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Rye stem rust caused by Puccinia graminis f. sp. secalis can be found in all European
rye growing regions. When the summers are warm and dry, the disease can cause
severe yield losses over large areas. To date only little research was done in Europe
to trigger resistance breeding. To our knowledge, all varieties currently registered in
Germany are susceptible. In this study, three biparental populations of inbred lines
and one testcross population developed for mapping resistance were investigated.
Over 2 years, 68–70 genotypes per population were tested, each in three locations.
Combining the phenotypic data with genotyping results of a custom 10k Infinium iSelect
single nucleotide polymorphism (SNP) array, we identified both quantitatively inherited
adult plant resistance and monogenic all-stage resistance. A single resistance gene,
tentatively named Pgs1, located at the distal end of chromosome 7R, could be identified
in two independently developed populations. With high probability, it is closely linked to
a nucleotide-binding leucine-rich repeat (NB-LRR) resistance gene homolog. A marker
for a competitive allele-specific polymerase chain reaction (KASP) genotyping assay
was designed that could explain 73 and 97% of the genetic variance in each of both
populations, respectively. Additional investigation of naturally occurring rye leaf rust
(caused by Puccinia recondita ROEBERGE) revealed a gene complex on chromosome
7R. The gene Pgs1 and further identified quantitative trait loci (QTL) have high potential
to be used for breeding stem rust resistant rye.

Keywords: rust, all-stage resistance, adult-plant resistance, QTL, mapping, mixed model, leaf rust, hybrid rye

Abbreviations: APR, adult-plant resistance; ASR, all-stage resistance; BLUE, best linear unbiased estimator; BLUP, best
linear unbiased predictor; CI, confidence interval; HD, heading date; KASP, competitive allele specific polymerase chain
reaction; LD, linkage disequilibrium; LR, leaf rust; LSD, least significant difference; LST, leaf-segment test; NB-LRR,
nucleotide binding leucine reach repeat; PH, plant height; QTL, quantitative trait loci; SNP, single nucleotide polymorphism;
SR, stem rust.
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INTRODUCTION

Rye stem rust caused by Puccinia graminis f. sp. secalis ERIKSS.
& HENNING can be a severe threat for rye (Secale cereale L.)
in epidemic years. After the fungus has entered the plants in
early summer, it produces high amounts of urediniospores that
subsequently infect new plants and spread the disease over large
areas. Infected plants show spore-filled cracks all over the stems,
and if the infection level is high, even on leaves and heads. As
a result, water and nutrient transport breaks down and grain
yield loss can reach levels of 60% (Solodukhina and Kobylyansky,
2001). Yield losses due to rye stem rust are reported from
Northeastern Europe, the largest growing region worldwide, but
the disease was also reported to occur in Brazil (Roelfs, 1985) and
South Africa (Boshoff et al., 2019).

Rye is an outcrossing species and consequently the first rye
varieties were populations composed of self-incompatible and
genetically differing plants. In Germany, hybrid rye breeding
started in 1971. In contrast to population breeding, hybrid
breeding is based on the combination of inbred lines carrying
a self-fertility gene. Heterotic groups and a cytoplasmic-genic
male sterility system are used to exploit heterosis and to facilitate
seed production on a large scale (Geiger and Miedaner, 2009).
To select for grain yield and other heterotic traits, testcrosses
are produced by crossing inbred lines to single-cross testers of
the opposite heterotic group and by evaluating their testcross
performance in the year after.

Today, there are no newly developed rye cultivars in Germany
registered that are known to carry stem rust resistances. Genetic
resources having different levels of resistance were reported as
old population varieties from Russia, Hungary, and Argentina,
Austrian landraces and US-fodder rye (Miedaner et al., 2016).
Additionally, Solodukhina and Kobylyansky (2001) reported
resistant plants in populations from Italy, China, Sweden,
Uruguay, the Czech Republic, Azerbaijan, former Yugoslavia,
Lithuania, Ukraine, Bulgaria, Portugal, Finland, and Great
Britain. Moreover, Boshoff et al. (2019) found resistant plants in
South African fodder rye.

Detailed genetic studies by Tan et al. (1976, 1977) indicate that
there are several resistance genes in the same rye population.
Inbred lines developed from various populations were crossed
and the offspring was investigated. They used forma specialis
secalis and forma specialis tritici for inoculation and identified six
and eight resistance genes for each forma specialis, respectively.
Resistance donors were the varieties “Kenya” from Kenya,
“Wrens” and “Gator” from the United States and the cross
“Elbon × Gator.” Solodukhina and Kobylyansky (2007) found
two additional resistance genes of which one was present in
two Russian population varieties named “Kharkovskaya” and
“Rossul” (Solodukhina and Kobylyansky, 2000). The majority
of the genes were reported to act dominantly and to be race-
specific (Tan et al., 1976, 1977; Solodukhina and Kobylyansky,
2007). Further gene actions like partial dominance, recessiveness
or epistasis were discussed (Tan et al., 1976, 1977), and
rye populations without hypersensitive reactions, but sparsely
dispersed pustules pointing to quantitative resistance were
observed (Solodukhina and Kobylyansky, 2001).

Most of the studies on stem rust resistance also investigated
rye leaf rust (caused by Puccinia recondita) resistance
(Solodukhina and Kobylyansky, 2001, 2007) or were based
on material known to contain leaf rust resistances (Morey, 1959;
Tan et al., 1976, 1977). Leaf rust in rye is naturally occurring
in all rye growing regions (Wehling et al., 2003). Being both
race-specific or non-race-specific, resistance genes were found
on all rye chromosomes except chromosome 5R (Wilde et al.,
2006). Tight linkage or pleiotropy is not evident for resistances
to different rusts and other pathogens in rye. In wheat, however,
there are several examples that show pleiotropy or tight linkage
of resistance genes to several rusts (Seah et al., 2001; Krattinger
et al., 2009; Singh et al., 2011).

A lot of effort was put into the investigation of stem rust
resistance in wheat. McIntosh et al. (2013, 1975) listed 59
resistance genes plus several temporarily designated genes for
stem rust in wheat and the gene function of a further one,
Sr60, has recently been described (Chen et al., 2020). Some of
these resistance genes were derived from the rye genome, e.g.,
Sr27, Sr1RAmigo, Sr50 and Sr31 (Mago et al., 2015; Rahmatov
et al., 2016). The latter protected wheat from stem rust infections
for decades until the emergence of the Ug99 lineage (Singh
et al., 2011). By using transgenic methods, the Sr50 gene coding
for a coiled-coil nucleotide-binding leucine-rich repeat (NB-
LRR) protein was successfully transformed into a susceptible
wheat line (Mago et al., 2015). The tight genetic relation of
wheat and rye is not only restricted to the host side of the
pathosystem. The two stem rust pathogen formae speciales of
rye (secalis) and wheat (tritici) can hybridize and, like wheat and
rye, probably also had a common ancestor (Johnson et al., 1932;
Martis et al., 2013).

QTL mapping based on the linkage associated with biparental
populations proved to be a solid tool so that special software
like plabqtl (Utz, 2012) or Rqtl (Broman et al., 2003) is
still commonly used. Our study was not based on these
routines, because of two main reasons. Firstly, as those methods
make use of pre-calculated means it is difficult to implement
error structure into the analysis. Secondly, the procedures are
based on interval mapping methods (Lander and Botstein,
1989; Jansen, 1993) where dense marker maps are reduced
for analysis, often to predefined cM distances. As we were
interested in the most significant marker and had high enough
marker densities for single-point analysis, interval mapping was
considered unnecessary. If the most promising markers from
a single nucleotide polymorphism (SNP) array are identified,
they can easily be transferred into a competitive allele-specific
polymerase chain reaction (KASP) genotyping assay, which is
much more cost efficient for single markers. With the aim of a
proper modeling of both, phenotypic data and the association
of phenotypic and genetic data, we decided to use linear mixed
models. This method was approved by working groups with
high statistical expertise, for example by Piepho (2000, 2005)
and Malosetti et al. (2011). The modeling allowed us to account
for the unbalanced and complex experimental design and by
further model extension to test significance of markers. Even
further, the mixed model for a single trait can be extended
into a bivariate or multivariate form. It allows calculation of
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genetic correlation for lines and respective testcross performance
but also for two traits measured in the same plot. Estimated
covariance for factors can increase the power of the model fits.
Like a QTL mapping approach with single-trait mixed models,
the bivariate models can also be extended by marker effects to
test for significant gene loci. Jiang and Zeng (1995) showed in
a linkage mapping approach that different models defined by
different hypotheses can be used to test linkage vs. pleiotropic
QTL effects with a special focus on common QTL positions for
two traits. Similar approaches based on mixed model theory
have also been applied for genome-wide association studies
(Segura et al., 2012).

Most of the studies in wheat focus on resistance testing with
seedlings (McIntosh et al., 1995). Seedling resistances genes are
active in the seedling and adult-plant stage, so that the term all-
stage resistance (ASR) is often used synonymously (Ellis et al.,
2014). Adult-plant resistance (APR) on the other hand cannot be
identified in the seedling stage and was described less frequently
for wheat stem rust (McIntosh et al., 1995). To detect APR too,
our study was based on field tests. Additionally, a leaf-segment
test (LST, seedling test) of the parental lines was used to confirm
whether the resistance is also active in the seedling stage.

To our knowledge, no molecular-genetic studies about stem
rust resistance in rye, i.e., about markers linked resistance loci,
have been published, but QTL mapping studies in rye on
leaf rust resistances (Wehling et al., 2003; Roux et al., 2004)
and agronomic traits (Miedaner et al., 2012; Hackauf et al.,
2017) were established. Our objectives were: (1) application
of mixed models for modeling unbalanced field data and
single point QTL mapping, (2) identification of resistance
genes and QTL in three bi-parental populations of inbred lines
derived from a cross of the type “susceptible × resistant,” (3)
differentiation between ASR by LST in seedling stage with
parental lines and some of the most resistant progeny and
APR in the field, (4) comparison of line per se performance
in relation to testcross performance with application to QTL
mapping, and (5) investigation of LR resistance with special
focus on the detection of pleiotropic or linked genes of LR
and SR resistances.

All progenies of the populations were tested in artificially
inoculated field trials over 2 years and three locations each. An
additional testcross population was developed from one of the
bi-parental populations and tested accordingly. Genotyping was
conducted using a 10k SNP chip and the most promising markers
linked with resistance loci were retested with a KASP assay.

MATERIALS AND METHODS

Mapping Populations
Three mapping populations (P1, P2, P4) with 68 to 70 progenies
each were analyzed in this study. P1 and P2 were developed
by crossing a self-fertile and SR-susceptible breeding line with
a SR resistance donor. The resistance donors for P1 and
P2 were self-fertile lines previously developed from genetic
resources listed in Table 1. From the F2-generation, P1 and
P2 were further propagated by single-seed descent to produce

recombinant inbred lines. The inbreeding level of the respective
populations can be found in Table 1. To create P4, one
single self-incompatible (i.e., non-self-fertile) plant from a SR
resistance-tested full-sib family was crossed with a self-fertile
breeding line (L403). Self-fertility is dominantly inherited, so
that the resulting F1 generation could be self-pollinated. Because
we did not know whether the single donor plant of P4 was
homozygously resistant, several crosses were performed and
those selected where the F1 was not segregating for stem rust.
To increase the amount of genes from the elite line (L403),
a F1 plant was backcrossed with L403. The resulting BC1F1
plant was self-pollinated like P1 and P2. Because the resistance
donor of P4 was one single self-incompatible plant, it could not
be further maintained and consequently was not part of the
experiments. Additionally, all inbred lines from P1 were crossed
with a SR-susceptible single cross tester (developed by and being
proprietary to KWS LOCHOW GmbH) and the resulting three-
way hybrids were also tested in the field (P1TC).

Resistance donors (Table 1) were “VIR 818” (P2), a genetic
resource from the Vavilov All-Russian Institute of Plant Genetic
Resources in Saint Petersburg, Russia (O.V. Solodukhina) and
two donors, “NEM LN461” (P1) and “HY75/81” (P4), that were
improved for rust resistances and have been received from the
Research and Development Institute of Agriculture of Central
Regions of Non-Chernozem Zone of the Russian Federation (A.
A. Goncharenko) in Nemchinovka near Moscow in Russia.

Field Trials
Two-year field trials with scorings in 2017 and 2018 were
conducted in Poland in Koscielna Wies (KOS) and in Germany
in Stuttgart-Hohenheim (HOH), Berlin-Dahlem (DAH), Petkus
near Baruth/Mark (PET) and Wohlde near Bergen (WOH), in
a total of ten environments (5 sites × 2 years). Additionally, 70
breeding lines (B1, B2, B3) and a further bi-parental population
with 72 genotypes (P3) were grown. Twenty-five breeding lines
(B1) were overlapping between all locations (Table 2). Both, the
single populations (P1–P4, P1TC) and the additional breeding
lines (B1–B3) were each denominated as a single set. All
genotypes from a single set were randomized in an alpha-design
with two replicates per genotype and tested in three of the
locations per year (Table 2). For each population the parental
genotypes were added twice each. At each site, sets were adjacent
to each other. The same allocation of material was used for
both years. Population P3 was excluded after the first analysis
of variance because it revealed no significant genotypic variance.
Field entries (plots) were single rows of 1 to 1.5-m length
separated to the neighboring plot by susceptible “spreader” lines
(pre-tested breeding line), serving to further spread the disease
after inoculation and reduce neighboring effects of field entries.
About 50 to 60 seeds were sown per row in the autumn of the
year before disease assessments.

Spore Production, Inoculation, and Trait
Assessment
Details about spore production and inoculation procedure can
be found in Miedaner et al. (2016). In short, a mixture of
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TABLE 1 | Size, parents, origin, and generation of self-pollination (selfing generation) of the mapping populations.

Population Susceptible parent Source of resistance donora Selfing generation Number of genotypes Breeder/ Instituteb

P1 KWL1770_90 Russia/NEM LN461 F2:4 68 KWL

P1TC KWL1770_90 Russia/NEM LN461 (F2:3) × T 68 KWL

P2 KWL1770_90 Russia/VIR818 F2:3 68 KWL

P4 L403 Russia/NEM Hy 75/81 BC1F2:3 70 UHOH

aVIR = N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint Petersburg, Russia; NEM = Research and Development Institute of Agriculture of Central Regions
of Non-Chernozem Zone of the Russian Federation in Nemchinovka near Moscow, Russia, bKWL = KWS LOCHOW GmbH, Bergen, Germany; UHOH = University of
Hohenheim, Stuttgart, Germany.

three stem rust isolates was used for inoculation. It was based
on previous collections in naturally infected sites in Germany
and Poland. The isolates were selected to possess different
virulence combinations and to represent the German stem rust
population as determined in a previous project. To have pure
strains and to distinguish different races, urediniospores from a
single pustule were multiplied (single-pustule isolate) on leaves
of susceptible rye seedlings (cultivar “Palazzo”). The pathogen
race was determined by individually inoculating each culture on
a differential set of 15 rye lines with different (combinations of
unknown) resistance genes (Supplementary Table S1, Miedaner
et al., 2016). High quantity of spores could be produced on rye
seedlings (cultivar “Palazzo”) without detaching the leaves. The
dates of inoculation were chosen on weather conditions and
developmental stage of the plants. In the interval from mid-
heading of plants until end of flowering (BBCH 55-65), all plots
in all environments were sprayed two times with 5–10 days
in between by an urediniospore-agar suspension (120 mg of
spores per 100 m2) using a spinning disk sprayer (Micron Ulva,
Bromyard Industrial Estate, Bromyard, Herefordshire HR7 4HS,
United Kingdom). Starting with the first visually distinguishable
symptoms between the plots (beginning/mid of kernel ripening,
BBCH 80-84), the percentage of stem surface between the second
leaf (F-1) and the node above covered with urediniospores was
visually assessed (0–100%). For a single score, stems from all
plants in the plot were considered, so that an average score for
a plot was given. Rating was repeated three times at intervals
of about 1 week.

In all years, the additional traits heading date (HD), in days
from first of January, and plant height (PH), measured as the

TABLE 2 | Number of genotypes and their allocation in 2017 and 2018.

Set/Pop HOH DAH KOS PET WOH

P1 72 . . 72 72

P1TC 72 . . 72 72

P2 . 72 . 72 72

P3 . . 72 72 72

P4 72 72 72 . .

B1 25 25 25 25 25

B2 25 25 25 . .

B3 20 20 20 . .

German locations were: HOH = Stuttgart-Hohenheim; DAH = Berlin-Dahlem;
PET = Petkus, WOH = Wohlde; Polish location was: KOS = Koscielna Wies.

distance from ground to the top of the ear, were evaluated. In
all locations in the second year (2018), also a rating for naturally
occurring leaf rust (LR) was conducted for all populations. The
percentage of leaf area (first leaves below the flag leaf) covered
with spores was assessed plotwise and was available for all bi-
parental populations.

Leaf-Segment Test
The LST was used to distinguish between APR and ASR. The
parents and selected genotypes from the progenies were tested
with six SR isolates differing in their reaction to the differential
lines and including the three isolates used for field inoculation
(Supplementary Table S1). Eight to 15 plants per single isolate
and genotype were tested. Leaves from 10-days-old seedlings
were placed in petri dishes filled with agar plus benzimidazole
(35 mg kg−1) and silver nitrate (1.5 mg kg−1). After inoculation
with urediniospores by a cotton swab, the petri dishes were
placed for 24 h in dark chambers at 20◦C with 100% humidity
followed by 14 days of permanent light. The infection type was
scored following a modified scale from Stakman et al. (1962),
so that no subgroups were allowed (“0′” = “0;” = “;” = 0;
“1′” = 1; “2′” = 2; “3′” = 3 and “4′” = 4), where leaves with
infection types 0–2 are regarded as resistant and with scores
3–4 as susceptible.

Marker Analyses
For DNA extraction, a sample of six seeds per inbred line was
taken. Genotyping of all lines was done with a custom 10k
Infinium iSelect SNP chip that is proprietary to KWS SAAT SE &
Co. KGaA, Einbeck, Germany. The SNPs of this assay are partially
overlapping with the 5k-SNP assay of Martis et al. (2013) and
the 600k-SNP assay of Bauer et al. (2017). About two thousand
(2033) SNP markers thereof have been previously mapped by
Bauer et al. (2017).

Markers were filtered by population requiring them to have
less than five missing values (callrate = 0.06) and three allele
states with two calls per state at minimum (minor allele
frequency = 0.03). Some markers showed the same segregation
across all genotypes from a single population in terms of
their allelic state (not necessarily same SNP bases). They were
kept for the analysis nonetheless, because segregation can be
different between them in other populations. About 700 (P4)
to 3000 (P1) markers remained after filtering per population
(Supplementary Table S2).
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Marker genotypes were converted to 0, 1, 2 coding, where
0 stands for the marker genotype of the susceptible parent,
1 for heterozygotes, and 2 for the marker genotype of the
resistant parent. As we expected a single dominant allele
from phenotypically segregating plants in heterogenous
(also heterozygous) plots (see section “Discussion,” and
Supplementary Figure S1) in P2 and P4, the coding for all
markers of these populations was adjusted to 0, 1.5, and 2. More
precisely, it was a consequence of giving average scores for field
plots and doing DNA extraction with bulked seeds. Specifically,
plots of genotypes with a dominant marker allele will segregate
in a 3:1 (resistant:susceptible) ratio, so that the resulting plot
average will be shifted toward the resistant allele (coded as
2). Because of this change in coding, marker effects could be
estimated as linear regression coefficients. For the same reasons
the allele coding of P1TC was also changed. By crossing each
line of P1 with a susceptible tester, only a single allele of the line
genotypes can cause resistance. For heterozygous genotypes (H)
crossed with a susceptible tester (A) the segregation ratio will be
1:1 (A, H). Consequently, alleles for P1TC were coded 0, 0.5, 1.
For better understanding, sketches of expected segregation can
be found in the supplement (Supplementary Figure S1).

Linkage Map
For each population, separate linkage maps were constructed
using the R-package ASMap with the mstmap-function (Taylor
and Butler, 2017). The ASmap-algorithm creates linkage groups
based on a significance threshold. This threshold was chosen by
trial-and-error so that linkage groups corresponded to individual
chromosomes presented in Bauer et al. (2017) and prevented
pseudo-linkage. As a consequence, often more than seven linkage
groups were created and had to be merged again. If this was
not possible, due to a lack of overlap of markers to public
maps or merged groups showing unusual orders or large gaps,
markers were discarded. A consensus map was created using the
MergeMap online tool (Wu et al., 2008). Chromosome names
and marker order were assigned using the overlapping markers
from Bauer et al. (2017).

Phenotypic Data Analysis
Phenotypic means were estimated by using mixed models. The
software asreml for R (Gilmour et al., 2009; R Core Team, 2019)
was used for all analyses. In a first step, the best rating was selected
from three ratings conducted for each plot at the different dates
by comparing repeatability. We used the mixed model,

yijk = µ+ gi + rj + bjk + eijk (1)

where Yijk is the response of the ith genotype in the jth replicate
and kth incomplete block nested within the jth replicate, µ is
the intercept, gi the random effect of the ith genotype, rj the
effect of the jth replicate, bjk the effect of the kth block nested
within the jth replicate, eijk the error term, repeatability could be

calculated by Rep =
σ2

g
σ2

g+v̄/2 , where σ2
g is the genetic variance and

v̄ the mean variance of a difference of two BLUEs when fitting
genotype as fixed factor (Piepho and Möhring, 2007). As several

sets were grown at a single location, the scoring date with the
highest repeatability for most sets was chosen and used in the
final one-stage analysis. The observations from the location KOS
in 2017 were fully discarded because of too low repeatability, even
for the trait PH.

To calculate BLUEs for the genotypes, all observations were fit
into a single stage analysis with:

yijklmno = µ+ gi + yj + lk + (yl)jk + sjkl + rjklm + bjklmn

+ (gy)ij + (gl)ik + (gyl)ijk + eijklmno (2)

Compared to this model (1), the one-stage model was extended
by the additional factors year y, location l, environment (yl),
set s and interaction terms for genotype-year (gy), genotype-
location (gl) and genotype-environment (gyl). Indicated by the
indices, the factors block (b), replicate (r), set (s), location (l) and
year (y) were nested within each other. For the terms rjklm and
bjklmn and the error eijklmno, heterogeneous variance at the level
of the environment-wise sets sjkl was allowed for by using the at()
function within the asreml-R. To do a quality check of the model
fit (Supplementary Figure S2), residuals were standardized by
dividing with the sjkl-specific standard deviation of residuals
(=studentized residuals).

To compare variances, genotype was taken as a random factor.
Further, different genetic variances for the different sets were
expected, so that a set-specific genetic variance was allowed for
using the at() function for the genotype effect.

The experiments were laid out in a way that the set was a
main plot in the experimental design. This main plot consisted
either of the additional lines (B1, B2, B3) or of a mapping
population (P1, P2, P2TC, P3, P4). The set was considered
as a fixed effect to calculate population-wise genetic variance.
Beside the logistical issues, the aim of this experimental set-
up was to minimize the errors of a difference within the
biparental populations. The least-significant difference (LSD)
was calculated by multiplying the average standard error of
a difference (average SED) with the 97.5% quantile of the
t-distribution with the residual degrees of freedom of the
mixed model, that can be extracted from asreml-calculation.
The average SED was calculated for each population separately.
Before the calculation of the BLUEs, outliers were removed based
on the Bonferroni-Holm method with studentized residuals
(Bernal-Vasquez et al., 2016). Heritability of the full model was
calculated by using an ad-hoc method described by Piepho and
Möhring (2007, formula 19), using population-specific variance
and error estimates.

Genotypic Data Analyses
QTL Mapping
QTL mapping was performed by a single-point analysis over
all markers. To test the significance, the one-stage phenotypic
model (2) was extended by a fixed main effect for the zth
marker (m) and a random marker-environment interaction
(myl). As all populations were developed from separate crosses
and different markers were expected to be significant in the
different populations, dummy variables were used to account for
the stratification. The dummy variable was equal to one when the
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observation could be referred to a respective population and zero
for all other observations. For each population a separate dummy
variable D was necessary. The model tested with all markers was:

yijklmno = µ+ sl + DP1mzi + DP1TCmzi + DP2mzi + DP3mzi

+ DP4mzi + DP1(myl)zijk + DP1TC(myl)zijk

+ DP2(myl)zijk + DP3(myl)zijk + DP4(myl)zijk

+ gi + djklmn + (gyl)ijk + eijklmno (3)

For display reasons the factors of the experimental design of
model (2) are summed up in djklmn and all interactions regarding
the genotype in (gyl)ijk.

The p-values could be derived from the Wald-statistics of the
fixed effects. The effect sizes for the markers could be estimated
from model coefficients. Regression coefficients were interpreted
as marker effects. The standard error of marker effects was
calculated by taking the square root from the variance of the
coefficient estimates.

As P2 and P4 showed similar significant markers, a dummy
variable was created that grouped both together so that in an extra
run significance and marker effects could be calculated for both
populations combined.

We could estimate the explained genetic variance (pG) of a
fitted SNPs fitted by assessing the associated drop in genetic
variance. If the genotype was considered as random factor
in model (2), the total genetic variance could be estimated.
Every SNP fitted in model (3) should capture some of the
genetics so that the amount of genetic variance explained by
a SNP could be estimated by comparing genetic variances of
model (2) and (3).

Markers were considered as significant when passing a
significance threshold. Because of multiple testing the 5%-
significance level (α) required adjustments described in the
following. Markers being significant in a single-marker model
were combined in the order of increasing p-values. Only markers
that remained significant were considered and are reported.

Significance Threshold
We used the method proposed by Piepho (2001), who refers to a
method proposed by Davies (1987):

If we consider C as the critical threshold based on a given
level of α (=5%) for the Chi-square test statistics of the Wald test,
than we can calculate C∗ by adding a penalty term to C. It was
calculated as follows:

C∗ = C + VC0.5∗k−1 exp(−0.5C)2−0.5k/0(0.5k), (4)

where V is the sum of absolute differences between square roots
of the likelihood test statistics T of successive marker tests (0 to
n) along the chromosome:

V =
∣∣∣√T (θ0)−

√
T (θ1)

∣∣∣+ ∣∣∣√T (θ2)−
√

T (θ3)
∣∣∣

+ . . .+
∣∣∣√T (θn−1)−

√
T (θn)

∣∣∣
As our model was based on single point test, we interpolated the
profile of Wald test statistic with the R function smooth.spline

(R Core Team, 2019) and extracted turning points θ0 to θn (sign
change of first derivative). An additional turning point with value
of zero was added at the start and end of each chromosome.

The global significance level γ of all chromosomes (z = 7) was
than calculated by:

γ = zPr

(
χ2

k > C +

( z∑
i=1

Vi

)
C0.5∗k−1 exp(−0.5C)2−0.5k/0(0.5k)

)
(5)

The variable k in formula (4) and (5) depends on the population
being studied (Piepho, 2001), in our case k = 2.

Bivariate Model
A bivariate model was used to estimate genetic correlation
between P1 and P1TC, between SR and LR and
to map QTL for LR.

As LR was scored in 2018 only, the year-interaction terms
in model (2) were dropped and the model extended to
a bivariate form. To make use of the covariance between
the traits it was aimed for unstructured variance for all
reasonable fitted factors, but to still allow for the variance
heterogeneity of location-set interactions it was possible to reach
convergence with unstructured variance for the genotype and
residual term (plot error) only. Diagonal variance was fitted for
all other factors.

To use a multivariate model for QTL mapping, the model
was extended by trait-specific fixed marker effects and random
marker-location interaction, the latter again with diagonal
variance. All bivariate models were used with marker genotype
coding of 0, 1, 2 (A, H, B) for all populations. As covariance
was estimated for the factor genotype (CovG), the amount of
explained genetic covariance (pCovG) was assessed likewise and
additionally to pG.

Candidate Genes
No reference sequence of rye is available to directly search for
candidate genes. For many contig sequences, gene annotations
are available (Bauer et al., 2017). But as the contig sequences
do not cover the full rye genome sequence, we compared
them with the barley genome. To have a long sequence
to compare, we firstly searched the KASP sequence in
the Lo7 assembly of the rye database1 (Altschul et al.,
1997; Bauer et al., 2017). This sequence was then used
to search for homologous sequences in the barley database
(assembly_WGSMorex2; Altschul et al., 1997; Mascher et al.,
2017) and corresponding gene annotations.

KASP Marker Development
Significant markers were transformed into markers for a KASP
assay. Primer design for and KASP analysis was performed by
KWS SAAT SE & Co. KGaA. Primer design can be found in the
Supplement (Supplementary Table S3).

1https://webblast.ipk-gatersleben.de/ryeselect/
2https://webblast.ipk-gatersleben.de/barley_ibsc/
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RESULTS

Phenotypic Data
Stem Rust Resistance
Of the three repeated ratings conducted in each environment
most often the final rating had the highest repeatability (0.45–
0.99) and was, therefore, used in the one-stage model. The raw
data for stem rust in the final model ranged between 0 and 98
% infection. All observations from KOS in 2017 were discarded
because of low repeatability for SR (RepSR3 = 0.17–0.84) and PH
(RepPH = 0.50–0.87).

Ranging from resistant to susceptible genotypes (Table 3), the
highest genetic variance was observed for P4 followed by P2,
P1 and P1TC (Table 4). The reduced genetic variance for P1TC
was expected, because the tester allele was always SR susceptible.
Indeed, when adjusted means or breeding values of testcrosses
were regressed on the performance of the respective lines, a
slope of 0.47 and 0.58 was estimated (Figure 1). The genetic
correlation between lines and their respective testcrosses was 0.83
(standard error = 0.07).

As the genetic variance enters into the respective heritability
calculations as one factor, P1, P2, and P4 had the highest estimates
of 0.81, 0.84, and 0.88 (Table 3). The average standard error of a
difference (as second factor of heritability) was lowest for P1 and
highest for P4 (indicated by LSD, Table 3). The differences in LSD
could be explained by the experimental design. The populations
shared only a single location for trait assessment (Table 2).

Consequently, the LSD was increased when all populations
were combined and comparisons were made across populations
(Table 3). In addition, the genotype-environment (G × Y × L)
interaction was relatively large. Moreover, LSD was increased
because populations were generally tested in different trials.

Leaf-Segment Test
The LST as seedling test was used to distinguish between
APR and ASR. As capacities were limited, only the susceptible
parents, the resistant parents or if not available (as in
P4) a single resistant progeny as proven in the field test
were used. All tested genotypes from P1 were susceptible at
seedling stage, whereas the resistance donor from P2 and a
resistant genotype from P4 were resistant for all tested isolates
(Table 5). Considering median scores, the susceptible parent
of P4 showed a single race-specific resistance to isolate 43.1.
On a single score basis (data not shown), results for this
isolate and isolate 106-5 were heterogeneous for L403: 70% of
replicates showed resistant reaction for the former and 12.5%
of the latter, the remaining 30 and 87.5% were susceptible,
respectively. All other isolates showed uniform resistant or
susceptible reactions over all tested genotypes. We concluded
APR to be present in P1 and ASR in P2 and P4. However,
as not all genotypes from P2 and P4 were tested by LST
and mapping was conducted for adult-plant resistance in the
field, the seedling resistance could also be caused by another
undetected gene.

TABLE 3 | Statistical parameters for stem rust, leaf rust, plant height, and heading date in four populations (P1–P4), a testcross progeny (P1TC) and an array of
breeding lines (B).

Value P1 P1TC P2 P4 P1, P2, P4 P3 B

Stem rust (%) Min 7.1 19.7 0.4 4.8 0.4 34.8 6.6

Max 57.8 54.9 52.4 61.7 61.7 54.9 57.9

Mean 29.7 37.5 17.4 26.9 24.7 43.4 37.8

LSD 14.4 14.7 14.6 16.5 17.7 15.0 15.4

h2 0.81 0.57 0.84 0.88 0.80 0.00 0.73

Leaf rust (%) Min 11.0 6.9 0.0 18.5 0.0 5.3 n.a

Max 46.2 32.5 39.6 46.8 46.8 29.3 n.a

Mean 19.7 13.7 11.8 25.2 18.9 13.5 n.a

LSD 11.4 10.9 15.0 11.1 15.9 10.4 n.a

h2 0.18 0.03 0.72 0.21 0.13 0.05 n.a

Plant height (cm) Min 80.0 95.6 96.5 110.3 80.0 84.5 78.3

Max 117.4 125.6 141.5 137.6 141.5 109.3 114.2

Mean 98.4 114.7 119.7 123.2 113.8 96.8 93.4

LSD 7.4 7.1 8.0 8.0 8.2 7.3 7.2

h2 0.88 0.82 0.90 0.82 0.87 0.72 0.90

Heading date (day in year) Min 133.67 131.45 134.06 132.35 132.35 133.00 131.86

Max 138.48 135.12 138.69 135.74 138.69 139.38 139.59

Mean 135.45 132.67 136.04 133.88 135.12 136.34 135.17

LSD 1.65 1.47 1.73 1.75 1.90 1.79 1.70

h2 0.72 0.49 0.58 0.50 0.57 0.76 0.81

Parameters were calculated for biparental populations (P1–P4), the additional breeding lines (B1–B3) and for P1, P2, P4 combined. The minimum (Min), Maximum (Max)
and mean were calculated from the best linear unbiased estimators (BLUEs). The least significant difference (LSD) was based on the standard errors of a difference
of the BLUEs. Heritability (h2) was calculated using set-specific genetic variance and average variance of difference. The additional lines have not been assessed
(n.a.) for leaf rust.
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TABLE 4 | Variance components (comp.) with standard errors (SE) for four populations (P1–P4), a testcross progeny (P1TC) and an array of breeding lines (B) for stem
rust, leaf rust, plant height, and heading date.

Factor Stem rust (%) Leaf rust (%) Plant height (cm) Heading date
(day in year)

Comp. SE Comp. SE Comp. SE Comp. SE

Genotype (G) P1 118.0 23.7 3.6 0.8 51.7 9.9 0.90 0.20

P1TC 37.4 10.4 0.4 0.2 30.8 6.3 0.25 0.09

P2 139.6 27.4 74.3 15.8 78.4 14.6 0.56 0.16

P4 248.0 47.0 4.3 0.9 37.7 7.8 0.41 0.13

P3 0.0 . 0.7 0.5 17.8 4.2 1.26 0.27

B1-B3 83.9 32.8 n.a. n.a. 61.7 20.8 1.86 0.68

Year (Y) 0.0 . n.a. n.a. 82.9 126.9 15.64 23.79

Location (L) 122.7 127.1 113.1 110.4 32.0 34.3 14.89 14.19

Y × L 51.1 56.5 n.a. n.a. 0.0 . 4.30 3.82

Set 138.8 33.8 95.4 43.7 146.4 34.0 1.64 0.44

Replicatea 2.8 1.1 19.2 42.9 6.2 15.1 0.66 1.99

Blocka 12.1 11.1 11.4 10.2 5.9 5.0 0.26 0.27

G × L 3.6 4.1 0.0 . 1.9 0.8 0.14 0.03

G × Y 8.0 3.4 n.a. n.a. 6.1 1.0 0.27 0.04

G × Y × L 75.9 5.6 n.a. n.a. 6.6 1.02 0.07 0.04

Residuala 67.9 16.8 106.3 16.1 25.4 5.4 1.72 0.35

Heterogeneous variance was allowed for the different sets so that for each population different genetic variance (G) was estimated. Leaf rust was scored in a single year
only so that variance components for the factor year or interactions thereof could not be estimated (n.a.). Leaf rust was not assessed (n.a.) for the additional breeding
lines (B1–B3). aHeterogeneous variance was allowed on the level of set nested within year and location. For display the average over all different levels was calculated.

FIGURE 1 | Correlation between lines and respective testcrosses. Best linear
unbiased estimators (BLUEs, green) and best linear unbiased predictors
(BLUPs, orange) for stem rust infection were calculated based on phenotypic
data from six environments and are plotted for the lines (x-axis) and respective
testcrosses (y-axis) of P1. Testcrosses (TC) were regressed on lines (Line) and
regression curve and model equation are displayed.

Plant Height and Heading Date
For HD differences of three to 5 days between the earliest and
latest genotypes could be observed in each population (Table 3).
However, the estimated genetic variance was lower than a single

day (Table 4) and thus the trait was neglected. The observed high
genetic variance for PH (Table 4) could be explained by the fact
that the parents used as donors for SR resistance were derived
from non-adapted genetic resources. Both traits, PH and HD, are
easy to measure and showed high heritability (Table 3).

Leaf-Rust Resistance
High genetic variance for LR could only be observed in
population P2 (Table 4). In the other populations, variance was
negligibly small. A special focus was laid on the correlation
between LR and SR, because both traits could be influenced by
pleiotropic or closely linked genes. Despite small variation for LR,
a significant genetic correlation could be observed in P1, P2, and
P4, but whereas in P2 the breeding values ranged from resistant to
susceptible, only medium resistant genotypes could be observed
in P1 and P4 (Figure 2).

Genotypic Data
Given the small population sizes and few recombination events
(crossing, self-pollination) a high amount of redundant markers
was present (Supplementary Table S2). Combined with the
size of the linkage maps (Supplementary Table S4) the marker
densities were sufficient for the QTL mapping. In all populations,
the amount of heterozygous markers was almost equal to the
theoretical expectations of heterozygous markers due to the
number of self-pollination steps (Supplementary Table S2 and
Table 1). P4 had the lowest numbers of polymorphic (filtered)
markers (Supplementary Table S2), because an additional
backcross step was included in the breeding scheme. The marker
distance on the linkage maps was on average between 1.4 cM
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TABLE 5 | Median leaf-segment test (LST) scores of selected genotypes.

Population Resistance levela Greenhouse: Isolates Field [%]

11-4b 3c-3b 3h-3b 43-1b 6-1b 46-2 106-5

P1, P2 Susceptible parent 2.8 3 3 3 2.5 2.5 2.5 51.2

P1 P1_66 (resistant) 4 3 3 3 3 4 3 7.2

P2 Resistant parent 1 1 1 1 1 0.5 1 7.3

P4 Susceptible parent 2.5 3 2.5 2 2.5 2.5 2.5 47.0

P4_19 (resistant) 2 1 2 0 1 1 1 5.8

The susceptible and resistant parents as well as single genotypes (lines) from the respective populations were tested with seven isolates each. For comparison, adjusted
means for stem rust scores from the field trials are listed. In LST, scores higher than “2” are considered as susceptible reactions (gray cells). aResistance level was
assigned according to information about pretested parents (P2) and according to the field data (P1, P4). b Isolates were used in a mixture for field inoculation.

FIGURE 2 | Genetic correlation of stem rust and leaf rust infection. Plotted
breeding values (best linear unbiased predictors), estimated correlation with
standard errors (brackets) and least significant difference on a 5% level
(LSD5%) were estimated from a bivariate model allowing for unstructured
variance-covariance on the genotype level. Estimations were based on data
from 2018 only. Additionally, observations from KOS were removed so that
prediction of P4 was based on field data from two and the P1 and P2 from
three locations (refer to Table 2).

(P1) and 1.7 cM (P4, Supplementary Table S4). The order of the
markers was very similar between the population-specific linkage
maps. Differences could only be found on a small-scale level
(data not shown).

QTL Mapping for Stem-Rust Resistance
In P1, we could identify three QTL for stem rust resistance
on chromosomes 1R, 2R, and 6R, all having effect sizes
between 6.5 and 6.9% points of stem rust reduction (Table 6).
Explained genetic variance ranged from 26 (C11974_365) to 31%
(C2420_561). Markers from additional peaks of chromosomes 1R
and 2R were also significant in single marker fits, but did not
remain significant in a combined marker fit and are, therefore,
not reported. Combining the three markers in one model,
increased the total explained genetic variance to 60%. When only

two markers were combined in a model, the best combination
was achieved with the markers C2420_561 (1R) and C31257_184
(6R) yielding already 55% of the total explained genetic variance
(data not shown).

When mapping the testcross population, only a single QTL
on chromosome 6R remained significant. For the top marker
of chromosome 6R, a single allele change in P1TC had almost
doubled effect size (−10.5) compared to a single allele change in
P1 (−6.5) so that we concluded dominant gene action according
to our marker coding (Figure 3 and Table 6). The QTLs from
P1 on chromosomes 1R and 2R were below the threshold in
the testcross progenies. Despite this, effects were estimated for
the respective markers and the explained total genetic variance
increased from 62 to 70% (data not shown).

Selected markers from the SNP array were transferred into
KASP assays. Unfortunately, the markers were chosen based on
simple fits in QTL mapping software and first year data, so
that one of the converted SNPs was located about 15 cM away
from C31257_184 and the conversion of a second SNP into a
KASP marker resulted in monomorphic response even though
the respective SNP segregated. KASP2 and KASP3 were based on
markers at the same position as C2420_561 and produced similar
results as the respective SNP (Table 6).

In P2 and P4, significant markers were located at the distal
end of chromosome 7R. Both populations had highly significant
markers in common, but still the markers with the lowest p-value
differed. When both populations were combined, isotig12934,
was the most significant marker for both populations. The
marker isotig12934 was converted to a KASP assay and yielded
even higher significance than the related SNP. The marker
effects (codominance) were estimated to cause a reduction
of 12.0 and 22.3% points stem rust severity in P2 and P4,
respectively (Figure 4A), and to 17.1% points reduction when
both populations were combined. As discussed later, the gene
was inherited dominantly, so the effects sizes must be doubled.
The genetic variance explained by a single marker was with
73 (P2) and 97% (P4) extremely high indicating monogenic
inheritance in both populations. We postulate, therefore, a single
gene, Pgs1, on chromosome 7R in both populations. It could also
be possible, that two different genes, one in each population, were
segregating at this locus. But even then, the validation of the
same marker in two different populations proved the potential
for practical breeding.
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TABLE 6 | QTL-mapping results for stem rust (SR) for three populations (P1, P2, P4) seperately and combined (P2+P4) and a testcross progeny (P1TC).

Pop. QTL/gene Marker Chr. Pos. p-value Effect SE pG

P1 QTL-SR1 C2420_561 1 121.57 1.50E−04 −6.9 1.8 0.31

KASP2 (Contig1383) 1 121.57 1.30E−04 −7.0 1.8 0.32

KASP3 (Contig1648) 1 121.57 1.30E−04 −7.0 1.8 0.32

QTL-SR2 C11974_365 2 89.06 4.00E−05 −6.6 1.6 0.26

QTL-SR3 C31257_184 6 236.15 1.10E−04 −6.5 1.7 0.30

QTL-SR1 + QTL-SR2 + QTL-SR3 0.60

P1TC QTL-SR3 C31257_184 6 236.15 3.24E−06 −10.5 2.3 0.62

P2 Pgs1 C42825_295 7 265.83 2.10E−08 −10.5 2.0 0.58

isotig25723 7 266.97 8.30E−09 −11.2 2.1 0.64

isotig12934 7 266.97 8.40E−09 −11.2 2.1 0.64

KASP1 (isotig12934) 7 266.97 2.10E−09 −12.0 2.0 0.73

P4 Pgs1 C42825_295 7 129.31 4.60E−04 −20.6 5.9 0.88

isotig25723 7 129.31 6.50E−04 −20.4 6.7 0.87

isotig12934 7 129.31 6.10E−04 −19.8 5.8 0.84

KASP1 (isotig12934) 7 129.31 3.40E−04 −22.3 6.2 0.97

P2 + P4 Pgs1 isotig12934 7 129.31 1.40E−06 −15.1 3.5 .

KASP1 (isotig12934) 7 129.31 2.00E−06 −17.1 3.6 .

The populations (Pop) P1, P1TC, P2 and P4 and a combination of P2 and P4 were investigated. The position (Pos.) on the genetic map was based on population specific
linkage maps (Chr. = chromosome). The p-values were derived from Wald-tests. pG gives the explained genetic variance. The effect and standard error thereof (SE) was
estimated from model coefficients. When functional KASP markers were available for the respective QTL, results thereof are listed. The SNP chip marker on which they
were based on are reported in brackets. For Pgs1, three SNP chip markers are listed because the one with the smallest p-value differs between P2, P4 and P2 + P4
respectively.

QTL Mapping for Leaf Rust Resistance
Given the high amount of genetic variance for LR (Table 4) and
genetic correlation with SR (Figure 2), P2 was most informative
for QTL mapping. Two QTLs for LR could be identified on
chromosome 1R and 7R (Table 7). The marker isotig26262,
located on chromosome 1R, had a positive effect of 4.9 on
LR indicating that the SR-susceptible parent was the donor.
In P1, a significant QTL was located at a similar position as
in P2. This could be expected as both populations shared the
same susceptible parent (KWL1770_90, Table 1). But the most
significant marker from P2 (isotig22192) was monomorphic in
P1 and a marker (isotig16666) being at a similar position and
polymorphic in P1 and P2, showed opposite effects, so a different
gene (QTL-LR1b) was assumed to be present at this locus in P1.
The effect in P1 was very small (Table 7).

The locus of the tentatively denominated gene Pgs1 was
shown to have also an effect on LR resistance. In P2
the marker isotig12934, which was most significant for SR
resistance in both populations (Table 6), was significant for
LR resistance in P2 and only slightly below the significance
threshold in P4 (Supplementary Figure S3). Looking at results
from the only common location DAH for scoring of LR of
P2 and P4, isotig12934 could pass the significance threshold
(Supplementary Figure S4). For P2, the marker with the smallest
p-value for LR resistance (isotig28727, data not shown) was
located 9 cM away from isotig12934, but the LD was estimated
to be 0.93 and correlation of the two markers was significant
(p < 0.001). Whereas in P2 the QTL LR1a mainly explained
genetic variance for LR (24%), a high amount of genetic
covariance (50%) was explained by Pgs1 (Table 7).

Further peaks were identified on chromosome 2R and 4R
in P4 (Supplementary Figure S3), though the latter was

discarded due to unreasonable allele distributions (number of
A alleles <10). The effect sizes for all QTLs in P4 were very
small (Table 7).

Candidate Genes
As the KASP1 marker showed high effects in P2 and P4, a BLAST
search for potential resistance genes was done. Unfortunately,
no full reference sequence of rye is available yet, so that the
investigations were based on known gene homology to barley.
Using the IPK Rye BLAST server, KASP1 was located on the
rye genome contig_127744 (59/61 identities) which is 11,179
basepairs long (Figure 5). When this full sequence was used for a
search in the IPK Barley BLAST server its end was overlapping by
3,319 basepairs (84.0% identities) with the contig_54255 from the
whole genome assembly of the barley variety “Morex.” On that
contig, with 8,587 basepairs length, a NB-LRR disease resistance
protein homolog (high confidence gene MLOC_68129.3) was
located. Calculating this the other way around, the gene candidate
MLOC_68129.3 is directly overlapping 3,187 basepairs with the
rye contig_127744 (2,674/3,187 identities). If sequences from the
rye contig and MLOC_68129.3 from barley would be merged by
the overlapping sequence, the SNP of KASP1 would only be 3,362
basepairs away from the start of MLOC_68129.3, the known
barley candidate gene (Figure 5).

DISCUSSION

For the first time, we mapped three self-fertile rye populations
(P1, P2, and P4) for the occurrence of stem-rust resistance genes
in the adult-plant stage in the field. Additionally, P1 lines were
analyzed as testcross progenies. Because we expected monogenic
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FIGURE 3 | Distribution of phenotypes for stem rust infection and LOD curves from QTL mapping. Histograms display the best linear unbiased estimators (BLUEs)
of line populations P1, P2, P4, and P1TC, the respective testcross of P1. The calculation of the plotted BLUEs was based on model (2) without the use of marker
data. The BLUEs of the susceptible parents are indicated by a little arrow. p-values for single-marker testing along the seven chromosomes 1R to 7R are plotted as
–log10 (p-value). The p-values were derived from model (3). The red line is based on the interpolation of the Wald statistics and was used to calculate the
chromosome-wise (solid lines) and global (dashed lines) significant thresholds. Linkage maps were based on the respective populations.

inheritance, population sizes were rather small (n = 68–70).
Most probably, we found a single resistance gene segregating
that caused most of the genetic variance in P2 and P4 and was
also active in seedling stage. In P1, however, a clear quantitative
inheritance acting only in APR with at least three QTL was
found of which one was inherited dominantly as revealed by
the TC progenies.

To the best of our knowledge only Tan et al. (1976, 1977) and
Solodukhina and Kobylyansky (2007) proposed names for stem
rust resistance genes in rye. With note on the tentativeness of
their names, research groups used different systems (alphabetical
and numerical) for gene denomination. To avoid confusion
with stem rust resistance denomination in the other small-grain
cereals, we propose the name Pgs1 (Puccinia graminis f. sp.
secalis) for the identified resistance gene. We are aware that
gene denominations require Mendelian segregation ratios and

thus consider the name as temporary. However, we could clearly
separate resistant and susceptible plants in the field (Figure 4)
and the proportion of explained genetic variance amounted to
73% in P2 and 97% in P4 (Table 6). Thus, we could assign
this high variance to a single resistance locus. Further, our
results do not rule out that in P2 and P4 two different genes
are segregating at the same locus. Both populations, however,
were based on genetically different genetic resources. The other
significant QTL are referred to with a “QTL-SR” and “QTL-
LR” denomination.

Consequences of Mixed-Model
Calculation
The mixed-model framework was a powerful tool to solve
analytical challenges we were confronted with. The two
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FIGURE 4 | Stem rust infection for genotypes grouped by KASP marker and segregation of heterozygous genotypes in the field. (A) Best linear unbiased estimators
(BLUES) from genotypes of P2 (white fill) and P4 (gray fill) grouped by the marker alleles of KASP1 on chromosome 7R. Group sizes are given on top of the boxes (n).
(B) Detail of a scored plot. Within a single row, segregation could be observed for genotypes heterozygous for stem-rust scores. The picture was taken in the field.
For contrasting purposes, white paper was placed behind the stems.

TABLE 7 | QTL mapping results for leaf rust (LR) in three populations.

Pop. Gene/QTL Marker Trait Chr. Pos. p-value Effect SE pG pCovG

P1 QTL-LR1b isotig26262 LR 1 92.64 1.50E−03 −1.0 0.3 0.17 0.28

isotig16666 LR 1 82.74 2.50E−03 −0.9 0.3 0.17 0.27

P2 QTL-LR1a isotig22192 LR 1 82.92 1.90E−04 4.9 1.3 0.24 0.09

isotig16666 LR 1 82.92 3.60E−04 4.9 1.4 0.24 0.09

Pgs1 isotig12934 LR 7 266.97 4.80E−03 −3.9 1.4 0.11 0.50

SR 7.60E−14 −15.5 1.9 0.77

QTL-LR1a + Pgs1 LR 0.34 0.54

P4 QTL-LR2 isotig25476 LR 2 88.93 6.00E−03 −2.0 0.7 0.26 0

Pgs1 isotig12934 LR 7 129.31 1.20E−02 −2.3 0.9 0.20 .

SR 7.30E−02 −14.0 7.9 0.81

QTL-LR2 + Pgs1 LR 0.45 .

In the populations (Pop) P1, P2 and P4, leaf rust QTL were mapped by means of bivariate models. For gene Pgs1 parameters are reported for stem rust (SR), too.
The position (Pos.) on the genetic map was based on population specific linkage maps (Chr. = chromosome). The p-values were derived from Wald-tests. pG gives the
explained genetic variance and pCovG the explained genetic covariance. The effect and standard error there of (SE) was estimated from model coefficients. Results for
isotig16666 are shown, because isotig22192 was not polymorphic in P1 and isotig26262 not in P2.

FIGURE 5 | Localization of KASP1 (rye) nearby MLOC_68129.3 (barley) by
use of sequence homology. The contig sequences of contig_127744 from the
rye Lo7 assembly (top) and of contig_54255 from the barley WGS Morex
assembly (bottom) are visualized as horizontal bars. Homologous sequences
are connected by gray boxes and number of base identities are given. Position
of KASP1 is highlighted in red and position of MLOC_68129.3 in green.

main issues were (1) an unbalanced experimental design
with only single overlapping environments between the

mapping populations combined with heterogeneous error
structure and (2) the combination of DNA analysis from
bulked seeds and averaged plot scores for heterozygous
genotypes. Further, the extension of the mixed model to
a bivariate form allowed us not only to estimate genetic
correlation between testcross and line performance and
between SR and LR infection, but also to use estimated
covariance between SR and LR to map the latter by an
improved model. The model improvement from a single
to a multivariate model could be shown by comparisons
of AIC and BIC. If a bivariate model (LR and SR) for
phenotypic data was fitted with zero covariance (diag-
option) the AIC was larger than with estimated covariance
(us-option) for the factors genotype and residual. The more
conservative measure BIC behaved the opposite way; it
should be kept in mind, however, that the penalty term in
BIC is not well defined and the definition used in mixed
model package tends to favor too simple models (Pauler,
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1998). If bivariate models were reduced to populations with
high correlation between traits (P2) also the differences
in AIC increased.

Besides the great flexibility of mixed models, we were also
confronted with some challenges. Firstly, the use of mixed
models increased the computation time compared to simple
linear marker regression with averaged genotypic means. To
calculate significance for approximately 5000 markers and more
than 4800 phenotypic observations took 4–5 h computation
time on a standard PC (Intel R© CoreTM i5-6600K processor)
instead of 5 min for a simple regression approach with
BLUEs. Consequently, well-known, but computational intensive
procedures like significance threshold calculation by permutation
(Churchill and Doerge, 1994) or confidence interval (CI)
estimation by bootstrapping (Visscher et al., 1996) could not
be applied. However, alternatives to the mentioned methods
proved to be well suited too. The significance threshold
calculated by Piepho (2001) proved to give reasonable results
and confidence intervals are mainly defined by effect (explained
variance) and population size (Darvasi and Soller, 1997).
Following the tables published by Darvasi and Soller (1997),
with a given standardized gene effect of 2 (maximum), that
is not unrealistic at least for P2 and P4, and a population
size of 200 the 95%-CI would still be 4.1 cM large. Beside
the side effect that only markers being polymorphic in both
populations were kept in the model, the combination of P2
and P4 increased the population size and thus should have
reduced the confidence interval. If the top marker isotig12934
was considered as center of the CI, two or three more
markers could be found within, using the linkage maps from
P2 and P4, respectively. Indeed, the markers isotig25723 and
isotig12934 were mapped at the exact same positions in
P2 and P4 and thus must both be tightly linked to Pgs1.
Secondly, the percentage of phenotypic variance (R2) that is
commonly combined with the heritability measure to assess
the explained genetic variance (pG) is not simple to extract
from mixed model calculations. Even though procedures for
calculating R2 for mixed models have been described (Piepho,
2019), we are mainly interested in the amount of explained
genetic variance estimated in the pure phenotypic model. Thus,
we could subtract the genetic variance from a model with
respective (fixed) marker effects from the genetic variance of
the pure phenotypic model to estimate pG. Malosetti et al.
(2008) used a similar approach but compared diagonals of G
matrices directly. Problematically from a statistical point of view
was that for the estimation of random effects, normality is a
prerequisite. If only single genes cause genetic variation, like
in P2 or P4, the estimation of genetic variance by modeling
the genotype as polygenic random effect in model (2) is not
ideal. Additionally, the extension of the phenotypic model
(model 2) by fitted markers (model 3) could also lead to
reduction in other variance parameters. This explains the fact
that even though the genetic variance for LR in P1 and P4
was almost zero (Table 4), the genetic correlation for LR and
SR was significant and QTL mapping still showed significant
QTL. However, the effect sizes of these QTLs were very
small (Table 7).

Challenges Using Self-Incompatible Rye
Populations as Resistance Donors
The (initial) donors of resistance in P1, P2, and P4 were genetic
resources from Russia, i.e., self-incompatible populations. They
were crossed with a self-fertile elite line, thus allowing self-
pollination in the following generations because our self-fertility
is dominantly inherited. Inbreeding by strict self-pollination
provided a challenge due to strong inbreeding depression
reducing the number of progenies from one self-pollination
step to the next. Doubled-haploid techniques are not feasible
in rye. For shortening the procedure, we used unselected F2
families and a backcross family subsequently self-pollinated to
F3 or F4 generation. Consequently 50 (P4), 25 (P2) and 12.5%
of heterozygous genotypes were expected and observed on the
marker level (Supplementary Table S2). If both, the DNA and
the phenotype would had been investigated on single plant
level, no further consideration concerning marker coding and
inheritance mode had to be done. However, our approach of
investigating whole plots with several plants combined with
bulked DNA analysis, required special attention in the analysis
and interpretation of results. A heterozygous marker call was
derived from a plant (seed) mixture of A, H and B genotypes
at a 1:2:1 ratio (Supplementary Figure S1) and this ratio must
be observed in every field plot of a heterozygous genotype,
too. As average scores for whole plots were given in our
study it would also result in intermediate scores between
the two (resistant and susceptible) parental types. In rows of
heterozygous (heterogeneous) genotypes of P2 and P4 it was
possible to clearly separate between resistant and susceptible
plants (Figure 4B). A ratio of 3:1 (resistant:susceptible) plants
was observed, indicating a dominant inheritance by a single gene.
Consequently, plot averages were expected to be 50% better than
the intermediate level. To account for this, the marker coding
was adjusted to 0, 1.5, and 2 instead of 0, 1, and 2 for A, H,
and B genotypes.

The great advantage of this scheme compared to single-plant
investigations was that it was possible to replicate genotypes
within and at different locations and to get reliable estimates of
stem rust infection in the adult plant stage. Nevertheless, the
assessments of heterogeneous plots were a challenge and they
tend to have larger errors and artificially influence the genotype-
environment interaction if by chance the ratios do not fully
meet the expectations. Whereas in P2 and P4 the segregation
was evident in the field, it was less clear in P1, so that marker
coding remained unchanged. By use of testcrosses, dominant
gene action of QTL-SR3 could be shown. Besides the deduced
dominance by P1TC, the LOD curve (Figure 3) also showed that
this was a major gene in the population. Still, only 62% of genetic
variance was explained by it (Table 6), so that further genes
may be present. The estimated slope of the regression between
line and testcross performance (Figure 1) alone did not imply
dominant action. For homozygous lines, a single dominant gene
would lead to a slope of one. Given a high inbreeding generation
in P1 (Table 1) it is most probable, that the other QTLs in
P1 had recessive or codominant gene action adding to QTL-
SR3. In this case, statistical models with cofactors (composite
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interval mapping; Jansen and Stam, 1994) could improve the
mapping procedure.

Co-localization of a Stem Rust and Leaf
Rust Resistance Gene
We could identify the stem rust resistance gene Pgs1 to be
identical (pleiotropic) or at least closely linked to a leaf rust
resistance gene (gene complex). As mentioned previously for SR,
this was also not confirmed by Mendelian segregation ratios. Still,
the markers at this locus were significant for both traits and
explained a high amount of genetic covariance pCovG (Table 7).
To decide whether this holds true for both, P2 and P4, the
correction of the critical significance threshold was important.
Whereas in P2 a highly significant peak could be found at the
position of Pgs1 (Table 7 and Supplementary Figure S4), in P4
also a peak was present, but less clear. The p-value for the marker
isotig12934 remains just slightly below the adjusted threshold
and peaks on chromosome 2R and 4R had smaller p-values.
However, when mapping was done with data from DAH, the
only common location of P2 and P4 (Table 2), the profiles of
Manhattan plot for P4 looked a bit different compared to data
from all locations combined (Supplementary Figure S3) and
markers linked with Pgs1 were slightly passing the threshold
also in P4 (Supplementary Figure S4). Given that LR races are
extremely diverse (Wilde et al., 2006), the race (and virulence)
composition could differ between the locations. When reducing
the data for the bivariate model to a single year observation,
in P4 also the p-value for isotig12934 and SR did not pass the
significance threshold anymore (Table 7). We explain this by data
from a single location (KOS) that was not well correlated with
data from the other locations. But proving that the data from
three locations can give valid results, the LR-QTLs identified in
this study have already been reported by other authors (Wehling
et al., 2003; Roux et al., 2004).

Furthermore, it is highly plausible that the LR resistance linked
to Pgs1 has already been described by Wehling et al. (2003). They
identified a leaf rust of caused by (P. recondita) resistance gene
(Pr2) in rye at the distal end chromosome 7R. When the sequence
of the reverse primer of cMWG682 linked to Pr2 was searched
for in the IPK rye contig database3 (Altschul et al., 1997; Bauer
et al., 2017) it fully matched with contig_1359301, a contig that
has already been mapped by Bauer et al. (2017) at 138.7 cM. It is
the same position as if Pgs1 would be projected on the map from
Bauer et al. (2017). The marker cMWG682 has also previously
been used to trace the Lr37/Yr17/Sr38 cluster in wheat (Seah et al.,
2001; Helguera et al., 2003; Li et al., 2016), and Sr38 is reported to
be introgressed from Aegilops ventricosa (Seah et al., 2001).

Assuming that in P2 and P4 the same gene (complex) was
causing resistance for SR and LR resistance, differences in effect
size and explained genetic variance (Table 7) could also be
explained by differing genetic background mainly passed over by
the susceptible parents. In P2, also the interaction with the second
LR QTL on chromosome 1R could have played a role. This gene
was inherited from the susceptible parent (KWL1770_90) and

3https://webblast.ipk-gatersleben.de/ryeselect/

thus should also be found in P1. However, missing segregation
for this QTL in this population impeded any significance, but
instead we identified a significant QTL with opposite effect at
the same position (different marker, Table 7). Roux et al. (2004)
also identified three LR resistance genes (Pr3, Pr4, Pr5) from
different resistance donors at similar positions on chromosome
1R. Assuming that the susceptible line of P1 and P2 is carrier
of a LR resistance (QTL-LR1a), that was segregating in P2
and was fixed for resistance in P1, there must have been an
additional gene segregating in P1 (QTL-LR1b) coming from the
stem rust resistance donor and thus having an opposite effect.
It was not possible to properly separate those two QTL because
we observed marker discrepancies in this region of the linkage
maps (Supplementary Figure S5). Interestingly, in Roux et al.
(2004) the order of their markers was also inconsistent in the
same genomic region. New populations constructed from single
plants of the respective populations could give more evidence for
clarification of this phenomenon.

Search for Candidate Genes
Given the clear significance and high effect for markers linked
with Pgs1, we tried to find candidate genes. Already Bauer et al.
(2017) published potential candidate genes in their supplement.
We could not find a potential resistance gene candidate there
and searched in the barley genome. Indeed, a NB-LRR disease
resistance protein homolog was detected. Based on merged
sequences of barley and rye it was only 3360 bp away from our
functional KASP marker. As not the full resistance gene was
located on the respective rye contig (Figure 5), it could not be
detected by Bauer et al. (2017). In many plant species, resistance
genes often encode for the family of intracellular nucleotide-
binding leucine-reach repeat receptors (NB-LRR, Dangl et al.,
2013), e.g., Sr50 in wheat (Mago et al., 2015).

Nevertheless, it must be stressed that only a continuous
genome sequence of rye can give us exact estimates of physical
distances between markers and maybe other resistance genes.
However, studies on the sequence homology of rye with other
grass species (Huang et al., 2002; Martis et al., 2013) showed that
large chromosomal regions are highly similar. The distal end of
chromosome 7R is homologous to the top of chromosome 2H
in barley and to the chromosomes 2A, 2B, and 2D in wheat.
The compared sequence motifs remained in the same order
(Martis et al., 2013). Further, the sequence changes by mutation
were estimated to be very low (2 to 5 changes over 1 million
years in an intron sequence) and most likely barley and rye
diverged from a common ancestor 11 million years ago (Huang
et al., 2002). The probability that there is a gene homolog of
MLOC_68129.3 in rye on a homologous segment is high, but
sequences of the barley and rye contig could not be aligned for
the full length. There was a gap of 2502 basepairs at the start of
the barley contig (Figure 5). This showed that sequence changes
must have taken place in the past. As any amount of DNA could
have been inserted or deleted after the segregation of rye and
barley from a common ancestor, it cannot be estimated how
big the difference between KASP1 in rye and MLOC_68129.3 in
barley really is.
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Potential Use of the New Resistance
Genes
Definitions of APR and ASR are often discussed in the context
of durability (Ellis et al., 2014; Mundt, 2018). However, durability
cannot simply be attributed to one of those classes. Flor (1971)
introduced the gene-for-gene concept as arms race between the
virulence of the pathogen and avirulence of the host. Following
the idea of an arms race, specific ASR genes can simply be
overcome by the emergence and spread of new races, so that
APR like QTL-SR3 identified in P1 seems to be promising for
more durable resistance. In the rye stem rust pathosystem, we
can find a high diversity of races (Miedaner et al., 2016). At
JKI Kleinmachnow, isolates of naturally occurring stem rust in
Germany and Poland were analyzed by producing single-spore
isolates and testing them on 15 differential lines (data not shown).
Out of 196 isolates analyzed from 2013 until 2018, 136 isolates
showed a different pattern regarding resistant and susceptible
reactions on the differential lines. One of those lines (D26) was
carrier of Pgs1 (parent of P2). Even though it could not be
infected by any of the collected 196 isolates, we cannot make any
reliable statements about the race-specificity or even durability of
that gene. In the recent past, there was no selection pressure by
SR-resistant cultivars in Germany that would have boosted the
propagation of more virulent races. Important for the emergence
of new races is the sexual recombination on the barberry plant
(Berberis vulgaris) where several virulences can be combined
resulting in new and more virulent races. Systematic eradication
of the barberry in the United States (Peterson, 2018) and Europe
(Bary, 1865) aimed to break the cycle of the pathogen, but today
it is assumed that the pathogen (at least in the United States) can
persist in the uredinial stage by traveling from south to north
using volunteer plants along roadsides as bridge (Leonard and
Szabo, 2005). In that context, somatic exchange of genes, shown
by Chen et al. (2017) and postulated for the emergence of the
Ug99 lineage of wheat stem rust (Li et al., 2019) may play a major
role for pathogen diversity. Further, spores can be transported
over long distances (Hirst et al., 1967) making the control of the
pathogen even more difficult. In Germany, rye stem rust could
be isolated from collected barberry leaves (Miedaner et al., 2016),
showing that barberry is still important in the life cycle of stem
rust in Germany.

Combining two or more resistance genes in a variety, known
as pyramiding or stacking, should increase the barrier for the
pathogen to be overcome. Concerning the degree of infection,
not all combinations are promising. For example in wheat, Sr24
and Sr26 combined together give a similar resistance reaction
compared to each gene alone (Ellis et al., 2014). Further, if
pyramids are developed from already released single R-gene
carrying varieties, they can again be overcome by single-step
mutations (Ayliffe et al., 2008). As example for the other side, Sr2
in wheat increases resistance of other genes and can be helpful
to identify more minor genes. Those combinations are often
referred to as Sr2-complex (Singh et al., 2014).

Quantitative inheritance as we concluded for P1 is rather
uncommon in cereal rust pathosystems. One reason therefore
may be that many resistance genes were mainly characterized by
seedling tests (McIntosh et al., 1995) and the minor genes causing

quantitative distributions are active in the adult-plant stage only.
It could also be possible, that P1 shows a quantitative distribution
caused by an intermixture of reactions of several isolate-specific
R-genes, but all isolates used as mixture for field inoculations
plus additional isolates (Supplementary Table S1) were tested
separately for selected genotypes from P1 by LST and did not
show any resistant reactions. The fact that we could identify
quantitative resistance in one out of three rye populations may
be an indicator that this type of resistance is more common in rye
than it was thought to be, and it may be worth also in the wheat
pathosystem to focus on both, seedling- and adult-stage testing.

It was surprising that we could find the same R-gene in
two independently developed populations. A reason may be
that both resistance donors were derived from Russian breeding
material (cross-pollinating populations), although from different
resources (Table 1). Solodukhina and Kobylyansky (2000, 2007)
also found resistances in Russian material. In comparison,
Tan et al. (1976, 1977) proposed six resistance genes for the
forma specialis secalis and eight resistance genes for forma
specialis tritici, by using three different populations only, all from
the United States.

Summing all up, the stem rust resistance genes Pgs1 and QTL-
SR3 are valuable sources for breeding hybrid rye. Firstly, they act
dominantly so that the introgression in only a single gene pool is
necessary. Secondly, potential differences in resistance type (APR
vs. ASR) indicate different resistance mechanisms what can be
promising for successful gene pyramiding and thirdly, if a gene
complex of Pgs1 with Pr2 (or a different LR resistance) can be
proven in further studies, it can be appealing as it allows to breed
for SR and LR resistance in a single step.

Research on resistance mechanisms conferred by different
genes will help to explain durability, at least partially. Until then,
every resistance gene is a valuable resource and good markers
will help breeders to include them in their breeding material,
preferably stacked.
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