re-suspended 508 
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in RNase-free water to a final concentration of 100 ng/µl. Libraries were constructed using the TruSeq 509 

RNA Sample Preparation Kit v2 (Illumina) with two replicates at each time point. Paired-end sequencing 510 

was conducted on the Illumina HiSeq2500, generating 101 bp reads (tbl. S-DATACCESS). 511 

Annotation of repetitive elements 512 

For use in the evolutionary analyses presented in the main text (e.g. fig. 4d—g) annotated a high-513 

stringency set of full-length transposon copies belonging to single TE families (tbl. S-TEANNOT) using 514 

BLASTn88 searches (using default parameters) against the ‘Lo7’ pseudomolecules for long terminal 515 

repeats (LTRs) documented in the TREP database 516 

(botinst.uzh.ch/en/research/genetics/thomasWicker/trep-db.html) that occur at a user-defined distance 517 

range in the same orientation: For RLC_Angela elements, the two LTRs had to be found within a range of 518 

7,800—9,300 bp (a consensus RLC_Angela sequence has a length of approximately 8,700 bp), while a 519 

range from 6,000—12,000 bp was allowed for RLG_Sabrina and RLG_WHAM elements. For the 520 

centromere-specific RLG_Cereba elements, a narrower range of 7,600-7,900 bp was used. Multiple 521 

different LTR consensus sequences were used for the searches in order to cover the intra-family 522 

diversity. A total of 18 LTR consensus sequences each were used for RLC_Angela, seven for RLG_Sabrina 523 

elements, 6 were used for RLG_WHAM elements, and 5 for RLC_Cereba elements. 524 

To validate the extracted TE populations, the size range of all isolated copies and the number of copies 525 

that flanked by target site duplications (TSDs) were determined. A TSD was accepted if it contained at 526 

least 3 matches between 5’ and 3’ TSD (e.g. ATGCG and ACGAG). This low stringency was applied 527 

because TSD generation is error-prone94, and thus multiple mismatches can be expected. Across all 528 

surveys, 80-90% of all isolated full-length elements were flanked by a TSD. 529 
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The pipeline also extracts so-called “solo-LTRs”—products of intra-element recombination that results in 530 

loss of the internal domain and generation of a chimeric solo-LTR sequence—as a metric of how short 531 

repetitive sequences are assembled. 532 

The two LTRs of each TE copies were aligned with the program Water from the EMBOSS package95 and 533 

nucleotide differences between LTRs were used to estimate the insertion age of each copy based on the 534 

estimated intergenic mutation rate of 1.3E-8 substitutions per site per million years96. 535 

Full-length DNA transposons were identified by BLASTn searches of consensus sequences of the terminal 536 

inverted repeats (TIRs) of a given family. TIRs were required to be found in opposite orientation in a 537 

user-defined distance interval of 7,000—15,000 bp. 538 

 539 

To produce a library of full length LTR-retrotransposons suitable for quantitative assembly completeness 540 

comparison (fig. S-RPT_ASSCMP), we required an annotation performed identically to those carried out 541 

on other assemblies (tbls. S-TE_ASSCMP_ANNOTSTATS, S-DATAACCESS). We therefore implemented the 542 

methods described in Monat et al. (2019)83 on a selection of genome assemblies given in note S-REP. 543 

 544 

Tandem repeats where annotated with TandemRepeatsFinder97 under default parameters (tbls. S-545 

SAT_ANNOT, S-TANDREPCOMPN). Overlapping annotations where removed with a priority-based 546 

approach assigning higher scoring and longer elements first. Elements which overlapped already 547 

assigned elements were either discarded (>90% overlap) or shortened (<=90% overlap) if their 548 

remaining length exceeded 49 bp. 549 

To obtain a collection of nonredundant tandem repeat units suited for FISH probe development, the 550 

consensus sequences of the tandem repeat units (output of TandemRepeatsFinder) where clustered 551 

with vmatch dbcluster (vmatch.de) at high stringency with >=98% identity and a mutual overlap >=98% 552 

(98 98 -v -identity 98 -exdrop 3 -seedlength 20 -d -p). The 300 largest clusters with member sizes from 553 
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199 to 343 where each subjected to a multiple sequence alignment with MUSCLE98 under default 554 

parameters. A consensus sequence (>=70% majority) derived per cluster from the MUSCLE score file 555 

served as template sequence for the FISH probes (tbl. S-FISH). 556 

The distribution of TRs across the genome (main fig. M-FISH) was visualised using R base plotting 557 

functions. Colours were selected from the package colourspace palettes ‘Reds3’ and ‘Greens3’, e.g. 558 

using the command sequential_hcl(‘Reds3’,105)[105:5] to achieve 100 grades of a palette, and then 559 

selected to represent relative TR densities by scaling the output of the ‘density’ function run over the 560 

tandem repeats (with automatic bandwidth selection) on each chromosome to between 1 and 100 (for 561 

each TR family). 562 

Annotation of miRNAs 563 

MicroRNA identification was performed by following a two-step homology-based pipeline. The ‘Lo7’ 564 

pseudomolecules were compared with all known mature plant miRNA sequences retrieved from 565 

miRBase99 (v21; www.mirbase.org). This step was performed using SUmirFind (https://github.com/ 566 

hikmetbudak/miRNA-annotation/blob/master/ SUmirFind.pl), an in-house script, and the matches with 567 

no mismatch or only one base mismatch between a mature miRNA sequence and the pseudomolecule 568 

sequence were accepted. A second in-house script, SUmirFold 569 

(https://github.com/hikmetbudak/miRNA-annotation/blob/master/ SUmirFold.pl), was used to obtain 570 

precursor sequences of the candidate mature miRNAs from the pseudomolecules and assess their 571 

secondary structure-forming abilities with UNAFold100 (tbls. S-miRNA1—S-miRNAX) together with the 572 

following criteria: 1) No mismatches are allowed at Dicer cut sites; 2) No multi-branched loops are 573 

allowed in the hairpin containing the mature miRNA sequence; 3) Mature miRNA sequence cannot be 574 

located at the head portion of the hairpin; 4) No more than 4 and 6 mismatches are allowed in the 575 

miRNA and its hairpin complement (miRNA*), respectively101,102.  The final set of identified miRNAs from 576 
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the pseudomolecules was obtained by SUmirScreen script (https://github.com/hikmetbudak/miRNA-577 

annotation/blob/master/ SUmirScreen.py). The resulting miRNAs were mapped back to the 578 

pseudomolecules and the genomic distribution statistics were recorded with SUmirLocate script 579 

(https://github.com/hikmetbudak/miRNA-annotation/blob/master/ SUmirLocate.py). 580 

 Coding targets of the identified miRNAs were predicted by the web-tool psRNAtarget, using S. 581 

cereale coding sequences retrieved from NCBI103,104. Potential target sequences were compared with the 582 

viridiplantae proteins by using BLASTx88 (arguments -evalue 1E-6 –outfmt 5). Functional annotations of 583 

the potential targets were performed using Blast2GO software105. Finally, repeat contents of the pre-584 

miRNAs were assessed with RepeatMasker (http://www.repeatmasker.org/). 585 

Fluorescence in situ hybridisation (FISH) 586 

 587 

Three days old roots of the rye accession WR ‘Lo7’ were pre-treated in 0.002 M 8-hydroxyquinoline at 588 

7°C for 24 h and fixed in ethanol:acetic acid (3:1 v/v). Chromosome preparation and FISH were 589 

performed according to the methods described by Aliyeva-Schnorr et al. (2015)106. The hybridization 590 

mixture contained 50% deionized formamide, 2× SSC, 20% dextran sulfate, and 5 ng/µl of each probe. 591 

Slides were denatured at 75°C for 3 min, and the final stringency of hybridization was 76%. Thirty-four to 592 

forty-five nt long 5’-labelled oligo probes designed for the in silico identified repeats and the published 593 

probes sequence pSc119.2.1107 were used as probes (tbl. S-FISH). Images were captured using an 594 

epifluorescence microscope BX61 (Olympus) equipped with a cooled CCD camera (Orca ER, 595 

Hamamatsu). Chromosomes were identified visually based primarily on morphology, heterochromatic 596 

DAPI+ bands, and the localisation of pSc119.2.1107. 597 
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Rye Gene level synteny with other Triticeae species 598 

High confidence gene sequences from the ‘Lo7’ gene annotation were aligned to the annotated 599 

transcriptomes of bread wheat9 (Triticum aestivum cv. Chinese Spring) and barley15 (Hordeum vulgare 600 

cv. Morex) using BLASTn88 with default parameters. The lowest E-value alignment for each gene against 601 

the transcriptome associated with each subject genome (or subgenome) was selected, with the longest 602 

alignment chosen in the case of a tie. Only reciprocal best matches per (sub/)genome were accepted. 603 

BLAST hit filtering and subsequent visualisation were performed in the R statistical environment 604 

exploiting the packages ‘data.table’ and ‘ggplot’. 605 

Wheat (D subgenome)—rye substitution rate variation across the genome 606 

 607 

Probable orthologs shared by the wheat D subgenome9 and rye line ‘Lo7’ were identified by aligning 608 

BLASTp88 (default parameters) the predicted proteins of either each genome against the other and 609 

applying the reciprocal best match criterion. The identified homologs were first aligned at the protein 610 

level and, based on the protein alignment, a codon-by-codon DNA alignment was generated. For 611 

comparison of substitution rates, only fourfold degenerate third codon positions were used, namely 612 

those of the codons for Ala, Gly, Leu, Pro, Arg, Ser, Thr and Val. From the alignments of fourfold 613 

degenerate sites, the ratio of synonymous substitutions per synonymous site was calculated for each 614 

gene pair, if at least 100 fourfold degenerate sites could be aligned. Substitution rates along 615 

chromosomes were calculated as a 100 genes running average. Because even bi-directional closest 616 

homologs may still include “deep paralogs” (i.e. genes that were duplicated in the ancestor of which one 617 

copy was deleted in one species while the other copy is deleted in the other species), we performed the 618 

same analysis using exclusively single-copy genes. Single-copy genes were identified as follows: all 619 

individual rye coding DNA sequences (CDSs) were used in BLASTn searches against all other predicted 620 
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rye CDSs. A gene was considered single-copy if it had no homologs with E-values below 10e-20. 621 

Substitution rates were then calculated as the rates of synonymous substitutions per synonymous site in 622 

fourfold degenerate codon sites in coding regions of genes. 623 

Phylogenetic analysis 624 

The genotyping-by-sequencing (GBS) data set of 603 samples from Schreiber et al. (2019)33 was 625 

extended by a 347 further GBS samples from the IPK gene bank (mainly wild Secale taxa), and the five 626 

samples used in the Hi-C SV-detection study (‘Lo7’, ‘Lo225’, ‘R1003’, ‘R925’, ‘R2446’). The resulting 627 

sample set (n=955) and passport data are listed in table S-DIVERSITYPSPT. DNA isolated from the five Hi-628 

C samples was sent to Novogene (en.novogene.com/) for Illumina library construction and sequencing in 629 

multiplex on the NovaSeq platform (paired end 150 bp reads, approximately 140 Gbp per sample, S2 630 

flow cell). Demultiplexing, adapter trimming, read mapping and variant calling correspond to the 631 

approach described in Schreiber et al. (2019)33, using the new reference for read mapping. The data set 632 

was filtered for a maximum of 30% missing data and a minor allele frequency of 1% resulting in 72,465 633 

SNPs used for the phylogenic analyses. A neighbor joining tree was constructed with the R package ‘ape’ 634 

version 5.3108, based on genetic distances computed with the R package SNPRelate109. PCA was 635 

performed with smartPCA from the EIGENSOFT package (github.com/DReichLab/EIG) using least square 636 

projection without outlier removal. 637 

Wheat-rye introgression haplotype identification and classification 638 

 639 

We assayed for the presence of 1R germplasm in wheat genotypes in silico by mapping various wheat 640 

sequence data to a combined reference genome made up of the pseudomolecules of rye line ‘Lo7’ (this 641 

study) and wheat cv. Chinese Spring9. Publicly available data was obtained from the Wheat and barley 642 

.CC-BY 4.0 International licenseIt is made available under a 
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.11.869693doi: bioRxiv preprint first posted online Dec. 12, 2019; 

http://dx.doi.org/10.1101/2019.12.11.869693
http://creativecommons.org/licenses/by/4.0/


Page 34 of 59 
 

Legacy for Breeding Improvement (WHEALBI) project resources110 (n=506), the International Maize and 643 

Wheat Improvement Centre (CIMMYT; n=903), and Kansas State University (KSU; n=4277). GBS libraries 644 

were constructed and sequenced for samples from the United States Department of Agriculture 645 

Regional Performance Nursery (USDA-RPN; n=875; tbl. S-DATAACCESS) as described in Rife et al. 646 

(2018)111. Based upon the approach described by Keilwagen et al. (2019)91, reads were demultiplexed 647 

with a custom C script (github.com/umngao/splitgbs) and aligned to the combined reference using 648 

bwa112 mem (arguments -M) after trimming adapters with cutadapt113. The aligned reads from all panels 649 

were filtered for quality using samtools114 (arguments flags -F3332 -q20). The numbers of reads aligned 650 

to 1 Mbp non-overlapping bins on each pseudomolecule were tabulated. The counts were expressed as 651 

rpmm A log2(reads mapped to bin per million reads mapped). To control for mappability biases over the 652 

genome, the rpmm for each bin was normalised by subtracting the rpmm attained by the Chinese Spring 653 

sample for the same bin to give the normalised rpmm, r. 654 

To investigate the possibility of classifying the samples automatically, visual representations of r across 655 

the combined reference genome were inspected, and obvious cases of 1R.1A and 1R.1B introgression 656 

were distinguished from several other karyotypes including non-introgressed samples, and ambiguous 657 

samples showing a slight overabundance of 1RS reads, but less discernible signals of depletion in 1A or 658 

1B (see Note S-INTROG). We defined the following feature vectors: featureA = -log[ ( mean(r1AI) - 659 

mean(r1AN) ) x ( mean(r1RI) - mean(r1RN) ) ] and featureB = -log[ ( mean(r1BI) - mean(r1BN) ) x ( 660 

mean(r1RI) - mean(r1RN) ) ]. Whenever the term inside the log was negative (and would thus give an 661 

undefined result), the value of the feature was set to the minimum of the defined values for that 662 

feature. The quantity mean(r1RI) refers to the average value of r for all bins within the terminal 200 Mbp 663 

of the normally (I)ntrogressed end of 1R (an N in the subscript denotes the terminal 300 Mbp of the 664 

normally (N)on-introgressed arm), and so forth for other chromosomes. This choice of feature definition 665 

meant that, wherever little difference in r occurred between 1RS and 1RL, suggesting no presence of 666 
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rye, the factor mean(r1RI) - mean(r1RN) would pull the feature values close to the origin, and differences 667 

between r on the long and short arms of 1A or 1B would pull the values of A or B respectively away from 668 

the origin, depending upon which introgressions are present. A classifier was developed by training a 669 

support vector machine to distinguish non-introgressed, 1A.1R-introgressed, 1B.1R-introgressed, and 670 

ambiguously-introgressed samples, using the function ksvm (arguments type="C-svc", kernel='rbfdot', 671 

C=1) from the R package kernlab. Classification results are given in table S-INTROG_PREDICTED. Testing 672 

was performed by generating sets of between 50 and 600 random samples from the dataset and using 673 

these to train a model, then using the kernlab::predict to test the model’s accuracy of prediction on the 674 

remaining data not used in training. This was repeated 100 times for each training data set size. 675 

 676 

To investigate the 1R-recombinant genotype KS090616K, raw reads of genotypes Larry, TAM112 and 677 

KS090616K (NCBI SRA project id: PRJNA566411) were mapped to the combined wheat/rye reference, 678 

and mapping results processed with samtools114. The bcftools114 mpileup and call functions were used to 679 

detect and genotype single-nucleotide polymorphisms (SNPs) between the two samples. SNP positions 680 

at which Larry and TAM112 carried different alleles were used to partition chromosome 1RS in 681 

KS090616K into parental haplotypes (Note S-INTROG). 682 

 683 

To confirm the common origin of the 1AL.RS and 1BL.1RS introgressions, predicted 1RS carriers were 684 

selected to form a combined 1RS panel (over twelve hundred lines) to call SNPs. A total of over 3 million 685 

SNPs were called with samtools/bcftools (mpileup -q 20, -r chr1R:1-300000000; call -mv). SNPs were 686 

filtered based on combined minimum read depth of 25, minor allele frequency of 0.01. A total of over 687 

900 thousand SNPs were obtained. All pair-wise identity by state (IBS) percentages were calculated and 688 

the square root values of percent different calls were used to derive a heatmap for all pair-wise 689 

comparisons. 690 
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Identification and analysis of gene families 691 

Resistance gene homologs 692 

 693 

To investigate rye homologs of the wheat and barley genes Pm2, Pm3, Mla, Lr10 and RGA2 (GeneBank 694 

IDs in tbl. S-NLRSEARCH), homology searches were performed against the rye ‘Lo7’, bread wheat9 (cv. 695 

Chinese Spring), and barley15 (cv. Morex) genome sequences, using BLASTn88 (default parameters). Hits 696 

with at least 80% sequence identity were visualised using dotter115 for manual assessment and 697 

annotation. The obtained coding sequences were converted to protein sequences, allowing comparison 698 

with the EMBOSS program WATER (emboss.sourceforge.net), ClustalW116, or MUSCLE98, with reference 699 

sequences and other obtained sequences to aid distinction between potentially functional full-length 700 

genes, and pseudogenes with truncations or premature stop codons. 701 

Annotated genes were aligned using MUSCLE (default parameters), and the phylogenetic relationships 702 

among them were inferred using MisterBayes117 (GTR substitution model with gamma distributed rate, 703 

variation across sites, and a proportion of invariable sites). 704 

Manually-annotated positions of the genes Pm2, Pm3, Mla, Lr10 and RGA2 on the ‘Lo7’ 705 

pseudomolecules were compared with the annotated NLR genes identified by the gene feature 706 

annotation pipeline (described above) in order to link the genome-wide NLR analysis with the detailed 707 

analysis of the four R loci. Pairwise distances between NLRs were calculated based on the resultant tree 708 

using the cophenetic.phylo function in the R package ‘ape’108, and multidimensional scaling on the 709 

pairwise distances was conducted with the core R function ‘cmdscale’. 710 

 711 
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PPR and mTERF genes 712 

 713 

The ‘Lo7’ pseudomolecules were scanned for ORFs with the getorf program of the EMBOSS package95. 714 

ORFs longer than 89 codons were searched for the presence of PPR motifs using hmmsearch from the 715 

HMMER118 package (http://hmmer.org) and the profile hidden Markov models (HMMs) as defined in 716 

Cheng et al. (2016)119 for the PPR family PF02536 from the Pfam 32.0 database (http://pfam.xfam.org) 717 

and for the mTERF motif120. Downstream processing of the hmmsearch results for the PPR proteins 718 

followed the pipeline described in Cheng et al. (2016)119. A score was attributed to each PPR sequence 719 

(the sum of hmmsearch scores for all PPR motifs in the protein). In parallel, the HC and LC protein 720 

models from the gene feature annotation (described above) were screened to identify the annotated 721 

proteins containing PPR motifs. Five-hundred and twenty-six PPR models were identified in the HC and 722 

seventy-six in the LC protein datasets respectively, and scored using the same approach as with the 723 

hmmsearch results. Where putative exons identified from the six-frame translations of the genome 724 

sequence overlapped with gene models in the ‘Lo7’ annotation, only the highest scoring of the 725 

overlapping models were retained. P- and PLS-class genes with scores below 100 and 240, respectively, 726 

were removed from the annotation, as they are unlikely to represent functional PPR genes. Only genes 727 

encoding mTERF proteins longer than 100 amino acids were included in the final annotation. 728 

 729 

Mapping genes governing the reproduction biology in rye 730 

 731 

Molecular markers previously mapped in relation to Rf and SI genes were integrated in the ‘Lo7’ 732 

assembly (S-QTL) based on BLASTn sequence similarity searches as described by Hackauf et al. (2009)121. 733 

The S locus genomic region in rye was identified using orthologous gene models from Brachypodium 734 
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dystachion including Bradi2g35750, that is predicted to encode a protein of unknown function 735 

DUF247
46. Furthermore, we included the marker SCM1 from Hackauf and Wehling (2002)122 in our 736 

analyses, that represents the rye ortholog of a thioredoxin-like protein linked to the S locus in the grass 737 

Phalaris coerulescens
123,124. Likewise, the isozyme marker Prx7 linked to the S locus in rye was 738 

investigated as described by Wricke and Wehling (1985)43. The S locus was mapped in a F2 population 739 

(n= 96), produced by crossing the self-incompatible variety ‘Volhova‘ with the self-fertile line No. 5 740 

(‘l.5’), the latter of which carrying the mutation for self-fertility at the S locus on chromosome 1R 741 

(Voylokov et al. 1993, Fuong et al. 1993). Progeny from this cross are heterozygous for the self-fertility 742 

mutation. The gametic selection caused by self-incompatibility in such crosses was used for the mapping 743 

of S relative to markers (S-1RSTS) according to previously described protocols45,125. The SI mechanism 744 

prevents fertilization of all pollen grains except those carrying the Sf allele. As a consequence, only those 745 

50% of the pollen grains carrying the mutation will be able to grow and fertilize upon self-pollination of a 746 

F1 hybrid from the cross. Therefore, the functional S allele results in distorted segregation of marker loci 747 

linked to the self-fertility mutation in the F2. The degree of segregation distortion depends on the 748 

recombination frequency r between the segregation distortion locus (SDL) and analyzed marker loci. For 749 

example, after selfing a F1 with the constitution SM1/SfM2, where S and Sf are active (wild type) and 750 

inactive (mutant) alleles of the self-incompatibility locus S, respectively, and M1 and M2 are alleles of a 751 

marker locus linked in coupling phase, the expected segregation ratio for the marker will be as 752 

follows126: 753 

female gamete male gamete 

 

r M1 (1-r) M2 

0.5 M1 r/2 M1M1 (1-r)/2 M1M2 

0.5 M2 r/2 M1M2 (1-r)/2 M2M2 

 754 
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In case of r= 0 the frequency of heterozygous genotypes for the marker locus is equal to 0.5, and a 755 

significant excess of homozygous genotypes for the allele that originated from the self-fertile line (M22) 756 

is observed. Distorted segregation of marker loci were statistically analysed for mapping the S locus as 757 

outlined by Voylokov et al. (1998)127. 758 

 759 

Genes affecting low temperature tolerance 760 

 761 

The line ‘Puma-SK’ was produced by subjecting ‘Puma’ by recurrent selection under extreme cold winter 762 

conditions (-30 °C) to purify for the alleles contributing to increased cold tolerance. ‘Puma-SK’ was used 763 

in an intergeneric cross with the Canadian winter wheat cultivar ‘Norstar’, which generated a winter 764 

wheat introgression line (containing a segment of 5RL from ‘Puma’ (designated herein as ‘Norstar-765 

5A5R’) that contained Fr2
128. 766 

To characterize the Fr2 region in ‘Puma-SK’ and the introgression in ‘NorstarPuma5A:5R’, whole genome 767 

sequencing was performed using the Chromium 10X Genomics platform. Nuclei were isolated from 30 768 

seedlings, and high molecular-weight genomic DNA was extracted from nuclei using phenol chloroform 769 

according to the protocol of Zheng et al. (2012)129. Genomic DNA was quantified by fluorometry using 770 

Qubit 2.0 Broad Range (Thermofisher) and size selection was performed to remove fragments smaller 771 

than 40 kbp using pulsed field electrophoresis on a Blue Pippin (Sage Science) according to the 772 

manufacturer's specifications. Integrity and size of the size selected DNA were determined using a 773 

Tapestation 2200 (Agilent), and Qubit 2.0 Broad Range (Thermofisher), respectively. Library preparation 774 

was performed as per the 10X Genomics Genome Library protocol 775 

(https://support.10xgenomics.com/genome-exome/library-prep/doc/user-guide-chromium-genome-776 

reagent-kit-v2-chemistry) and uniquely barcoded libraries were prepared and multiplexed for 777 
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sequencing by Illumina HiSeq. De-multiplexing and the generation of fastq files was performed using 778 

LongRanger mkfastq (https://support.10xgenomics.com/genome-779 

exome/software/pipelines/latest/using/mkfastq; default parameters). 780 

Sequencing reads from ‘Puma-SK’ and ‘NorstarPuma5A:5R’ were aligned to the rye line ‘Lo7’ and bread 781 

wheat cv. Chinese Spring9 genome assemblies, respectively, using LongRanger WGS 782 

(https://support.10xgenomics.com/genome-exome/software/pipelines/latest/using/wgs; arguments -783 

vcmode ‘freebayes’). Large scale structural variants detected by LongRanger were visualized with a 784 

combination of Loupe (https://support.10xgenomics.com/genome-785 

exome/software/visualization/latest/what-is-loupe; tbl. S-DATAACCESS). Short variants were called 786 

using the Freebayes software (github.com/ekg/freebayes) implemented within the Longranger WGS 787 

pipeline. For determining the introgression, ‘NorstarPuma5A5R’ reads which did not map to the Chinese 788 

Spring reference were aligned to the ‘Lo7’ assembly using the LongRanger align pipeline 789 

(https://support.10xgenomics.com/genome-exome/software/pipelines/latest/advanced/other-790 

pipelines). Samtools114 bedcov was used to calculate the genome-wide read coverage across both 791 

references. Copy number variation between ‘Puma-SK’ and ‘Lo7’ was detected using a combination of 792 

barcode coverage analysis output by the Longranger WGS pipeline, and read depth-of-coverage based 793 

analysis using CNVnator130 and cn.mops131. 794 

To identify differentially expressed genes that may be contributing to the phenotypic differences in cold 795 

tolerance, ‘Puma-SK’ and ‘NorstarPuma5A:5R’ were grown and crown tissues harvested at different 796 

stages of cold acclimation. Both genotypes were grown for 14 days (d) at 20 °C with a 10 hour (h) day 797 

length. Plants were then treated to decreasing temperatures and daylengths over a 70d period, 798 

designed to mimic field conditions for winter growth habit. After the initial 14 d growth period, the 799 

temperature was reduced to 18 °C, then after 3 d (15 °C), 7 d (12 °C), 14 d (9 °C), 21 (6 °C), 28 d (3 °C), 35 800 

d (2 °C), 42 d (2 °C), 49 d (2 °C), 56 d (2 °C), 63 d (2 °C), and 70 d (2 °C). In addition to adjusting the 801 
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temperature, the day length was adjusted incrementally from 13.5 h at 0 d to 9.2 h at 70 d. Day length 802 

changes were programmed to occur on day 3 and day 4 of each week. For each change in temperature, 803 

crowns were sampled from two independent replicate plants for each genotype, which were used for 804 

analysis of gene expression by RNA sequencing. Crown tissue was sampled one hour after the lights 805 

came on in the morning to minimize circadian rhythm effects. In addition, at each change in 806 

temperature, five plants from each genotype were used to analyze the rate of plant phenological 807 

development (dissection of the plant crown to reveal shoot apex development) and cold hardiness 808 

during cold acclimation. Cold hardiness was determined using LT50 measurements, the temperature at 809 

which 50% of the plants are killed by LT stress, using the procedure outlined by Fowler et al. (2016)72. 810 

 Sequencing adapters were removed and low-quality reads were trimmed using Trimmomatic132. RNA 811 

reads from ‘NorstarPuma5A:5R’ and ‘Puma’ were aligned to the ‘Lo7’ reference using Hisat285 (default 812 

arguments) and transcripts were quantified with htseq133. Differential expression analysis was carried 813 

out using DESeq2134 (default parameters). 814 

Data Availability 815 

Data access information including raw sequence data, selected assembly visualisations, gene 816 

annotation, and optical map data, is tabulated in the table S-DATAACCESS. 817 

  818 
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