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Abstract: Resistance of bacteria to 3rd generation cephalosporins mediated by beta-lactamases (ESBL,
pAmpC) is a public health concern. In this study, 1517 phenotypically cephalosporin-resistant E. coli
were screened for the presence of blaSHV genes. Respective genes were detected in 161 isolates.
Majority (91%) were obtained from poultry production and meat. The SHV-12 beta-lactamase was the
predominant variant (n = 155), while the remaining isolates exhibited SHV-2 (n = 4) or SHV-2a (n = 2).
A subset of the isolates (n = 51) was further characterized by PCR, PFGE, or whole-genome sequencing
and bioinformatics analysis. The SHV-12-producing isolates showed low phylogenetic relationships,
and dissemination of the blaSHV-12 genes seemed to be mainly driven by horizontal gene transfer. In
most of the isolates, blaSHV-12 was located on transferable IncX3 (~43 kb) or IncI1 (~100 kb) plasmids.
On IncX3, blaSHV-12 was part of a Tn6 composite transposon located next to a Tn3 transposon, which
harbored the fluoroquinolone resistance gene qnrS1. On IncI1 plasmids, blaSHV-12 was located on an
incomplete class 1 integron as part of a Tn21 transposon. In conclusion, SHV-12 is widely distributed
in German poultry production and spreads via horizontal gene transfer. Consumers are at risk by
handling raw poultry meat and should take care in appropriate kitchen hygiene.

Keywords: ESBL; SHV-12; SHV-2; food chain; IncX3; IncI1

1. Introduction

Resistance of Enterobacteriaceae to third generation cephalosporins (3rd GC) is mostly
mediated by the production of extended spectrum beta-lactamases (ESBLs). Third GCs
are commonly used in human medicine due to their broad-spectrum activity against
gram-positive and -negative bacteria and comparatively low side effects [1]. However,
cephalosporins are also approved for various therapeutic applications in veterinary medicine
and applied on a constant scale, whereas the general consumption of antimicrobials in
animals decreased [2]. ESBLs can be detected from samples of human, livestock and
meat, and companion animals, as well as from the environment [3]. According to the
“One Health” concept, the different sectors are in close contact and a multi-directional
transmission of (resistant) bacteria between them will take place in the absence of strict
control measures. Resistance mediated by ESBLs is mostly associated with mobile genetic
elements (i.e., plasmids, integrons, transposons), which substantially enhances the spread
of these determinants. Although there is frequent transmission of bacteria between the
sectors, the majority of the resistant bacteria were shown to be adapted to their ecosystems
and hosts. Therefore, some resistances are more associated with a specific niche and the
prevailing conditions than with other ecosystems [4]. Beta-lactamases is a collective for a
broad variety of different enzyme groups containing hundreds of specific variants of which
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some confer resistance to 3rd GC [5]. According to the functional classification by Bush
and Jacoby 2010, serine beta-lactamases can be assigned to (i) beta-lactamases (group 2b;
substrates penicillins, early cephalosporins); (ii) broad spectrum beta-lactamases (group
2br; substrates penicillins, early cephalosporins; inhibitor resistant); (iii) ESBL (group 2be;
extended spectrum cephalosporins, monobactams); and (iv) broad-spectrum ESBLs (group
2ber; resistant to clavulanic acid) [6]. TEM-1 was the first plasmid-mediated beta-lactamase
detected in 1965, with hundreds of variants today. Members of the CTX-M family are cur-
rently the most frequent ESBLs [7]. Whereas CTX-M-15 is typically associated with human
infections, CTX-M-1 is the most common ESBL in the food chain in Europe [8,9]. The third
typical group is represented by the enzyme SHV (sulphydryl variant) encoded by blaSHV
genes. Currently, 182 different SHV variants are listed in the NCBI Reference Gene Catalog
(PRJNA313047; request date: 15 January 2021). Their spectrum ranges from beta-lactamase
(e.g., blaSHV-4) to broad-spectrum beta-lactamase (e.g., blaSHV-1) to ESBL (blaSHV-2) up to
broad spectrum ESBL (blaSHV-10). Furthermore, SHV-38 even mediates resistance to the
carbapenem imipenem [10]. The most common SHV-variant in ESBL E. coli from the food
chain is SHV-12, and poultry seemed to represent a general reservoir for blaSHV [11]. Based
on data from the national monitoring, as well as experimental studies, chickens are an
important source for blaSHV-carrying bacteria in Germany. Nevertheless, systematic and
comprehensive investigations of SHV-producing E. coli along the food chain are rare, in
contrast to studies focusing on CTX-M beta-lactamases [12–15].

In this study, SHV-producing E. coli from the German antimicrobial resistance moni-
toring programs of healthy animals and food were investigated. In-depth characterization
of a subset of isolates was conducted to determine potential transmission pathways for
SHV mediated resistances, their association to specific plasmid types, and to gain a better
insight into the genetic environment of blaSHV.

2. Materials and Methods

Isolates phenotypically resistant to 3rd GC obtained from the German monitoring
on antimicrobial resistance (commensal E. coli and ESBL-/AmpC-producing E. coli) were
investigated by multiplex real-time PCR targeting the most frequent ESBL/pAmpC genes
(blaTEM, blaCTX-M, blaSHV, blaCMY) for the presence of blaSHV [16].

In general, the annual German monitoring programs were conducted according to
Commission Implementing Decision 2013/652/EU. In 2016, the monitoring programs
focused on the poultry production chain, while pigs and calves were investigated in 2017.
The isolates (n = 1517) were selected on their phenotypic resistance to 3rd GC, which was
determined by broth microdilution, according to CLSI guidelines (CLSI M07-A10), and
MIC evaluation, according to EUCAST epidemiological cut-off values defined in 2013.
Dissection of specific SHV-variants was conducted by commercial Sanger-sequencing (Eu-
rofins Genomics, Ebersberg, Germany) of PCR products amplified using the primers SHV-F
(5′-TTATCTCCCTGTTAGCCACC-3′) and SHV-R (5′-GATTTGCTGATTTCGCTCGG-3′).
Fifty-one isolates were chosen for further characterization. Isolates were characterized
in regard to their phylogenetic group by Multiplex PCR [17], their XbaI-macrorestriction
patterns (PFGE) according to the PulseNet protocol (https://www.cdc.gov/pulsenet/
pathogens/protocols.html, accessed on 8 September 2021), and their plasmid content (S1-
nuclease PFGE). PGFE cluster analysis was conducted using Bionumerics (v7.6.3; Applied
Maths; Sint-Martens-Latem, Belgium). Localization of blaSHV genes on plasmids was deter-
mined for the 51 E. coli by S1 PFGE in combination with Southern Blotting Hybridization
against a digoxigenin-labeled blaSHV probe using a DIG Easy Hib and DIG Wash and Block
Buffer Set (Roche Diagnostics; Mannheim, Germany) [18]. Plasmid typing was carried
out by Southern Blot hybridization, as well, or by introducing blaSHV-carrying plasmids
into competent E. coli DH10B cells (ElectroMAXTM DH10B cells; Invitrogen TM, Thermo
Fisher Scientific; Schwerte, Germany) by electroporation [19]. Replicon typing of trans-
ferred plasmids was conducted using the PBRT 2.0 kit (Diatheva; Cartoceto, Italy). The
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transferability of the ESBL plasmids was investigated by filter-mating assays using E. coli
J53 as a recipient [20].

Illumina short-read sequencing according to Borowiak et al. (2017) was performed
for all SHV-2/SHV-2a-producing E. coli, as well as for a subset of 21 SHV-12 producing
isolates, to gain a deeper knowledge on the genetic environment of blaSHV [21]. Long-read
sequencing (PacBio or Oxford Nanopore) was conducted for a subset of the sequenced
isolates to develop reliable reference plasmid genomes from hybrid sequences. Illumina
raw reads, as well as PacBio raw reads, were deposited in the NCBI database and are
accessible under the BioProject PRJNA721573. Raw reads of isolate 17-AB0050 can be
accessed under the BioProject PRJNA589028. Short read sequencing data were assembled
using SPADES v. 3.13.1, while hybrid assemblies were carried out using Unicycler (v.044).
PacBio sequences of the isolate 16-AB02442 was additionally de novo assembled using
HGAP [22].

Genome sequences were analyzed with the BfR in-house pipeline Bakcharak (v.1.0.0;
https://gitlab.com/bfr_bioinformatics/bakcharak, accessed on 8 September 2021) in re-
gard to MLST, AMR genes, and plasmid identification. Virulence (associated) genes were
detected using VirulenceFinder v.2.0.3 [23], and only results with >99.9 identity to reference
gene were considered. SNP analysis was carried out using Bionumerics (v.9.6), as previ-
ously reported [18]. Identification of most related plasmids was done using plasmidID
(https://github.com/BU-ISCIII/plasmidID, accessed on 8 September 2021). Annotation
of sequences was conducted by PATRIC web resourced (https://patricbr.org, accessed on
8 September 2021) and multiple plasmid alignment was carried out using BRIG [24].

3. Results

In total, 1517 isolates of 3rd GC-resistant E. coli from Germany were molecularly
screened for the presence of blaSHV. One hundred and sixty-one isolates were assigned as
positive for blaSHV (Table 1), representing an overall proportion of 10.6%. The vast majority
(n = 148) of them were obtained from the poultry production chain with an emphasis on
chicken. There, a proportion of 22.2% was detected along the whole food production chain.
In the turkey production chain, a lower proportion (7.4%; n = 22) was determined. Thirteen
further isolates, originating from pigs (n = 11) or calves (n = 2), were also positive for
the chosen target sequence. Subsequent typing of the prevailing SHV-variants (Figure 1)
revealed that SHV-12 represents the predominant type, identified in 155 isolates (96.3%).
The remaining six isolates carried blaSHV-2 (n = 4, 2.5 %) or blaSHV-2a (n = 2, 1.2 %).

Table 1. Results of real-time PCR investigations of 3rd GC-resistant E. coli from the German monitoring on antimicrobial
resistance (commensal E. coli and ESBL-/AmpC-producing E. coli) on the occurrence of blaSHV. #–number of.

Year Matrix # Isolates
Investigated

# blaSHV
Positive Ratio in %

2016 Broiler production total 567 126 22.2

Broiler, feces 166 33 19.9
Broiler, cecum 184 42 22.8

Broiler, skin 5 2 40.0
Chicken, meat 212 49 23.1

2016 Turkey production chain total 296 22 7.4
Turkey, cecum 119 9 7.6
Turkey, meat 177 13 7.3

2017 Pork production chain total 344 11 3.2
Fattening pigs, feces 325 11 3.4

Pork 19 0 0.0

2017 Beef production chain total 250 2 0.8
Veal calves, feces 236 2 0.8

Beef 14 0 0.0

2016/
2017 other samples Game, meat and feces (wild boar, deer,

roe deer); vegetables, sprouts 60 0 0.0

Total 1517 161 10.6

https://gitlab.com/bfr_bioinformatics/bakcharak
https://gitlab.com/bfr_bioinformatics/bakcharak
https://github.com/BU-ISCIII/plasmidID
https://patricbr.org
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For further in-depth characterization, 51 E. coli were selected. The selection included
all isolates from pigs and calves (n = 13) and 38 isolates from the poultry production chain.
The SHV-2-/SHV-2a-producing E. coli, as well as 21 SHV-12 producing E. coli, were also
subjected to whole-genome sequencing (WGS) analysis (Supplementary Table S1).

The phenotypic resistance profiles were considered in regard to the isolate char-
acteristics. Among 51 investigated isolates, 29 different MIC profiles were found. In
general, the isolates exhibited resistance against three to eight different antimicrobial
classes (Supplementary Table S1). So, all of them were multi-drug resistant, and the vast
majority (42/51) were not susceptible to ciprofloxacin. Isolates of the phylogenetic group
A showed a narrow range of three to five antimicrobial classes, while E. coli of other phylo-
genetic groups showed a broader range. Overall, there was no correlation between specific
resistances and phylogenetic groups or animal species.

There was a great variability found for virulence-associated genes. Between two and
25 genes (median of 14) were detected from the 27 whole-genome sequences. The three phy-
logenetic group A isolates harbored a maximum of four virulence associated genes, whereas
isolates of the other groups exhibited a broad range of genes (Supplementary. Table S1).
Further, 10 of 27 isolates were positive for astA. This gene encodes for the heat-stable
enterotoxin 1. Most of these isolates (n = 6) belonged to phylogenetic group B1.

3.1. SVH-2-/SHV-2a-Producing E. coli

In this study, the SHV-2a variant was only detected in two isolates. One originated
from broiler and one from pig. Both E. coli carried blaSHV-2a on a 91 kb IncB/O plasmid
but belonged to different multilocus sequence types (short STs) and phylogenetic groups
(Table 2). Isolates producing SHV-2 (n = 4) were all obtained from the broiler production
chain of different origins without obvious epidemiological linkage. Three of them belonged
to ST533 and exhibited the same serotype O177:H10. XbaI-macrorestriction analysis re-
vealed a close relationship between these isolates (Figure 2a). While the E. coli 16-AB01333
and 16-AB03269 were determined to be clonally related (>90%), the remaining isolates
showed less similarity. The close relationship could be confirmed by single nucleotide
polymorphism (SNP) analysis, although the clonality of 16-AB01333 and 16-AB03269 was
based on a minimum of 23 SNPs (Figure 2b). While blaSHV-2 of the isolate 16-AB01796 was
located on the chromosome, the location of the gene in ST533 isolates remains unclear. Se-
quence data indicates a plasmid localization, but this could not be confirmed by biological
experiments (S1 Southern Blot hybridization; conjugation or transformation assays).
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Table 2. Characteristics of SHV-2/2a-producing E. coli from the food production chain in Germany 2016/2017.

Isolate Origin SHV Variant and Localization (Size) Inc. Group Phylogenetic Group MLST

16-AB01333 Meat, chicken SHV-2 n.d. n.d. B1 533
16-AB01796 Broiler, feces SHV-2 Chromosome A 665
16-AB03269 Broiler, feces SHV-2 n.d. n.d. B1 533
16-AB03431 Broiler, feces SHV-2 n.d. n.d. B1 533
16-AB01101 Broiler, cecum SHV-2a Plasmid (87 kb) B/O E 1640
17-AB01224 Pig, feces SHV-2a Plasmid (91 kb) B/O F 117

Abbreviation: n.d., not determined.
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As only few SHV-2/2a producing isolates were available, no interpretation of the
common transmission pathway can be deduced from the data. However, it is likely that
blaSHV-2/2a was disseminated through horizontal, as well as vertical, gene transfer.

3.2. SHV-12-Producing E. coli

In contrast to SHV-2/2a, no clonal dissemination was found for blaSHV-12 carrying
isolates (Supplementary Figure S1). XbaI-PFGE analysis showed a high phylogenetic
diversity among these isolates, except for 16-AB02778, 16-AB03037, and 17-AB00277. The
majority of isolates was assigned to phylogenetic group A, B1, or F, which are known to
represent isolates of non-clinical origin (Table 3). The spread of the ESBL determinant
seems to be driven by two predominant plasmid types. A large proportion (n = 26/45) of
the isolates harbored blaSHV-12 on ~40–45 kb (±5 kb) IncX3 plasmid. The dissemination
of the IncX3 plasmids does not seem to be associated with a certain matrix or animal
type. Another subset of isolates (n = 13/45) harbored the gene on IncI1 plasmids of 100 kb
(±10 kb) in size. Plasmids of this type were mainly detected in isolates from the turkey
production chain.

For three E. coli, the location of the blaSHV-12 gene was confirmed on a ~300 kb IncHI2
plasmid, of which one has been shown to co-express a VIM-1 carbapenemase [25].



Microorganisms 2021, 9, 1926 6 of 13

Table 3. Main characteristics of SHV-12-producing E. coli. In general, the plasmid size was determined by S1 PFGE. Plasmid
sizes of indicated isolates (*) were obtained from sequencing data. For all isolates with assigned MLST, sequencing data are
available at NCBI under the BioProject PRJNA721573.

Isolate Origin SHV Variant SHV Plasmid Size and Inc Group Phylogenetic Group MLST

17-AB02384 * Pig, feces SHV-12 298 kb HI2 B1 7593
17-AB01032 Pig, feces SHV-12 308 kb HI2 B1 n.a.
17-AB01030 Pig, feces SHV-12 295 kb HI2 C 410
16-AB00888 Turkey, meat SHV-12 93 kb IncI1 A n.a.
16-AB00970 Turkey, cecum SHV-12 100 kb IncI1 F n.a.
16-AB01461 Turkey, cecum SHV-12 104 kb IncI1 D n.a.
16-AB01700 Turkey, cecum SHV-12 97 kb IncI1, ST26 B2 428
16-AB02356 Turkey, cecum SHV-12 84 kb IncI1, ST3 B1 162
16-AB03339 Broiler, cecum SHV-12 100 kb * IncI1 B1 n.a.

16-AB02442 * Turkey, meat SHV-12 110 kb * IncI1, ST3 D 38

16-AB03438 * Turkey, meat SHV-12 105 kb
218 Kb

IncI1, ST26
IncFIB/FIC B2 428

16-AB03529 Turkey, meat SHV-12 107 kb IncI1, ST26 E 57
16-AB03530 Turkey, meat SHV-12 104 kb IncI1 F n.a.

16-AB03534 Turkey, meat SHV-12 28 kb
100 kb

n.a.
IncI1 A n.a.

16-AB03309 * Broiler, cecum SHV-12 91 kb IncI1, ST3 B1 1196
17-AB01138 Calves, feces SHV-12 90 Kb IncI1 B1 n.a.
17-AB01735 Pig, feces SHV-12 106 kb n.t. A1 1060
16-AB00677 Turkey, cecum SHV-12 39 kb IncX3 F n.a.
16-AB00797 Broiler, cecum SHV-12 39 kb IncX3 A 10
16-AB01024 Turkey, meat SHV-12 41 kb IncX3 F n.a.
16-AB01389 Broiler, cecum SHV-12 41 kb IncX3 A n.a.
16-AB01588 Broiler, cecum SHV-12 43 kb IncX3 F 117
16-AB02021 Turkey, meat SHV-12 40 kb IncX3 C n.a.
16-AB02026 Turkey, cecum SHV-12 42 kb IncX3 B1 n.a.
16-AB02340 Turkey, cecum SHV-12 42 kb IncX3 B1 9046
16-AB02352 Broiler, cecum SHV-12 44 kb IncX3 E n.a.
16-AB02541 Broiler, cecum SHV-12 43 kb IncX3 A n.a.
16-AB02638 Turkey, cecum SHV-12 38 kb IncX3 B2 n.a.

17-AB02673 * Pig, feces SHV-12 37 kb
43 kb

IncN
IncX3 C 2230

16-AB02778 Broiler, cecum SHV-12 43 kb IncX3 F n.a.
16-AB03037 Broiler, cecum SHV-12 44 kb IncX3 F n.a.
16-AB03425 Turkey, meat SHV-12 46 kb IncX3 F n.a.
16-AB03444 Turkey, meat SHV-12 47 kb IncX3 D n.a.
16-AB03515 Turkey, meat SHV-12 61 kb IncX3 A n.a.
17-AB00299 Broiler, cecum SHV-12 41 kb IncX3 F 117
17-AB00308 Broiler, cecum SHV-12 45 kb IncX3 A n.a.
17-AB00336 Turkey, cecum SHV-12 220 kb IncX3 F 117
17-AB01005 Pig, feces SHV-12 39 kb IncX3 A 1244
17-AB01006 Pig, feces SHV-12 40 kb IncX3 A 10
17-AB01018 Pig, feces SHV-12 40 kb IncX3 C 88
17-AB01605 Pig, feces SHV-12 42 kb IncX3 B1 n.a.
17-AB01798 Pig, feces SHV-12 42 kb IncX3 B1 641
17-AB02071 Calves, feces SHV-12 41 kb IncX3 B1 58

16-AB02401 * Turkey, meat SHV-12 37 kb X1 E n.t.
16-AB03659 Turkey, meat SHV-12 30 kb X1 F n.a.

n.t.—not typable; n.a.—not analyzed.

3.3. Genetic Environment of blaSHV-12

To get a deeper insight into the genetic basis of blaSHV-carrying isolates from the
German monitoring on antimicrobial resistance, short-read sequencing was performed for
21 preselected isolates (Table 3). Additionally, long-read sequencing was conducted for
three isolates (IncI1 plasmid: 16-AB02442, IncX3 plasmid: 17-AB00050 and SHV-2 IncHI2
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plasmid: 16-AB03269) to develop reference plasmid sequences suitable for mapping of
short-read sequencing data and phylogenetic analysis.

In general, assembled contigs from short-read sequencing carrying the blaSHV-12
gene are too short to provide detailed information about the genetic environment of
the gene (i.e., chromosomal versus plasmidal localization) as they usually only comprised
blaSHV. Reference-based mapping of the raw reads to the complete IncX3 plasmid of
17-AB00050 (available at https://www.mdpi.com/2076-2607/9/3/598/s1, accessed on
8 September 2021) showed that the complete plasmid was covered by the sequencing data
of the individual isolates, except a short region of 2300 bp encoding an IS21 transposase
and the ATP-binding protein IstB. Thus, a high concordance of IncX3 plasmids carrying
blaSHV-12 was predicted. The genetic background of blaSHV-12 on different plasmids is illus-
trated in Figure 3a. In general, SHV-12 was encoded on a Tn6 composite transposon, but,
due to the association of Tn6 to an IS26 transposase, short-read sequencing results were not
suited for determination of the genetic basis. The repetitive sequences of the transposon
commonly resulted in a deficient of the assembling software in reliable allocation of raw
reads to the respective positions of the contigs. Tn6 was further associated with a Tn3
transposon encoding the acquired fluoroquinolone resistance determinant qnrS1. Analysis
using plasmidID revealed a very high similarity of all characterized IncX3 plasmids to
the Klebsiella pneumoniae plasmid pKpvST101_6 (CP031373; Figure 3b). This isolate was
previously detected in a Chinese hospital and carries blaOXA-48 on another plasmid.

Although blaSHV-12 is also associated with IS26 on IncI1 plasmids, the genetic basis
differs substantially from IncX3 plasmids. The gene is part of an incomplete class 1
integron as part of a Tn21 derivate. Based on the organization of the genes, Tn21 seemed
to be inserted several times in the same region of IncI1 plasmid in different orientations
(Figure 4a). The region was flanked by mobile genetic elements as different transposases
and recombinases and might be a hotspot for integration or homologous recombination.
The majority of the isolates exhibited an integrase with additional gene cassettes forming
an atypical class 1 integron (intI1-estX-psp-aadA2b-cmlA1-aadA1-qacL-IS256-sul3), followed
by blaSHV-12 as part of a transposable element (shown for 16-AB02442; Figure 4b). In 16-
AB03309, a substantial part of the integron was not present (Figure 4b). A similar plasmid
organization was detected for 16-AB02356. However, in this isolate, the serine recombinase
and TnAs1 transposase were also absent. The typical Tn21 mercury (mer) operon could
not be detected in any of the IncI1 sequences. Two different pMLSTs (ST3 and ST26) were
detected, suggesting the presence of a similar variable region of multi-drug resistances
in different plasmid backbones. This was supported by further analysis with plasmidID
showing different possible reference plasmids for the two pMLSTs. The IncI1 ST3 plasmids
showed greatest similarity to E. coli plasmid p13KWH46-2 (Acc.-No. CP019252) (IncI1, ST3),
whereas IncI1 ST26 (CC-2) plasmids showed highest similarity to Salmonella Typhimurium
plasmid TY474p2 (Acc.-No. NC_017675) (IncI1 ST27 CC-2). Nevertheless, alignment of
p13KWH46-2 and TY474p2 showed high similarities between these two IncI1 plasmids.
Both plasmids did not harbor any resistance genes. The relationship of p13KWH46-2 and
IncI1 ST3 plasmids is shown in Figure 5. This reference plasmid harbored an additional
~15 kb segment, primarily encoding hypothetical proteins.

https://www.mdpi.com/2076-2607/9/3/598/s1
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4. Discussion

Based on the prevailing data among all ESBL-producing isolates of the food chain in
Germany in 2016/2017, blaSHV-carrying isolates are mainly associated with broilers (22%)
and turkey (7.5%). This is in concordance to reports from the Netherlands, where SHV-
production was also primary attributed to isolates from the poultry production chain [26].
In contrast, SHV-12-production was only confirmed for 13 isolates from pigs and veal
(feces or at slaughter) but not from meat. This might represent the low prevalence of ESBL
E. coli from pork and veal (5.5% and 4.4%, respectively) in comparison to the high ESBL
occurrence among pigs at slaughter (47%) and veal calves (68%) [27]. Further, pig and calf
associated E. coli isolates predominantly harbored blaCTX-M-1 as an ESBL determinant [11].
All characterized isolates showed multidrug resistance, which enables co-selection by
antimicrobial use in meat production. High co-resistance to ciprofloxacin mirrors the wide
use of fluoroquinolones, especially in poultry production [28].

The heat-stable enterotoxin gene astA was found in ten of 26 sequenced isolates.
Enterotoxin AST1 is associated with diarrheal illness and was also detected in some
enteroaggregative E. coli [29,30]. It can be detected in isolates from humans and animals,
while its impact on the disease is still discussed [31,32]. As all samples originated from
non-clinical animals, the toxin did not seem to have obvious influence on animal health.
However, we have no definite information on the health status of the animals. Up to now,
the pathogenicity of these strains for humans or the risk for consumers cannot be estimated.

The heat-stable enterotoxin gene astA was mainly found in isolates of the phylogenetic
group B1, which is uncommon for this group. There is the general assumption that A and
B1 are associated with high resistance and low virulence in contrast to B2 and D [33]. This
could not be confirmed based on the results of this study. Isolates of phylogenetic group
A showed lowest resistance according to the number of antimicrobial classes, as well as
only low numbers of virulence genes. Other isolates of phylogenetic group C, which was
formerly integrated in phylogenetic group A, harbored 14–25 virulence-associated genes.
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Only few isolates producing SHV-2/SHV-2a were detected here. Both variants (SHV-
2/2a) differ in one amino acid. In Europe, SHV-12 is the predominant SHV variant
associated with poultry whereas SHV-2/2a has only a small share [11]. This is in contrast
to Asian and American investigations [34,35]. In a Canadian study, animals (especially
chicken) and food samples (chicken meat) were investigated. Therewith, all 20 SHV-
producing Enterobacteria were positive for SHV-2/2a [34]. In their study, the SHV genes
are mainly located on IncI1 plasmids but are not associated with IncB/O or IncX1, as found
in Germany. SHV-2/2a variants were also sporadically detected within human clinical
samples but seem to be mainly associated with Klebsiella pneumoniae [36–38].

The majority of the investigated isolates carried blaSHV-12 on 40-50 kb IncX3 plasmids.
The increasing occurrence of IncX3 plasmids was previously described [39]. This plasmid
type exhibits a highly conserved backbone with a variable region acting as a hotspot for
integration and excision of mobile genetic elements. Plasmid variants bearing blaSHV-12
incorporated a Tn6 composite transposons in association with qnrS1, which seems to be
very successful during environmental selection as they had replaced the typical IncI1
plasmids [26,40]. Thus, it can be assumed that these plasmids might be more stable and,
presumably, without any further fitness costs for their bacterial hosts [39]. IncX3 plasmids
are reported to be highly transmissible and replicate well in bacterial isolates from different
animal species. So, in terms of international trade and traveling, it is worrying that
IncX3 plasmids are highly associated with carbapenem-producing Enterobacteriaceae from
human and from retail meat in South East Asia and the United Arab Emirates [28,29].

IncI1 plasmids are frequently reported as carriers of ESBL genes and often represent
sizes of 100 kb [41]. A predominant plasmid MLST is pST3. This type was also reported for
CTX-M-1-producing E. coli from food in Germany [15]. Interestingly, whereas blaCTX-M-1
was shown to be inserted into the shufflon region, blaSHV-12 was associated with an atypical
class 1 integron containing multidrug-resistance cassettes with a close relationship to struc-
tures described by Alonso et al. 2017 [40]. Although they found pST26 IncI plasmids in
isolates from different hosts, all IncI1 ST26 harboring isolates from our study were detected
from poultry. Further, the isolates 16-AB01700 (turkey, cecum) and 16-AB03438 (turkey,
meat) showed comparable characteristics (ST428; phylogenetic group B2, resistome), sug-
gesting that a potential transmission from animal to food might have taken place during
slaughter. As similar plasmids were also found in humans, a transmission between humans
and animals seems to be likely, underlining hygiene importance in all stages from food
production [40].

5. Conclusions

In Germany, SHV beta-lactamases were mainly detected from poultry production and
meat. SHV-12 was the predominant variant found in this study and associated with IncX3
and IncI1 plasmid dissemination. Although cephalosporins are not applied in poultry
production, co-selection might occur through further harbored antimicrobial resistance
genes. No differences could be detected between their proportion in animal and meat
samples. There is an undeniable risk for consumers for colonization with ESBL E. coli
during handling of raw poultry meat with insufficient kitchen hygiene or consumption
of contaminated products. Efforts are needed to reduce colonization of chicken and to
improve slaughtering techniques for minimizing cross contamination of poultry meat.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9091926/s1, Figure S1: Phylogenetic analysis of SHV-12 producing E. coli from
the food chain in Germany based on XbaI PFGE. Table S1: Phenotypic resistance of SHV-producing E.
coli from the food chain in Germany, resistance genes and numbers of virulence associated resistance
genes detected by whole genome sequencing.
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