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Simple Summary: Leaf rust resistance is of high importance for the European wheat production in
order to avoid yield and quality losses. Modern breeding is aiming to maximize the selection gain
within a short time period. To realize a successful resistance breeding, detailed knowledge about
the genetic architecture of leaf rust resistance, as well as a precise and fast phenotyping strategy, are
necessary. The examination of detached leaf assays of juvenile plants inoculated under controlled
conditions and phenotyped by a robotic-based, high-throughput system is a promising approach
in this respect. Known leaf rust resistance genes showing qualitative or quantitative effects and
their expression starts at different developmental stages of wheat. Therefore, this study validated
the transferability of results from detached leaf assays to the field and assessed the benefits of this
phenotyping strategy to support leaf rust resistance breeding. Phenotyping detached leaves of wheat
seedlings by using an automated, high-throughput methodology is a valuable tool to improve leaf
rust resistance.

Abstract: Leaf rust resistance is of high importance for a sustainable European wheat production. The
expression of known resistance genes starts at different developmental stages of wheat. Breeding for
resistance can be supported by a fast, precise, and resource-saving phenotyping. The examination of
detached leaf assays of juvenile plants inoculated under controlled conditions and phenotyped by a
robotic- and computer-based, high-throughput system is a promising approach in this respect. Within
this study, the validation of the phenotyping workflow was conducted based on a winter wheat
set derived from Central Europe and examined at different plant developmental stages. Moderate
Pearson correlations of 0.38-0.45 comparing leaf rust resistance of juvenile and adult plants were
calculated and may be mainly due to different environmental conditions. Specially, the infection
under controlled conditions was limited by the application of a single rust race at only one time
point. Our results suggest that the diversification with respect to the applied rust race spectrum is
promising to increase the consistency of detached leaf assays and the transferability of its results to
the field.

Keywords: wheat leaf rust; phenotyping; seedling resistance; adult plant resistance; detached
leaf assay

1. Introduction

Wheat leaf rust, caused by Puccinia triticina, is a very important fungal disease [1] be-
cause its epidemics are able to affect both grain yield and grain quality [2]. Such crop losses
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can be avoided by breeding and growing resistant wheat cultivars. Approximately 90 genes
have been identified as the cause of leaf rust resistance [3], with Lr1, Lr3a, Lr10, Lr13, Lr14a,
Lr17b, Lr20, Lr26, and Lr37 in particular being intensively used in European varieties [4–6].
The majority of known leaf rust resistance genes cause seedling resistance (also called
race-specific or qualitative resistance) [7,8], which is typically expressed throughout the
plant life cycle and results in a hypersensitive response or programmed cell death [7]. The
resistance genes Lr1, Lr3, Lr10, Lr11, Lr14a, and Lr24 are present with high frequency within
the European wheat germplasm [9], but are typically effective against only a limited num-
ber of leaf rust races. Due to its monogenic inheritance, seedling resistance follows Flor’s
gene for gene concept [10,11] and can be easily broken by the permanent evolution of new
leaf rust virulences [7,12,13]. In contrast, Lr34 and Lr46 are known to cause quantitative
resistance of high durability [14,15], while approximately 20 different quantitative trait
loci (QTL) were identified, resulting in partial resistance [16]. Quantitative resistance is
non-race-specific and based on a few minor genes effecting each a reduction of infestation,
while combining some minor genes within the same variety resulted in a stable and long-
lasting efficiency of leaf rust resistance [7]. Due to its late expression after the seedling
stage of plants, this resistance mainly leads to adult plant resistance (APR), which rarely
can be also caused by qualitative resistance genes [17,18]. The full expression of adult plant
resistance (APR) efficiency is highly variable within the plant life cycle and takes place
between tillering and heading (EC20-EC59). This behavior can be influenced by the factors
environment, temperature, genetic background, intensity, and aggressiveness of occurring
leaf rust races [18,19].

The expected dynamic of expanding diseases and their increased importance for the
European wheat growing area resulted in rising requests to resistance breeding. The main
goal of breeding is to maximize selection gain per unit of time, which would shorten
breeding cycles and thus, allow a faster adaption of grown varieties to altering conditions
on farmers’ fields [20]. During the last decades, implementing modern molecular marker
techniques supported a rapid and efficient wheat breeding. Nowadays, this development
can be intensified by the integration of promising tools, such as speed-breeding protocols or
genome-wide prediction strategies within the breeding process [20–22]. While a successful
breeding strategy is based on highly precise phenotypic data, it is necessary, but challeng-
ing, to generate robust information within the dramatically reduced breeding cycle [20].
Therefore, the development of pioneering phenotyping strategies is requested to generate
highly precise data in a time- and resource-saving manner [20]. Some strategies fulfilling
these issues have already been published on the basis of greenhouse trials [23,24]. For
instance, Lueck et al. (2020) [23] reported a highly promising approach by generating de-
tached leaf assays of seedlings screened by a robotic- and computer-based, high-throughput
system (further denoted as Macrobot platform). This methodology allows a fast resistance
quantification for a large number of single plants using steadily updated pathogen popula-
tions or observing in parallel different diseases or isolates within separated experiments.
To verify the benefit of this modern phenotyping procedure to practical wheat breeding
aiming at leaf rust resistance, validation is needed examining the transferability of results
generated by observing detached leaves of juvenile greenhouse plants to adult plants
grown under field conditions [25].

The aims of this study were to (1) investigate the resistance of European wheat elite
lines at different juvenile plant stages against an aggressive leaf rust race compared to adult
plants tested in field trials with naturally occurring leaf rust infections, (2) infer the genetic
architecture of leaf rust resistance based on the detected correlations between seedling and
adult plant resistance, and to (3) validate the workflow including greenhouse seedling tests
combined with a high-throughput phenotyping platform to support resistance breeding
mainly focusing on adult plant resistance against leaf rust.
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2. Materials and Methods
2.1. Plant Material

The study is based on 240 European elite winter wheat (Triticum aestivum L.) lines of the
breeding program of KWS LOCHOW GmbH (Bergen, Germany). The 240 genotypes were
selected on the basis of preliminary disease resistance data and reflect a broad phenotypic
diversity with respect to resistance against leaf rust. No further information on the presence
of particular resistance genes in the 240 genotypes was available.

2.2. Evaluating Leaf Rust Resistance of Adult Plants in Field Trials

The examined 240 genotypes were evaluated together with 1586 additional wheat lines
for naturally occurring leaf rust resistance. The data is not orthogonal and includes field
trials conducted in 5 and 4 environments in the years 2017 and 2018, respectively (for details,
see Table 1). Five released varieties (Bonanza, Elixer, Julius, Nordkap, RGT Reform) were
included as checks in all field trials enabling joint analyses. Plot size ranged from 0.5 m2 to
17.25 m2, while different experimental designs were used, i.e., alpha-lattice, randomized
complete blocks, or adjustment through a moving grid to correct for uncontrolled spatial
variation. Infection of genotypes with leaf rust occurred naturally and was scored at the
date of flowering (EC 65) on the flag leaf. An ordinal scale from 1 to 9, according the
Bundessortenamt (2000) [26], was used in order to score infections, where 1 stands for
minimal symptoms and 9 indicates extensive disease symptoms.

2.3. Evaluating Leaf Rust Resistance in Greenhouse Experiments

The 240 genotypes were additionally phenotyped in replicated greenhouse experi-
ments using detached leaf assays of 10-day old seedlings (EC 12; T1), for which 7 leaves
per genotype were observed. The susceptible standard variety Borenos was used as control.
Inoculation was implemented in an air-blowing inoculation tower using uredospores of
the aggressive leaf rust isolate 77 WxR [27]. After an incubation of 8 days under controlled
temperature conditions (16 ◦C), visibly differentiable leaf rust symptoms appeared on
the leaf segments. Standardized imaging of infected leaf assays was then realized by the
automated phenotyping platform Macrobot, while the BluVision software was used to
analyze the images. Briefly, the software detects leaf samples and uredospore pustules
based on the color and measures their pixel sizes. The relation between leaf size and
pustule size resulted in the rated percentage of infected leaf area [28]. A more detailed
description of the experimental setup can be found elsewhere [23].

We examined the influence of the developmental stage on the leaf rust resistance
scoring focusing on 40 genotypes. They were selected in order to portray the variation
observed for the 240 genotypes. The 40 genotypes were grown under greenhouse conditions
for 5 (EC 19; T2), and 10 weeks (EC 25; T3), each in two replications. Subsequently, resistance
screening was undertaken using detached leaf assays and the above described procedure.
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Table 1. Characterization of field environments, in which leaf rust resistance was evaluated.

Nasenberg Nörvenich Seligenstadt1 Seligenstadt Söhnke-
Nissenkoog Wetze1 Wetze2 Wetze Wohlde

Elevation above sea level (m) 148 106 283 283 1 136 136 136 73
Average annual temperature (◦C) 10.69 11.25 11.02 11.02 9.77 10.13 10.13 10.13 9.94

Average annual precipitation (mm) 548.54 548.66 551.36 551.36 902.50 584.92 584.92 584.92 740.14
Year (s) 2017, 2018 2018 2017, 2018 2017 2017 2017, 2018 2018 2017, 2018 2017

Plot size (m2) 17.25 7.4 0.5 14.85, 6.6 0.5 0.5 0.5 14.25, 6.25 0.5

Field design Alpha-lattice Alpha-lattice Randomized
complete block

Alpha-lattice,
Moving grids

Randomized
complete block

Randomized
complete block

Randomized
complete block

Alpha-lattice,
Moving grids

Randomized
complete block

No. of genotypes 116, 119 119 780, 1138 64 56 780, 1135 1138 93, 64 780
No. of trials 2 2 10 1 1 10, 11 11 2, 11 10
Replications 1 1 2 1 2 2, 1 2 1, 2 2
Genotypes

per trial 64 64 42–140 64 56 42–140 64–140 64, 64–140 42–140

Genotypes of
selected set 27, 26 26 126, 128 19 5 126, 127 128 14, 17 126
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2.4. Analyses of Data from Field Trials

Phenotypic data were analyzed using a two-step approach [29]. Each trial times
location combination was used to perform a quality check implementing the following
linear mixed model:

yde f = µ + gd + re + b f (e) + εde f , (1)

where yde f represents the performance of the dth genotype at the f th block within the eth

replication, µ is the intercept, gd stands for the genotype effect, re represents the replication,
b f (e) symbolizes the effect of the f th block nested within the eth replication, and εde f is the
corresponding residual. The calculation of repeatability was completed for replicated trials
based on the estimated variance components as:

r =
σ2

Genotype

σ2
Genotype +

σ2
error

No. o f replicates

. (2)

Trial by location combinations with a repeatability >0.4 were taken to obtain the best
linear unbiased estimations (BLUEs) applying the following linear mixed model:

ydle f = µ + gd + tl + re(l) + b f (e) + εdle f , (3)

where ydle f stands for the performance of the dth genotype at the lth trial in the f th block of
the eth replication, µ is the intercept, gd is the genotype effect, tl represents the trial, re(l)

symbolizes the replication nested within the lth trial, b f (e) represents the block effect nested
within the eth replication and the lth trial, while εdle f is the corresponding residual. The
trial effect was excluded for locations with only one trial.

The BLUEs of genotypes for every single location were combined and the following
linear mixed model was fitted:

ydm = µ + gd + lm + εdm, (4)

where ydm symbolizes the phenotypic observation of the dth genotype in the mth location,
µ is the intercept, gd represents the genotype effect, while lm stands for the location effect
and εdm is the corresponding residual. Heritability was calculated as the ratio between
the variance of the genotype versus the phenotype following standard procedures [30]. In
addition, the correlation between single field environments and the serial mean except the
examined environment was analyzed.

2.5. Analyses of Data from Greenhouse Experiments

A statistical workflow developed by Hinterberger et al. (2021) [31] was implemented
to analyze infestation data of single leaf segments in order to identify unreliable data points
and inoculation groups. Curated data were used to estimate variance components based
on the following linear mixed model:

ydno = µ + an + gd + Gd x an + Io + Gd(o) + εdop, (5)

where ydno is the average infected leaf area of the dth genotype at the nth developmental
stage and tested within the oth inoculation group, µ denotes the common mean, an sym-
bolizes the nth level of plant developmental stage, gd indicates the main effect of the dth

genotype, Gd x an is the interaction of the dth genotype with the nth plant stage, Io accounts
for the effect of the oth inoculation group, Gd(o) is the dth genotype nested within the oth

inoculation group, and εdop denotes the error term of the model. For variance components
estimation, all effects in Equation (5), excepting µ and an, were treated as random. Firstly,
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the calculation of heritability examining the whole data set was realized based on the
following equation:

h2 =
σ2

Genotype(
σ2

Genotype +
σ2

Genotype x Age
No. o f age levels +

σ2
error

No. o f replicates

) . (6)

Later, the estimation of BLUEs and belonging standard errors was realized separately
for each plant level as

ydno = µ + gd + Io + Gd(o) + εdop, (7)

treating µ and gd as fixed effects, while the remaining factors were considered as random.
The heritability was calculated separately for each developmental stage as:

h2 =
σ2

Genotype

σ2
Phenotype

=
σ2

Genotype(
σ2

Genotype +
σ2

error
No. o f replicates

) . (8)

The estimated BLUEs out of greenhouse experiments were contrasted with the BLUEs
of field phenotyping by calculating the Pearson correlation coefficients. Every step of
statistical analysis was performed using R software [32] in combination with the package
ASReml-R 3.0 [33].

3. Results
3.1. Extensive Field Trials Resulted in Precise Estimates of Adult Plant Resistance against
Leaf Rust

The 240 wheat lines were evaluated for leaf rust resistance in 5 and 4 German en-
vironments within the years 2017 and 2018, respectively. The mean infestation class of
controls ranged between 3 and 6 in dependence of the special variety, while the application
of statistical models adjusted the results of varying field conditions. The data quality
of replicated trial times location combinations was examined by estimating the repeata-
bility for the individual environments. Repeatability of trials conducted in 2017 ranged
from 0.45 to 0.93, while analysis of the 2018 field trials resulted in repeatabilites between
0.57 and 0.96 (Table 2). The correlation between overlapping genotypes of the individual
environments averaged r = 0.40 (Table 3). The combined analyses of field trials resulted in
a broad-sense heritability of h2 = 0.9. Leaf rust resistance of germplasm tested under field
conditions spanned a range of 7.67 with a mean value of 3.43 (Table S1).

Table 2. Repeatability of replicated field trials. Trials with a repeatability below 0.4 were excluded before performing
further analyses.

Seligenstadt1
2017

Söhnke-Nissenkoog
2017

Wetze1
2017

Wohlde
2017

Seligenstadt1
2018

Wetze2
2018

Trial1 0.82 - 0.70 0.59 0.93 0.76
Trial2 0.88 - 0.75 0.54 0.89 0.77
Trial3 0.93 0.56 0.51 0.63 - -
Trial4 0.89 - 0.71 0.14 0.94 0.77
Trial5 0.89 - 0.45 0.50 0.96 0.82
Trial6 0.92 - 0.48 0.62 - -
Trial7 0.77 - 0.59 0.25 0.91 0.76
Trial8 0.67 - 0.53 0.12 0.93 0.65
Trial9 0.79 - 0.60 0.22 0.91 0.78
Trial10 0.91 - 0.60 0.51 - 0.59
Trial11 - - - - 0.90 0.57
Trial12 - - - - 0.84 0.68
Trial13 - - - - 0.93 0.76
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Table 3. Pearson correlation of leaf rust scores observing overlapping genotypes of pairwise compared field environments, while the number of overlapping genotypes is given in brackets.

Seligenstadt1
2017

Seligenstadt
2017

Söhnke-Nissenkoog
2017

Wetze1
2017

Wetze
2017

Wohlde
2017

Nasenberg
2018

Nörvenich
2018

Seligenstadt1
2018

Wetze1
2018

Wetze2
2018

Wetze
2018

Nasenberg
2017

0.60 ***
(116)

0.56 ***
(64)

−0.30
(17)

0.56 ***
(116)

0.46 ***
(93)

0.42 ***
(116)

0.14
(44)

0.06
(44)

0.39 **
(46)

0.26
(46)

0.14
(46)

0.61 *
(12)

Seligenstadt1
2017 -

0.65 ***
(64)

0.28 *
(56)

0.64 ***
(780)

0.64 ***
(93)

0.53 ***
(352)

0.45 ***
(84)

0.34 **
(84)

0.69 ***
(92)

0.53 ***
(92)

0.56 ***
(92)

0.48 ***
(46)

Seligenstadt
2017 -

−0.31
(9)

0.63 ***
(64)

0.46 ***
(51)

0.48 ***
(64)

0.21
(16)

0.72 **
(16)

0.31
(17)

0.50 *
(17)

0.41
(17)

0.70*
(11)

Söhnke-
Nissenkoog

2017 -
0.21
(56)

0.39
(15)

0.18
(56)

−0.04
(17)

0.20
(17)

0.19
(21)

0.43
(21)

0.29
(21)

0
(8)

Wetze1
2017 -

0.54 ***
(93)

0.53 ***
(352)

0.48 ***
(84)

0.04
(84)

0.73 ***
(92)

0.48 ***
(92)

0.53 ***
(92)

0.47 ***
(46)

Wetze
2017 -

0.40 ***
(93)

0.33 *
(37)

−0.12
(37)

0.74 ***
(39)

0.68 ***
(39)

0.57 ***
(39)

0.58
(10)

Wohlde
2017 -

0.53 ***
(59)

0.17
(59)

0.40 **
(65)

0.51 ***
(65)

0.33 **
(65)

0.41
(21)

Nasenberg
2018 -

0.14
(119)

0.67 ***
(119)

0.52 ***
(119)

0.54 ***
(119)

0.50 ***
(64)

Nörvenich
2018 -

0.04
(119)

0.16
(119)

0.06
(119)

0.43 ***
(64)

Seligenstadt1
2018 -

0.64 ***
(1005)

0.73 ***
(1008)

0.52 ***
(64)

Wetze1
2018 -

0.59 ***
(1135)

0.47 ***
(64)

Wetze2
2018 -

0.39 ***
(64)

Significant at * p-value ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001. Otherwise, not significant.
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3.2. Ensuring Stable Pathogen Pressure in Greenhouse Experiments Is Challenging

The analysis of the raw data highlighted the challenge to guarantee a stable disease
pressure under greenhouse conditions. We therefore had to exclude 50% of the inoculation
groups, because the mean of the susceptible controls per inoculation group was below 2%
for the infected leaf area. The most challenging factor was to generate leaf rust spores of
consistent aggressiveness under variable greenhouse conditions, due to the climatic varia-
tion of the seasons (Figure S1). Moreover, infection and the development of uredospore
pustules were highly dependent on light and temperature conditions during inoculation
and incubation. After quality control, data for 240, 40, and 41 genotypes remained, belong-
ing to the different plant stage clusters of T1, T2, and T3, respectively. A large proportion of
the phenotypic variance was explained by genotype (22%) and interaction effects between
genotypes and plant developmental stages (24%) in the integrated analysis across all plant
stages (Table 4). The broad-sense heritability amounted to h2 = 0.64. The estimated leaf
rust resistance ranged from 0.3% to 26.7% of infected leaf area with a mean of 1.4%.

Table 4. Variance components analysis, estimation of heritability (h2), and distribution of analyzed infected leaf area
based on greenhouse data. Analysis was performed observing different scenarios, examining the whole data set including
information of all plant developmental stages (Analysis with whole data set) in contrast to single analysis of each stage.
The full genotype set (n= 240) at plant stage T1 (All genotypes at plant stage T1) was examined, as well as a limited set of
40 genotypes at the plant stages of 10 days (EC 12; T1), 5 weeks (EC 19; T2), and 10 weeks (EC 25; T3). Distribution of leaf
rust resistance for different sets are given by mean value and range of infected leaf area.

Analysis with Whole
Data Set

All Genotypes of Plant
Stage T1 T1 T2 T3

No. of genotypes 240 240 40 40 41
No. inoculation groups 18 12 12 2 2

Range of infected leaf area (%) 0.3–26.7 0.6–2.6 0.6–2.4 0.3–26.7 0.5–5.5
Mean of infected leaf area (%) 1.4 1.1 1.1 3.6 1.0

σ2
Genotype 22.2% 11.9% 13.7% 82.8% 31.0%

σ2
Genotype x Age 23.8% - - - -

σ2
Inoculation group 12.9% 21.5% 28.0% 3.0% 8.9%

σ2
Inoculation group x Genotype 14.2% 46.5% 39.9% 0.0% 14.4%

σ2
error 26.9% 20.2% 18.4% 14.2% 45.7%
h2 0.64 0.54 0.60 0.92 0.58

Analyzing variance components separately for each developmental stage set based
on the selected 40 genotypes resulted in high amounts of phenotypic variance explained
by the interaction of inoculation group with the genotype (14–47%), and the inoculation
group (9–28%) for plant stage sets T1 and T3. In contrast to that, the factors genotype
(83%) and residual (46%) accounted for the highest proportion of total variance for the
T2 and T3 sets, respectively. Broad-sense heritability ranged from h2 = 0.58 to 0.92 for the
three different plant developmental stages. The highest h2 value was realized at 0.92 at the
developmental stage T2, while T1 and T3 revealed similar values of h2 = 0.58 to 0.60. Plants
of the developmental stage T2 showed the widest range of infected leaf area resulting in
the highest mean value compared to the remaining groups (Figure 1, Table S1). Comparing
leaf infection of T1 and T3 lead to similar ranges and means.

3.3. Seedling Resistance Showed a Significant Correlation to Adult Plant Resistance

Correlating seedling resistance evaluated in greenhouse experiments with adult plant
resistance rated in field trials resulted in values ranging from r = 0.34 to 0.48 (Table 5). Leaf
rust infection of the developmental stage T1 showed the highest Pearson correlation to field
phenotyping amounting to r = 0.48 (p < 0.01). The Pearson correlation between greenhouse
and field data decreased with increasing developmental stages of the tested greenhouse
plants. There is a noticeable cluster of 8 genotypes showing susceptibility as adult plants
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on the field, but resistance as seedlings within greenhouse trials (Figure 2). Analyzing the
correlation of resistance scores based on single field environments and the serial mean,
except the examined environment, resulted in a range from r = 0.13 to 0.74 with an average
Pearson correlation of r = 0.57 (Table 6).
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Figure 1. Histograms showing the distribution of best linear unbiased estimates (BLUEs) based on detached leaf assays
produced within greenhouse experiments. Percentage of infected leaf area was determined by an automated phenotyping
platform using image analysis. The whole genotype set was examined as two leaf seedlings (EC 12; A). In addition, a limited
set of 40 genotypes was tested 10 days (EC 12; B), 5 weeks (EC 19; C), and 10 weeks (EC 25; D) after sowing.

Table 5. Pearson correlation between seedling and adult plant resistance against leaf rust based on greenhouse and field
testing, respectively. The whole genotypic set was tested as 10-day old seedlings (EC 12), while selected genotypes were
examined at plant developmental stages T1 (EC 12), T2 (EC 19), and T3 (EC 25) within replicated greenhouse trials.

All Genotypes at Plant Stage T1 T1 T2 T3

Pearson correlation to field data 0.40 *** 0.48 ** 0.39 * 0.34 *
p-value 2.6 × 10−10 0.0018 0.013 0.032

No. of genotypes 232 40 40 41

Significant at * p-value ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001. Otherwise, not significant.
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Figure 2. Biplots comparing leaf rust resistance of juvenile plants with adult plants phenotyped in
the field environment. Phenotyping in the field was realized following an ordinal scale of increasing
infestation from 1 to 9. Phenotypic data was statistically adjusted applying a linear mixed model
resulting in a broaden score range. The whole genotype set was examined within greenhouse trials as
two leaf seedlings (EC 12; A). In addition, a limited set of 40 genotypes was tested 10 days (EC 12; B),
5 weeks (EC 19; C), and 10 weeks (EC 25; D) after sowing.

Table 6. Pearson correlation of leaf rust scores between a single environment and the corresponding serial
mean except this examined environment. The number of overlapping genotypes is given in brackets.

Correlation To Series 2017 Correlation To Series 2018

Nasenberg 0.63 ***
(128)

0.63 ***
(128)

Nörvenich - 0.13
(128)

Seligenstadt 0.69 ***
(64) -

Seligenstadt1 0.64 ***
(780)

0.74 ***
(1008)

Söhnke-Nissenkoog 0.23
(56) -
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Table 6. Cont.

Correlation To Series 2017 Correlation To Series 2018

Wetze 0.58 ***
(104) -

Wetze1 0.62 ***
(780)

0.62 ***
(64)

Wetze2 - 0.72 ***
(1008)

Wohlde 0.58 ***
(352) -

Significant at *** p-value ≤ 0.001. Otherwise, not significant.

4. Discussion
4.1. Divergent Conditions Increase the Quality of Resistance Phenotyping within
Controlled Environments

The same inoculation material was used for all greenhouse experiments; however,
there were variable environmental conditions in the standard greenhouse used. The
latter was confirmed by a genotype x inoculation group variance component explaining
14.2–46.5% of the total variance (Table 4). This demonstrates the importance of replicated
data to ensure high precision of phenotyping in greenhouse trials. However, high precision
is not sufficient and screening with the detached leaf assay should allow to mimic the
field situation to generate relevant information for applied resistance breeding [25]. Our
study revealed moderate correlations between seedling and adult plant resistance ranging
from r = 0.34 to 0.48 (Table 5). Previous studies reported lower values of 0.17–0.29 [34]
and 0.24–0.27 [35] for leaf rust resistance observed in an American spring wheat and a
multi-parental winter wheat population based on European elite cultivars, respectively.
Thus, our results suggest a closer relationship between seedling and adult plant resistance
than reported earlier; however, values are still low when relying solely on detached leaf
assays for selection.

The key challenge is therefore to further increase the correlation between greenhouse
and field trials, which is often associated with seedling versus adult plant resistance [36].
One approach may be to test plants of a later developmental stage in greenhouse trials,
which was conducted in this study, but did not increase the correlation when the greenhouse
trials were conducted for 5- (EC 19) or 10-week old plants (EC 25) (Figure 3). We also
attempted to go beyond this time point; however, leaf senescence on old leaves prevented
quantification of rust infection. Interestingly, the highest correlation was observed at the
youngest plant developmental stage (Table 5), i.e., 10-day old seedlings (EC 12), which can
be attributed to an adequate range of infected leaf area (Table 4). This can be explained
by the fact that young leaves with low differentiation are able to cope with a change
of circumstances and adapt better to the conditions of detached leaf assays [37]. Leaf
senescence has been confirmed as a challenging factor in previous studies with detached
leaf assays [38,39]. Senescence occurred primarily on aged leaves as a result of stress and is
associated with the presence of phytohormones [39]. Meaningful leaf rust phenotyping
examining plants at later developmental stages (>5 weeks) in greenhouse experiments
is very difficult, and implemented trials did not yield evaluable results or methodical
advances [40].

Another approach to increase the correlation between greenhouse and field trials
could be to increase the diversity of used rust isolates [34]. Although the highly aggressive
leaf rust isolate 77 WxR was applied, which exhibits virulence in juvenile plant stages
against several resistance genes, viz. Lr1, Lr2a, Lr2b, Lr2c, Lr3a, Lr3bg, Lr3ka, Lr4, Lr11, Lr12,
Lr13, Lr14a, Lr14b, Lr15, Lr17, Lr17b, Lr18, Lr20, Lr22a, Lr22b, Lr23, Lr26, Lr33, Lr35, Lr36,
Lr37, Lr38, and Lr49 [27], natural selection pressure leads to divergent isolate populations
resulting in differences between greenhouse and field trials. However, there are also
differences between field trials. Looking at the relevant comparisons, i.e., correlation at
the single location versus the series except the location under consideration, there is an
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average correlation of r = 0.57 (Table 6). This is only 16% lower compared to the correlation
between greenhouse and field trials. This suggests that an increase in correlation between
field and greenhouse trials is possible by using different rust isolates in the latter.
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Figure 3. Histogram showing the distribution of leaf rust infections based on 532 leaf samples of 15-week old greenhouse
plants (EC 32). Percentage of infected leaf area was determined by an automated phenotyping platform using image
analysis. Due to the low infection rates (see the truncated bar of the histogram), data of this developmental stage were
excluded from statistical analysis.

To further investigate the possibilities and limitations to increase the correlation
between greenhouse and field environments, we looked at the outliers: genotypes that
were susceptible as juvenile plants but resistant at the adult plant stage were absent in
this study. Nevertheless, 8 lines that were resistant at a juvenile stage were susceptible
under field conditions (Figure 2). The pedigrees of the genotypes are known and include
susceptible parents for inconsistent lines (data not shown). Moreover, 5 of those lines show
an early ripening (data not shown), avoiding the confrontation with a highly increased leaf
rust pressure after many cycles of uredospore multiplication [41]. Therefore, the moderate
correlation between seedling and adult plant resistance was supported by contrasting
virulence differences of a diverse pathogen population in the field, compared to the limited
range of a single isolate used for artificial inoculation. This again supports the hypothesis
that the use of mixtures of relevant virulent isolates can help to approximate greenhouse
tests of seedlings to field trials. To conduct greenhouse screening with more diverse
rust isolates, more information is needed on the composition of naturally occurring rust
populations for different wheat growing areas and the conditions to simulate these rust
populations in greenhouse trials.
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4.2. Examining Seedling Resistance Could Support Leaf Rust Resistance Breeding within
European Wheat

Test conditions within field trials are similar to common agricultural growing environ-
ments and phenotyping is able to detect relevant resistances comprising seedling, as well
as adult plant resistance, while they cannot be clearly distinguished under field conditions.
Studies reporting an increased effectiveness at the adult plant stage were missing for the
most common resistance genes of European wheat cultivars. Boyd et al. (2006) [42] de-
tected adult plant leaf rust resistance, which was absent at the juvenile stage, by examining
mutant lines based on the wheat cultivar Hobbit ‘sib’. Such a behavior may be explained by
the late expression of adult plant resistance taking place after testing [24,42]. The regulation
of resistance expression in dependence of the plant developmental stage is well known in
wheat [43] and was also reported for its rust resistance [24,42].

In contrast to field experiments, it is more difficult to detect adult plant resistance by
performing greenhouse trials examining juvenile plants, while seedling resistance could
be discovered easily at early plant developmental stages. It is known that the majority of
discovered leaf rust resistance genes cause seedling resistance, while Lr1, Lr3, Lr10, Lr11,
Lr12, Lr13, Lr14a, and Lr24 are frequently used within the European wheat germplasm [9].
The importance of detecting seedling resistance was underlined by their reduced, but
continuous participation on leaf rust resistance, even after their break down [27]. Therefore,
greenhouse observations of juvenile plants could support breeding for leaf rust resistance
in European wheat.

The simultaneous examination of leaf rust resistance within greenhouse and field trials
helps to distinguish between seedling and adult plant resistance. A deeper examination of
inconsistent genotypes would be of high relevance understanding the genetic architecture
of leaf rust resistance and support resistance breeding in the examined wheat population.
Breeders are confronted with the strong effect, as well as the simple handling, of qualitative
resistance genes combined with a short durability, which is contrary for quantitative
resistances and can be primarily summarized as seedling versus adult plant resistance,
respectively [11,27].

If an increased correlation between greenhouse and field evaluation can be accom-
plished in the future, the greenhouse workflow affords promising advantages for the
application within the breeding process. Experiments with juvenile plants would be benefi-
cial to generate phenotypic data of a large genotype set with a highly desired advantage in
time. The appearance of intended inoculum can be ensured, while the occurrence of other
pathogens causing masking effects on the trait of interest can be excluded.

4.3. Automated Phenotyping of Detached Juvenile Leaves Is Beneficial for Resistance Breeding

Speed-breeding is an important method to improve cereal breeding, and protocols
were already established for spring wheat [20,44]. Due to a plant growing under controlled
conditions and a highly elongated photoperiod, growing time per generation was extremely
shortened [44]. Its combination with modern genomic-based selection methods opens new
opportunities for resistance breeding, e.g., fast trait introgression combining high yield and
multiple resistance or stacking of resistance genes [20].

Due to their high durability, quantitative leaf rust resistance genes are highly de-
sired [7]. However, they are mostly expressed in adult plants [17,18], resulting in a time-
consuming identification with missed distinction to seedling resistance. Therefore, the
identification and stacking of seedling resistance could be an efficient alternative.

In addition, fast and efficient phenotyping systems are required to support the appli-
cation of speed-breeding [20,24]. Within this study, a phenotyping workflow examining
detached leaves of greenhouse seedlings was applied by an automated, high-throughput
platform. This system is time- and resource-saving, generating precise quantitative data of
leaf rust resistance.

The used phenotyping workflow was conceived aiming at an optimal examination
of detached seedling leaves. The growing time of plants in addition to 8 days of rust
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incubation is needed to finally quantify the leaf rust symptoms, while screening results can
be checked by facing the automatically saved images. Most of the resistance mechanisms
of adult plants are still present in seedlings [9], and resistance can be identified based on
an image analysis which is sensible even for low infection levels.

The implemented phenotyping strategy is relevant to support resistance breeding,
especially when it is combined with a speed-breeding protocol. As an outlook, the applied
greenhouse workflow provides some further interesting opportunities improving resistance
screening. Experiments can be performed over a wide range of the year. A simultaneous
examination of different leaf diseases or pathogen isolates can be realized within separated
experiments. The image analysis software is available for quantifying leaf rust, stripe rust
and powdery mildew [28].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biology10070628/s1, Figure S1: Example images of deatched leaf assays to visualize the
wide range of leaf rust infestation within greenhouse experiments. Each column includes the same
genotype, while the given percentage of infected leaf area (Infected area) was analyzed by the
BluVison software. Infestation data of tested wheat lines (B) were confronted with results of the
susceptible control Borenos (A). For control means <2% infected leaf area per inoculation group,
the whole inoculation group was excluded from statistical analyses, Table S1: Results of leaf rust
screening of 232 winter wheat lines and susceptible control Borenos. Phenotyping in the field was
realized at the date of flowering (EC 65) following an ordinal scale of increasing infestation from
1 to 9. The whole genotype set was examined within greenhouse trials as two leaf seedlings (EC 12;
T1). In addition, a limited set of 40 genotypes was tested 5 weeks (EC 19; T2), and 10 weeks (EC 25;
T3) after sowing. Columns T1, T2, and T3 give the percentage of infected leaf area based on detached
leaf assays. Best linear unbiased estimations (BLUEs) were estimated for each plant developmental
stage (T1–T3), while the belonging standard errors are also given.

Author Contributions: J.C.R., A.W.S. and U.B. designed the study; N.P., E.E. and U.B. generated
phenotypic data; S.L. performed image analysis, A.W.S. and V.H. developed the workflow for
greenhouse data handling and outlier detection; A.W.S. and U.B. curated the data and performed the
analyses; F.O., A.S. and J.C.R. developed the idea of concerning resistance within the GeneBank2.0
Project; U.B. wrote the paper with input from all co-authors. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the GERMAN FEDERAL MINISTRY OF EDUCATION AND
RESEARCH within the GeneBank2.0 Project, grant number FKZ031B0184B, FKZ031B0184A.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated for this study are available in the
Supplementary Materials.

Acknowledgments: The authors thank Martin Koch for the huge technical assistance.

Conflicts of Interest: The authors declare no conflict of interest. The authors declare that the
experiments comply with the current laws of Germany. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the
decision to publish the results.

References
1. Huerta-Espino, J.; Singh, R.P.; German, S.; McCallum, B.D.; Park, R.F.; Chen, W.Q.; Bhardwaj, S.C.; Goyeau, H. Global status of

wheat leaf rust caused by Puccinia triticina. Euphytica 2011, 179, 143–160. [CrossRef]
2. Prescott, J.; Burnett, P.; Saari, E.; Ransom, J.; Bowman, J.; De Milliano, W.; Singh, R.P.; Bekele, G. Wheat Diseases and Pests: A Guide

for Field Identification; CIMMYT: Mexico City, Mexico, 1986; pp. 7–9.
3. Catalogue of Gene Symbols for Wheat 2017 Supplement. Available online: https://shigen.nig.ac.jp/wheat/komugi/genes/

macgene/supplement2017.pdf (accessed on 6 March 2020).
4. Park, R.F.; Goyeau, H.; Felsenstein, F.G.; Bartos, P.; Zeller, F.J. Regional phenotypic diversity of Puccinia triticina and wheat host

resistance in western Europe, 1995. Euphytica 2001, 122, 113–127. [CrossRef]

https://www.mdpi.com/article/10.3390/biology10070628/s1
https://www.mdpi.com/article/10.3390/biology10070628/s1
http://doi.org/10.1007/s10681-011-0361-x
https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf
https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf
http://doi.org/10.1023/A:1012603500686


Biology 2021, 10, 628 15 of 16

5. Pathan, A.K.; Park, R.F. Evaluation of seedling and adult plant resistance to leaf rust in European wheat cultivars. Euphytica 2006,
149, 327–342. [CrossRef]

6. Serfling, A.; Krämer, I.; Lind, V.; Schliephake, E.; Ordon, F. Diagnostic value of molecular markers for Lr genes and characterization
of leaf rust resistance of German winter wheat cultivars with regard to the stability of vertical resistance. Eur. J. Plant Pathol. 2011,
130, 559–575. [CrossRef]

7. Bolton, M.D.; Kolmer, J.A.; Garvin, D.F. Wheat leaf rust caused by Puccinia triticina. Mol. Plant Pathol. 2008, 9, 563–575.
[CrossRef] [PubMed]

8. Singh, R.P.; Huerta-Espino, J.; William, H.M. Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turk. J.
Agric. For. 2005, 29, 121–127.

9. Aktar-Uz-Zaman, M.; Tuhina-Khatun, M.; Hanafi, M.M.; Sahebi, M. Genetic analysis of rust resistance genes in global wheat
cultivars: An overview. Biotechnol. Biotechnol. Equip. 2017, 31, 431–445. [CrossRef]

10. Flor, H.H. The complementary genic systems in flax and flax rust. Adv. Genet. 1956, 8, 29–54. [CrossRef]
11. Flor, H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [CrossRef]
12. Schwessinger, B. Fundamental wheat stripe rust research in the 21st century. New Phytol. 2017, 213, 1625–1631. [CrossRef]
13. Serfling, A.; Krämer, N.; Perovic, D.; Ordon, F. Broadening the genetic base of leaf rust (Puccinia triticina f. sp. tritici) resistance in

wheat (Triticum aestivum). J. Kult. 2013, 65, 262–272. [CrossRef]
14. Krattinger, S.; Lagudah, E.; Spielmeyer, W.; Singh, R.; Huerta-Espino, J.; McFadden, H.; Bossolini, E.; Selter, L.; Keller, B.

A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 2009, 323, 1360–1363.
[CrossRef] [PubMed]

15. Lillemo, M.; Asalf, B.; Singh, R.; Huerta-Espino, J.; Chen, X.; He, Z.; Bjornstad, A. The adult plant rust resistance loci Lr34/Yr18
and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor. Appl. Genet.
2008, 116, 1155–1166. [CrossRef]

16. Buerstmayr, M.; Matiasch, L.; Mascher, F.; Vida, G.; Ittu, M.; Robert, O.; Holdgate, S.; Flath, K.; Neumayer, A.; Buerstmayr,
H. Mapping of quantitative adult plant field resistance to leaf rust and stripe rust in two European winter wheat populations
reveals co-location of three QTL conferring resistance to both rust pathogens. Theor. Appl. Genet. 2014, 127, 2011–2028.
[CrossRef] [PubMed]

17. Krattinger, S.G.; Keller, B. Molecular genetics and evolution of disease resistance in cereals. New Phytol. 2016, 212,
320–332. [CrossRef]

18. Adult Plant Resistance—Fact Sheet. Available online: https://grdc.com.au/__data/assets/pdf_file/0025/126457/adult-plant-
resistance-fact-sheet.pdf.pdf (accessed on 12 March 2021).

19. Zhang, H.; Wang, C.; Cheng, Y.; Chen, X.; Han, Q.; Huang, L.; Wei, G.; Kang, Z. Histological and cytological characterization of
adult plant resistance to wheat stripe rust. Plant Cell Rep. 2012, 31, 2121–2137. [CrossRef]

20. Hickey, L.T.; German, S.E.; Pereyra, S.A.; Diaz, J.E.; Ziems, L.A.; Fowler, R.A.; Platz, G.J.; Franckowiak, J.D.; Dieters, M.J. Speed
breeding for multiple disease resistance in barley. Euphytica 2017, 213, 64. [CrossRef]

21. Bernardo, R. Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Sci. 2008, 48,
1649–1664. [CrossRef]

22. Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics
2001, 157, 1819–1829. [CrossRef]

23. Lueck, S.; Strickert, M.; Lorbeer, M.; Melchert, F.; Backhaus, A.; Kilias, D.; Seiffert, U.; Douchkov, D. “Macrobot”: An automated
segmentation-based system for powdery mildew disease quantification. Plant Phenomics 2020, 5839856. [CrossRef]

24. Riaz, A.; Periyannan, S.; Aitken, E.; Hickey, L. A rapid phenotypic method for adult plant resistance to leaf rust in wheat. Plant
Methods 2016, 12, 17. [CrossRef]

25. Irwin, J.A.; Musial, J.M.; Mackie, J.M.; Basford, K.E. Utility of cotyledon and detached leaf assays for assessing root reactions of
lucerne to Phytophthora root rot caused by Phytoththora medicaginis. Australas. Plant Pathol. 2003, 32, 263–268. [CrossRef]

26. Bundessortenamt. Richtlinien für die Durchführung von landwirtschaftlichen Wertprüfungen und Sortenversuchen; Landbuch: Han-
nover, Germany, 2000; pp. 73–74.

27. Zetzsche, H.; Serfling, A.; Ordon, F. Breeding progress in seedling resistance against various races of stripe and leaf rust in
European bread wheat. Crop. Breed. Genet. Genom. 2019, 1, e190021. [CrossRef]

28. Lueck, S.; Beukert, U.; Douchkov, D. BluVision Macro—A software for automated powdery mildew and rust disease quantification
on detached leaves. J. Open Source Softw. 2020, 5, 2259. [CrossRef]

29. He, S.; Schulthess, A.W.; Mirdita, V.; Zhao, Y.; Korzun, V.; Bothe, R.; Ebmeyer, E.; Reif, J.C.; Jiang, Y. Genomic selection in a
commercial winter wheat population. Theor. Appl. Genet. 2016, 129, 641–651. [CrossRef] [PubMed]

30. Utz, H.F.; Melchinger, A.E.; Schön, C.C. Bias and sampling error of the estimated proportion of genotypic variance explained
by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent
samples. Genetics 2000, 154, 1839–1849. [CrossRef] [PubMed]

31. Hinterberger, V.; Douchkov, D.; Lueck, S.; Kale, S.; Mascher, M.; Stein, N.; Reif, J.C.; Schulthess, A.W. Mining new potential
sources of resistance against powdery mildew Blumeria graminis f. sp. Tritici in genetic resources of winter wheat Triticum
aestivum L. 2021; under review.

http://doi.org/10.1007/s10681-005-9081-4
http://doi.org/10.1007/s10658-011-9778-2
http://doi.org/10.1111/j.1364-3703.2008.00487.x
http://www.ncbi.nlm.nih.gov/pubmed/19018988
http://doi.org/10.1080/13102818.2017.1304180
http://doi.org/10.1016/S0065-2660(08)60498-8
http://doi.org/10.1146/annurev.py.09.090171.001423
http://doi.org/10.1111/nph.14159
http://doi.org/10.5073/JfK.2013.07.02
http://doi.org/10.1126/science.1166453
http://www.ncbi.nlm.nih.gov/pubmed/19229000
http://doi.org/10.1007/s00122-008-0743-1
http://doi.org/10.1007/s00122-014-2357-0
http://www.ncbi.nlm.nih.gov/pubmed/25112204
http://doi.org/10.1111/nph.14097
https://grdc.com.au/__data/assets/pdf_file/0025/126457/adult-plant-resistance-fact-sheet.pdf.pdf
https://grdc.com.au/__data/assets/pdf_file/0025/126457/adult-plant-resistance-fact-sheet.pdf.pdf
http://doi.org/10.1007/s00299-012-1322-0
http://doi.org/10.1007/s10681-016-1803-2
http://doi.org/10.2135/cropsci2008.03.0131
http://doi.org/10.1093/genetics/157.4.1819
http://doi.org/10.34133/2020/5839856
http://doi.org/10.1186/s13007-016-0117-7
http://doi.org/10.1071/AP03006
http://doi.org/10.20900/cbgg20190021
http://doi.org/10.21105/joss.02259
http://doi.org/10.1007/s00122-015-2655-1
http://www.ncbi.nlm.nih.gov/pubmed/26747048
http://doi.org/10.1093/genetics/154.4.1839
http://www.ncbi.nlm.nih.gov/pubmed/10866652


Biology 2021, 10, 628 16 of 16

32. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2019. Available online: http://www.R-project.org/ (accessed on 22 April 2020).

33. Gilmour, A.R.; Gogel, B.; Cullis, B.; Thompson, R. ASReml User Guide Release 3.0; VSN International Ltd.: Hemel Hempstead,
UK, 2009.

34. Gao, L.; Turner, M.K.; Chao, S.; Kolmer, J.; Anderson, J.A. Genome wide association study of seedling and adult plant leaf rust
resistance in elite spring wheat breeding lines. PLoS ONE 2016, 11, e0148671. [CrossRef]

35. Rollar, S.; Serfling, A.; Geyer, M.; Hartl, L.; Mohler, V.; Ordon, F. QTL mapping of adult plant and seedling resistance to leaf rust
(Puccinia triticina Eriks.) in a multiparent advanced generation intercross (MAGIC) wheat population. Theor. Appl. Genet. 2021,
134, 37–51. [CrossRef]

36. Hovmøller, M.S. Sources of seedling and adult plant resistance to Puccinia striiformis f.sp. tritici in European wheats. Plant Breed.
2007, 126, 225–233. [CrossRef]

37. Aregbesola, E.; Ortega-Beltran, A.; Falade, T.; Jonathan, G.; Hearne, S.; Bandyopadhyay, R. A detached leaf assay to rapidly
screen for resistance of maize to Bipolaris maydis, the causal agent of southern corn leaf blight. Eur. J. Plant Pathol. 2020, 156,
133–145. [CrossRef]

38. Boydom, A.; Dawit, W.; Getaneh, W. Evaluation of detached leaf assay for assessing leaf rust (Puccinia triticina Eriks) resistance in
wheat. J. Plant Pathol. Microbiol. 2013, 4, 176. [CrossRef]

39. Zhao, L.; Zhang, H.; Zhang, B.; Bai, X.; Zhou, C. Physiological and molecular changes of detached wheat leaves in responding to
various treatments. J. Integr. Plant Biol. 2012, 54, 567–576. [CrossRef]

40. Douchkov, D. (Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben,
Germany). Personal communication. 2020.

41. Gouache, D.; Roche, R.; Pieri, P.; Bancal, M.O. Evolution of some pathosystems on wheat and vines. In Climate Change, Agriculture
and Forests in France: Simulations of the Impacts on the Main Species. The Green Book of the CLIMATOR Project (2007–2010); Brisson, N.,
Levrault, F., Eds.; ADEME: Angers, France, 2011; pp. 113–126. Available online: https://www.researchgate.net/publication/2622
33128 (accessed on 5 May 2021).

42. Boyd, L.A.; Smith, P.H.; Hart, N. Mutants in wheat showing multipathogen resistance to biotrophic fungal pathogens. Plant
Pathol. 2006, 55, 475–484. [CrossRef]

43. Bariana, H.S.; McIntosh, R.A. Genetics of adult plant stripe rust resistance in four Australian wheats and the French cultivar
‘Hybride de Bersee’. Plant Breed. 1995, 114, 485–491. [CrossRef]

44. Watson, A.; Ghosh, S.; Williams, M.J.; Cuddy, W.S.; Simmonds, J.; Rey, M.D.; Asyraf Md Hatta, M.; Hinchliffe, A.; Steed, A.;
Reynolds, D.; et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 2018, 4, 23–29.
[CrossRef] [PubMed]

http://www.R-project.org/
http://doi.org/10.1371/journal.pone.0148671
http://doi.org/10.1007/s00122-020-03657-2
http://doi.org/10.1111/j.1439-0523.2007.01369.x
http://doi.org/10.1007/s10658-019-01870-4
http://doi.org/10.4172/2157-7471.1000176
http://doi.org/10.1111/j.1744-7909.2012.01139.x
https://www.researchgate.net/publication/262233128
https://www.researchgate.net/publication/262233128
http://doi.org/10.1111/j.1365-3059.2006.01402.x
http://doi.org/10.1111/j.1439-0523.1995.tb00841.x
http://doi.org/10.1038/s41477-017-0083-8
http://www.ncbi.nlm.nih.gov/pubmed/29292376

	Introduction 
	Materials and Methods 
	Plant Material 
	Evaluating Leaf Rust Resistance of Adult Plants in Field Trials 
	Evaluating Leaf Rust Resistance in Greenhouse Experiments 
	Analyses of Data from Field Trials 
	Analyses of Data from Greenhouse Experiments 

	Results 
	Extensive Field Trials Resulted in Precise Estimates of Adult Plant Resistance against Leaf Rust 
	Ensuring Stable Pathogen Pressure in Greenhouse Experiments Is Challenging 
	Seedling Resistance Showed a Significant Correlation to Adult Plant Resistance 

	Discussion 
	Divergent Conditions Increase the Quality of Resistance Phenotyping within Controlled Environments 
	Examining Seedling Resistance Could Support Leaf Rust Resistance Breeding within European Wheat 
	Automated Phenotyping of Detached Juvenile Leaves Is Beneficial for Resistance Breeding 

	References

