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Abstract: Grapevine yellows (GY) are serious phytoplasma-caused diseases affecting viticultural 
areas worldwide. At present, two principal agents of GY are known to infest grapevines in 
Germany: Bois noir (BN) and Palatinate grapevine yellows (PGY). Disease management is mostly 
based on prophylactic measures as there are no curative in-field treatments available. In this context, 
sensor-based disease detection could be a useful tool for winegrowers. Therefore, hyperspectral 
imaging (400–2500 nm) was applied to identify phytoplasma-infected greenhouse plants and shoots 
collected in the field. Disease detection models (Radial-Basis Function Network) have successfully 
been developed for greenhouse plants of two white grapevine varieties infected with BN and PGY. 
Differentiation of symptomatic and healthy plants was possible reaching satisfying classification 
accuracies of up to 96%. However, identification of BN-infected but symptomless vines was difficult 
and needs further investigation. Regarding shoots collected in the field from different red and white 
varieties, correct classifications of up to 100% could be reached using a Multi-Layer Perceptron 
Network for analysis. Thus, hyperspectral imaging seems to be a promising approach for the 
detection of different GY. Moreover, the 10 most important wavelengths were identified for each 
disease detection approach, many of which could be found between 400 and 700 nm and in the 
short-wave infrared region (1585, 2135, and 2300 nm). These wavelengths could be used further to 
develop multispectral systems. 

Keywords: disease detection; plant phenotyping; spectral imaging; viticulture; phytoplasma; Bois 
noir; Palatinate grapevine yellows 

 

1. Introduction 

Grapevine yellows (GY) are diseases caused by different phytoplasma groups that are 
distributed in viticultural areas worldwide [1]. In Germany, phytoplasmas associated to Bois noir 
(BN) and Palatinate grapevine yellows (PGY) are the main agents of GY [2]. While Candidatus 
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Phytoplasma solani, the causal agent of BN, is classified to the Stolbur taxonomic group (16SrXII-A) 
and transmitted to grapevine mainly by the planthopper Hyalesthes obsoletus [3,4], PGY is a member 
of the Elm yellows group (16SrV) with the leafhopper Oncopsis alni being its vector [5,6]. Both vectors 
feed only erratically on grapevine, as bindweed and nettle are the main hosts for H. obsoletus [7] and 
alder for O. alni [8]. Besides transmission via insects, phytoplasmas can also be distributed during 
vegetative propagation [9]. 

Although, BN and PGY can easily be discriminated based on their etiology and epidemiology, 
the symptoms they induce on grapevine are indistinguishable [10]. Typical symptoms include 
downward rolling of leaves and discolorations that may be limited to the main veins but usually 
extend to the whole leaf blade. Depending on the variety, leaves turn chlorotic to yellow or develop 
a red to purple-reddish color. As the season progresses, affected leaves may become crispy and brittle 
[11]. Rows of black pustules can be observed along the internodes of shoots and, at the end of 
summer, lignification may be incomplete or lacking. In addition, phytoplasma infection may cause 
flower abortion as well as shriveling and early drying of grapes, which has a major economic impact 
on viticulture [1]. So far, no cultivated or wild grapevine species is known to be resistant, although 
grapevine varieties differ in their susceptibility towards the pathogens. Hence, some Vitis vinifera 
cultivars, most rootstocks, and wild Vitis species show milder symptoms than usual or may be 
completely symptomless carriers of GY [12]. 

Due to the complex epidemiology of BN and PGY—with grapevine being only an occasional 
host—and the lack of curative in-field treatments, disease management is almost exclusively based 
on prophylactic measures [13]. Besides planting phytoplasma-free propagation material, 
identification of infected vines and their subsequent uprooting are among the most common 
approaches [14]. A disease detection system could, therefore, be a useful tool in GY management. 

In recent years, sensor-based methods have widely been applied for the noninvasive and 
objective analysis of different plant diseases. Since most plant pathogens interact with their hosts in 
a way that leads to biochemical and biophysical modifications, leaf spectral patterns change upon an 
infection and during symptom development [15]. These alterations in leaf optical properties can be 
detected by spectral sensors that capture the plants’ reflectance not only in the visible range of light 
(VIS; 400–700 nm) but also in the near infrared (NIR; 700–1000 nm) and short-wave infrared (SWIR; 
1000–2500 nm). Thereby, either the entire spectral region (hyperspectral) or selected spectral bands 
(multispectral) can be used [16]. 

In the work of Arens et al. [17], hyperspectral imaging was used for the detection of Cercospora 
beticola infection in sugar beet reaching classification accuracies of up to 99.9%. Polder et al. [18] 
performed a multispectral analysis directly in the field to identify tulips infected with tulip breaking 
virus, and Behmann et al. [19] showed the possibility to gain pre-symptomatic information of Puccinia 
triticina and Zymoseptoria tritici pathogenesis using spatial reference points on the leaves of wheat. 
Further studies were conducted regarding, e.g., the detection of Venturia inaequalis on apple [20] or 
powdery mildew on barley [21]. 

A first approach in phytoplasma detection was performed by Barthel et al. [22] who investigated 
the potential of SWIR spectroscopy for the detection of apple proliferation. Regarding GY, most 
studies focused on Flavescence dorée (FD), one of the most severe phytoplasma-caused diseases and 
therefore subject to quarantine restrictions in Europe [1]. Albetis et al. [23,24] tested the suitability of 
multispectral imaging in combination with an unmanned aerial vehicle (UAV) for the airborne 
detection of FD symptoms under field conditions. For this purpose, they successfully analyzed 
several spectral bands, vegetation indices, and biophysical parameters. In different field studies, Al-
Saddik et al. [25–27] used a portable spectroradiometer (350–2500 nm) to collect hyperspectral 
reflectance data of healthy and symptomatic leaves, thereby, reaching classification accuracies of 
more than 90%. 

So far, only limited attention has been paid to the detection of GY other than FD. Therefore, this 
study focuses on the detection of BN and PGY using hyperspectral imaging in the range of 400–
2500 nm. For this purpose, greenhouse plants and shoots collected in the field were recorded under 
laboratory conditions in order to (i) discriminate healthy and symptomatic plants, (ii) test the 
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detection of infected but symptomless vines, and (iii) identify the most relevant wavelengths for the 
differentiation tasks. 

2. Materials and Methods 

2.1. Plant Material 

Plant material includes greenhouse plants derived from wood cuttings and plant samples 
collected in the field. Hyperspectral data acquisition of this plant material was conducted when 
disease symptoms were fully expressed, i.e., in May 2017 and 2018 for greenhouse plants, and 
September 2018 for field samples. 

2.1.1. Greenhouse Plants 

Cuttings from healthy and BN-infected grapevines cv. ’Riesling‘ were collected in the Middle 
Rhine region, Germany, in the dormant season of 2016/2017. In total, 45 of the 177 obtained plants 
were tested positive for BN by polymerase chain reaction (PCR) (see 2.2. Molecular Analysis) of 
which 16 developed typical symptoms under greenhouse conditions (Table 1). In the dormant season 
of 2017/2018, further cuttings were collected in the Palatinate region, Germany, from healthy and 
PGY-infected grapevines cv. ’Scheurebe’. Propagation of the cultivar ‘Scheurebe’ resulted in 198 vines 
of which eight were tested positive for PGY. 

Table 1. Number of greenhouse plants used for hyperspectral analysis. 

Year Cultivar Disease 
 PCR Result  

Negative Positive Symptomatic Positive  Nonsymptomatic 
2017 ‘Riesling’ BN 132 16 29 
2018 ‘Scheurebe’ PGY 190 8 – 

BN: Bois noir; PGY: Palatinate grapevine yellows. 

All plants obtained from the cuttings were grown from February until August in a greenhouse 
adjusted to 26/22 °C (day/night) and a photoperiod of 16 h per day. They were kept in plastic pots (1 
L volume) filled with 80% substrate (Fruhstorfer Erde Typ Tray Substrat + Perlite, Hawita Gruppe 
GmbH, Vechta, Germany) and 20% sand. Plants were watered twice a week and fertilized once a 
week (Hakaphos® soft, Compo Expert GmbH, Münster, Germany).  

Grapevines were visually inspected on a regular basis and hyperspectral images of all plants 
were recorded once in May after symptoms had developed and did not expand further. 

2.1.2. Field Samples 

In September 2018, 151 symptomatic and nonsymptomatic shoots of red- and white-berried 
grapevines were collected at different locations in the Palatinate and Middle Rhine region, Germany. 
Hyperspectral data were recorded on the same day the samples were taken. All shoots were visually 
inspected and tested by PCR (see Section 2.2.) for phytoplasma infection (Table 2). Since only three 
shoots were infected by both BN and PGY, hyperspectral data were not analyzed. 

Table 2. Number of shoots used for hyperspectral analysis. 

PCR Result Cultivar Number of Shoots 
Negative White + Red 15 

PGY White 12 
BN White 84 
BN Red 37 

BN + PGY Red 3 
BN: Bois noir; PGY: Palatinate grapevine yellows. 
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2.2. Molecular Analysis 

For extraction of total nucleic acids, a modified protocol of the CTAB method described by 
Maixner et al. [28] was used. Leaf midribs (120 mg) were ground in 2 mL microcentrifuge tubes with 
3–4 mL CTAB buffer (2% cetyltrimethylammonium bromide, 1.4 M NaCl, 100 mM Tris-HCl, pH 8,0, 
20 µM EDTA, 2% PVP-40, 0.2% mercaptoethanole). Further, 1.5 mL of the homogenate was incubated 
for 30 min at 65 °C and 1300 min−1. The supernatant was transferred after centrifugation for 10 min at 
1000 g to a fresh microcentrifuge tube and an equal volume of chloroform/isoamyl alcohol (24:1, v/v) 
was added. The mixture was centrifuged for 10 min at 10,000 g, the supernatant was transferred to a 
sterile 1.5 mL microcentrifuge tube, and 500 µL of ice-cold (−20 °C) isopropanol was added. The 
preparation was stored for 30 min at −20 °C and centrifuged at 15,000 g for 15 min at 4 °C. The pellet 
was washed with 70% ethanol, dried in a vacuum concentrator and resuspended in 150 µL TE buffer. 

Phytoplasmas of the 16SrV taxonomic group (elm yellows group)—that includes FD 
phytoplasma—were detected on total DNA extracts by amplification of parts of the 16S rRNA gene. 
A first PCR reaction was run with universal phytoplasma primers U5/P7 [29,30] followed by a nested-
PCR using 16SrV group-specific primers fAY/rEY [31]. For detection of phytoplasmas of the Stolbur 
group (16SrXII) including the agent of Bois noir disease, a first amplification with the universal 
primers U5/P7 was followed by a nested-PCR using the primers fStol/rStol [28]. The PCR products 
obtained were analyzed by electrophoresis in a 1.5% horizontal agarose gel in TAE buffer (40 mM 
Tris-acetate, 1 mM EDTA, pH 8.0). DNA was stained with ethidium bromide and visualized by UV-
light. 

2.3. Hyperspectral Sensors and Data Acquisition 

In this study, hyperspectral imaging was performed covering the spectral range from 400 to 
2500 nm. For this purpose, two hyperspectral line scanning sensors (Norsk Elektro Optikk A/S, 
Skedsmokorset, Norway) were implemented: (i) HySpex VNIR 1800 to record spectra in the visible 
and near-infrared range (VNIR; 400–1000 nm) and (ii) HySpex SWIR 384 that captures the short-wave 
infrared range (SWIR; 1000–2500 nm). Further sensor details can be found in Table 3. 

Table 3. Overview of the camera specifications. 

Specification HySpex VNIR 1800 HySpex SWIR 384 
Wavelength range (nm) 400–1000 1000–2500 

Spectral bands 256 288 
Spectral pixels 1800 384 

Spectral resolution (nm) 3.26 5.45 
Spatial resolution (mm/pixel) 0.17 0.65 

Field of view 17° 16° 
Maximum framerate (Hz) 100 400 

Dynamic range (bit) 16 16 
Detector type CMOS MCT at 150 K 

In Figure 1, the experimental setup for hyperspectral data acquisition is depicted. In order to 
achieve reproducible measuring conditions, hyperspectral data were captured in an imaging 
Blackbox with which disturbing environmental factors can be avoided. Plant samples were placed as 
flat as possible in the Blackbox and the two sensors were moved in 1 m distance above the samples 
by a horizontal translation stage to obtain spatial images yielding the spatial resolution given in Table 
3. For illumination, a 1000 W short-wave halogen spotlight (Hedler C12, Hedler Systemlicht, 
Runkel/Lahn, Germany) was installed between the cameras. A low reflective support surface assured 
minimal reflectance in the image background. In every image, a PTFE (polytetrafluoroethylene) 
spectralon (Sphere Optics GmbH, Herrsching, Germany) was included for calibration. The cameras’ 
integration time was set to yield ~90% signal within the cameras’ dynamic range. Camera frame 
period was set by the image acquisition software to match the driving speed of the linear stage in 
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order to get a geometrically correct image. Image acquisition and radiometric calibration was 
performed using the camera vendor’s acquisition software HySpex Ground. 

 
Figure 1. Overview of the experimental setup for hyperspectral data acquisition. 

2.4. Data Calibration and Labeling 

Data calibration and labeling was performed similar to previous studies [32,33]. Calibration 
measurements were performed before and after every plant sample. For this purpose, reflectance 𝑅𝑅𝜆𝜆 
per pixel was calculated as 

𝑅𝑅𝜆𝜆 =
𝐼𝐼𝜆𝜆 − 𝐼𝐼𝜆𝜆𝐷𝐷𝐷𝐷

𝐼𝐼𝜆𝜆𝑊𝑊 − 𝐼𝐼𝜆𝜆𝐷𝐷𝐷𝐷
, (1) 

where 𝐼𝐼𝜆𝜆  is the image pixel intensity at wavelength 𝜆𝜆 , 𝐼𝐼𝜆𝜆𝑊𝑊  the intensity while recording the 
spectralon device (white reference), and 𝐼𝐼𝜆𝜆𝐷𝐷𝐷𝐷  the intensity when measured with closed camera 
shutter (dark current). Values for white and dark values were obtained individually per pixel on the 
scan line in order to compensate for illumination gradients generated by the halogen light source. 

In order to remove background and nonrelevant sample parts like stems and pots, a 
segmentation for the leaf material was performed. For this purpose, a number of images was labeled 
by hand and a model based on the reflectance spectrum was trained to classify each spectral pixel 
into vegetation, background, and nonrelevant sample parts. Multi-Layer Perceptron (MLP) [34] with 
SNV normalization [35] performed the best and was, therefore, used for all segmentation purposes. 
The model training was performed using the AutoML platform HawkSpex®Flow developed by the 
Fraunhofer IFF. Data from both cameras were treated separately throughout the study resulting in 
different models for VNIR and SWIR images. An image registration was attempted but did not yield 
satisfactory results. For this matter, we used MATLAB’s (MathWorks Inc., Natick, MA, USA) 
methods for phase correlation and nonrigid image registration. Registration was performed using 
two grey value channel images from both cameras (VNIR at 785 nm and SWIR at 1056 nm). The VNIR 
camera was mapped to the SWIR camera that has a lower resolution. The same image registration 
mapping was then applied to all SWIR channel images. In order to generate a labeled dataset for the 
subsequent modeling, data were labeled using the provided laboratory results (Table 1 and Table 2). 
Based on the visual assessment and the molecular analysis, all pixels per plant were labeled as either 
healthy or infected. For each label class, 10,000 pixel-spectra were randomly sampled from all 
available imaging data. This was seen as good compromise between data representation and 
computational demand for generating the subsequent models. Figure 2 summarizes the steps from 
image acquisition over pre-processing to data modeling. 
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Figure 2. Overview of the principal workflow from image acquisition to data modeling. Online steps 
were processed directly during data acquisition and offline steps were processed in the computer 
infrastructure at Fraunhofer Institute for Factory Operation and Automation (IFF). 

2.5. Model Development and Application 

Each detection problem in this paper can be described as a binary classification problem with 
two classes: infected vs. healthy. In order to map the spectral reflectance data to a detection decision, 
a machine learning approach was followed yielding a Soft-Sensor detection system [36]. In this study, 
a number of spectral pre-processing methods in combination with machine learning models were 
tested for their detection performance (Table 4 and Table 5). Pre-processing is typically performed on 
reflectance data to minimize the effect of geometry on the measured reflectance, which leads to offset 
and gain effects [34]. Output of the pre-processing is then used as input to the machine learning 
model. In Table 4, the pre-processing methods used in this study are listed. 

Table 4. Pre-processing methods used in this study. Calculation is performed on the dataset to 
generate the input to the machine learning process. 

Method Formula 

Vector L2 normalization 𝑅𝑅𝜆𝜆𝑁𝑁 =
𝑅𝑅𝜆𝜆

�∑ 𝑅𝑅𝜆𝜆2𝜆𝜆

 

Vector SNV normalization [34] 𝑅𝑅𝜆𝜆𝑁𝑁 =
𝑅𝑅𝜆𝜆 −

1
𝑁𝑁∑ 𝑅𝑅𝜆𝜆𝜆𝜆

� 1
𝑁𝑁 − 1∑ �𝑅𝑅𝜆𝜆 −

1
𝑁𝑁∑ 𝑅𝑅𝜆𝜆𝜆𝜆 �

2

𝜆𝜆
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Table 5. Model hyper-parameters used in this study. 

Method Hyper-Parameter Reference 
Linear Discriminance Model 

(LDA) No hyperparameters [37] 

Partially Least Square 
(PLS) Number of components: 20 [38] 

Multi-Layer Perceptron 
(MLP) 

Number of hidden layers: 3 
Optimization method: scaled  

conjugate gradient backpropagation 
Neurons per hidden layer: 50, 25, 10 

[34,39] 

Radial-Basis Function 
Network 

with Relevance (rRBF) 

Number of radial basis functions: 30 
Optimization method: scaled nonlinear conjugate 

gradient 
[40–42] 

Hyperspectral data of this study were analyzed using four different machine learning 
algorithms. These include: (i) Linear Discriminance Model (LDA), (ii) Partially Least Square (PLS), 
(iii) Multi-Layer Perceptron (MLP), and (iv) Radial-Basis Function Network with Relevance (rRBF) 
(Table 5). The chosen methods differ in how data classes are separated. The LDA and PLS model use 
a single linear hyperplane as decision boundary, but acquire their parameters through different 
optimization methods. While LDA optimizes for class discrimination, PLS optimizes for input to 
output correlation. The MLP and rRBF model use non-linear models for a more complex decision 
boundary. The MLP generally works best for datasets, which can be separated using a small number 
of hyperplanes, whereas an RBF network is able to separate more complex shaped data clusters, since 
it uses receptive fields in combination with hyperplanes. For the output of these models, a coding of 
−1 for control/healthy and +1 for pathogen infection was used. 

In order to test the model on unseen data, an n-fold cross validation with n = 10 was performed 
with the dataset being divided into n parts. The model was then optimized on n–1 folds while being 
tested on the nth-fold. The modeling process was performed with all possible combinations without 
repetition of folds. As a model performance indicator, the average and standard deviations of the 
performance value was calculated across modeling runs and reported in the result tables. 

Performance of all models was assessed using the following performance criteria (with sample 
being defined as one spectrum labeled with its respective class): 

• Classification Accuracy (CA): Ratio calculated from the number of samples correctly classified 
among all possible samples. 

• True Positive Rate (TPR): Ratio calculated from the number of samples detected correctly as 
infected among all possible infected samples.  

• False Positive Rate (FPR): Ratio calculated from the number of samples detected incorrectly as 
infected among all possible control samples.  

After model training, the best performing model in terms of classification accuracy was selected 
and applied to the hyperspectral images resulting in a label for each vegetation pixel. In order to 
evaluate the detection performance of the selected model, percentage of all considered vegetation 
pixels classified as either healthy or infected was calculated and the label with the highest occurrence 
was regarded as the representing label for the plant sample (majority vote) (Figure 3). 
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Figure 3. Overview of the workflow for field samples of control (left) and Palatinate grapevine 
yellows (PGY)-infected (right) vines. Depicted are calibrated reflectance images at 800 nm coded as 
grey scale (a,b) and RGB (red-green-blue color space) images for visible and near-infrared range 
(VNIR) (c,d) and short-wave infrared (SWIR) (e,f), which are reconstructed for visualization only. The 
binary classifier for PGY detection was applied to all leaf pixels labeling them as either healthy or 
infected (g-j). Green pixels were classified as healthy by the machine learning algorithm and red pixels 
were classified as infected. The percentage of symptomatic pixels was calculated for VNIR (g,h) and 
SWIR (i,j) images. 

2.6. Spectral Relevance and Important Wavelengths 

While optimizing the Radial Basis Function Network (RBF), a weighting per wavelength is 
optimized as well and indicates the importance or relevance of a wavelength’s contribution to the 
detection task [41]. Due to the high correlation of wavebands, such a weighting profile is rarely only 
activated at a single wavelength. In addition, a multispectral camera system measures reflectance 
with a resolution that is approximately an order of magnitude lower than that of a hyperspectral 
camera. Therefore, we developed an algorithm with which multispectral channels can be placed at 
optimal positions in the spectral range and the relevant waveband utilization can be maximized [43]. 
For this purpose, the relevance profile was used as probability density function (pdf), and an 
automatic algorithm was applied that generated 100,000 random wavelength values based on this 
pdf. Consequently, the generated values are denser in areas of high relevance than in areas of low 
relevance. This data set was then used to train a Neural Gas vector quantization algorithm [44], which 
placed a set number of wavelength values in a way to minimize the quantization error measured by 
the mean squared error between placed wavelengths and best machine generated wavelengths. 
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Naturally, the Neural Gas algorithm covered denser areas with more wavelength candidates than 
less dense areas. Wavelength candidates were then ordered by their interpolated value from the 
relevance curve. Consequently, the first wavelength candidate is of highest importance to the 
detection task and relevance decreases from wavelength candidate to next wavelength candidate. 
Therefore, a maximum of 10 wavelength candidates for VNIR and SWIR were set in this study, as 
more were not considered useful. An example of the wavelength selection process is given in Figure 
4. 

 

Figure 4. Example of the wavelength selection process in the SWIR range for Bois noir symptom 
detection of red cultivars collected in the field. Based on the calculated relevance profile (a), 
wavelength candidates can be added according to their importance starting with the two most 
informative bands (b) until a maximum of 10 is reached (c). 

3. Results 

3.1. Model Evaluation 

3.1.1. Greenhouse Plants 

In this study, four different machine learning models were applied to the hyperspectral data 
recorded. Table 6 shows CAs, TPRs, and FPRs of all models for the detection of phytoplasma-infected 
greenhouse plants. Clear differences could be seen between the performances of the four models 
within each detection task. While LDA and PLS with comparable results performed the worst, MLP 
achieved significantly higher CAs and TPRs. However, rRBF performed best, thus, was further used 
to analyze greenhouse plants. 
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Table 6. Results of the different machine learning approaches for disease detection of symptomatic 
and nonsymptomatic greenhouse plants. Best machine learning approach according to its 
classification accuracy is highlighted in bold. 

Disease Symptoms Model 
Classification  
Accuracy (%) 

True Positive 
Rate (%) 

False Positive 
Rate (%) 

VNIR SWIR VNIR SWIR VNIR SWIR 

PGY Yes 

LDA 77 88 78 85 24 9 
PLS 77 88 77 86 24 9 
MLP 86 88 83 85 22 10 
rRBF 89 92 89 90 11 5 

BN Yes 

LDA 62 65 57 64 26 29 
PLS 63 65 54 64 28 34 
MLP 68 73 65 72 30 27 
rRBF 70 74 68 79 30 15 

BN No 

LDA 58 60 52 64 36 44 
PLS 59 60 57 62 39 42 
MLP 62 62 63 65 37 46 
rRBF 63 64 68 79 33 36 

BN: Bois noir; PGY: Palatinate grapevine yellows; LDA: Linear Discriminance Model; PLS: Partially 
Least Square; MLP: Multi-Layer Perceptron Network; rRBF: Radial-Basis Function Network; VNIR: 
visual and near infrared; SWIR: short-wave infrared. 

3.1.2. Field Samples 

The same four models were also used to analyze symptomatic and nonsymptomatic shoots 
collected in the field. Results of the different machine learning approaches are given in Table 7. In 
contrast to greenhouse plants, no significant differences could be observed between the models as 
their performances were almost similar within each detection task. However, MLP performed 
slightly better and was, therefore, further used to analyze samples collected in the field. 

Table 7. Results of the different machine learning approaches for disease detection of symptomatic 
field material derived from red- and white-berried cultivars. Best machine learning approach 
according to its classification accuracy is highlighted in bold. 

Disease Symptom Coloration Model 
Classification  
Accuracy (%) 

True Positive 
Rate (%) 

False Positive 
Rate (%) 

VNIR SWIR VNIR SWIR VNIR SWIR 

PGY White 

LDA 96 75 95 75 4 26 
PLS 96 99 95 97 4 0 
MLP 97 99 97 98 3 1 
rRBF 96 98 96 97 3 1 

BN White 

LDA 88 89 84 82 8 3 
PLS 88 90 84 82 8 3 
MLP 89 90 86 85 7 5 
rRBF 88 91 84 86 8 3 

BN Red 

LDA 92 94 86 91 1 3 
PLS 92 95 86 91 1 2 
MLP 94 94 90 93 3 4 
rRBF 93 96 89 94 2 2 

BN: Bois noir; PGY: Palatinate grapevine yellows; LDA: Linear Discriminance Model; PLS: Partially 
Least Square; MLP: Multi-Layer Perceptron Network; rRBF: Radial-Basis Function Network; VNIR: 
visual and near infrared; SWIR: short-wave infrared. 
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3.2. Model Application 

3.2.1. Symptomatic Greenhouse Plants 

During model development, all pixels were evaluated without considering spatial scales. In 
order to achieve a decision per vine, these models were then applied on plant scale. A majority voting 
of all pixel results was performed, whereby the whole plant was classified as either healthy or 
infected. Table 8 shows the results for the detection of phytoplasma-induced leaf symptoms of 
greenhouse plants. Identification of PGY-induced symptoms appeared to be easier than the detection 
of BN-induced symptoms, which is indicated by higher TPRs and corresponding lower FPRs. Here, 
TPRs of 81% and 100% could be achieved for BN and PGY, respectively, in both wavelength ranges. 
However, FPRs were significantly higher in the VNIR range, making the SWIR range the better 
predictor of plants’ disease status. 

Table 8. Results for the detection of phytoplasma-infected and symptomatic greenhouse plants using 
Radial-Basis Function Network. 

   VNIR SWIR 

Application 
per 

Plant 

 CA (%) 84 96 
PGY TPR (%) 100 100 

 FPR (%) 17 4 
 CA (%) 68 79 

BN TPR (%) 81 81 
 FPR (%) 34 22 

BN: Bois noir; PGY: Palatinate grapevine yellows; CA: classification accuracy; TPR: true-positive rate; 
FPR: false-positive rate; VNIR: visual and near infrared; SWIR: short-wave infrared. 

3.2.2. Nonsymptomatic Greenhouse Plants 

The detection of infected but symptomless plants was only possible for BN. Table 9 shows CAs, 
TPRs, and FPRs for the model application on plant level. Identification of symptomless greenhouse 
plants seemed to be more challenging than the detection of symptomatic plants as is indicated by 
lower model performance. TPRs of 68% and 79% were achieved for VNIR and SWIR, respectively. 
However, 29% (VNIR) and 41% (SWIR) of all pixels were falsely classified as symptomatic leading to 
rather low CAs of 68% and 64% for VNIR and SWIR, respectively.  

Table 9. Results for the detection of Bois noir-infected but symptomless greenhouse plants using 
Radial-Basis Function Network. 

  VNIR SWIR 
Application CA (%) 68 64 

per TPR (%) 63 86 
Plant FPR (%) 29 41 

CA: classification accuracy; TPR: true-positive rate; FPR: false-positive rate; VNIR: visual and near 
infrared; SWIR: short-wave infrared. 

3.2.3. Symptomatic Field Material 

Symptom detection seemed to be easier for shoots collected in the field than for greenhouse 
plants (Table 10). Satisfying results could be accomplished for both diseases with TPRs of 95–100% 
and FPRs of 0–7%. Although symptom detection was successful for both diseases, PGY performed 
slightly better reaching detection rates of 100% without misclassifications. In general, no differences 
could be seen between VNIR and SWIR, so, both wavelength ranges seem to be suitable for the 
differentiation task. 
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Table 10. Results for the detection of symptomatic phytoplasma-infected shoots taken from the field 
using Multi-Layer Perceptron. 

 Disease Symptom Coloration  VNIR SWIR 
   CA (%) 100 100 
 PGY White TPR (%) 100 100 
   FPR (%) 0 0 

Application   CA (%) 96 96 
per BN White TPR (%) 96 95 

Plant   FPR (%) 7 0 
   CA (%) 98 98 
 BN Red TPR (%) 97 97 
   FPR (%) 0 0 

BN: Bois noir; PGY: Palatinate grapevine yellows; CA: classification accuracy; TPR: true-positive rate; 
FPR: false-positive rate; VNIR: visual and near infrared; SWIR: short-wave infrared. 

3.3. Spectral Relevance and Important Wavelengths 

3.3.1. Greenhouse Plants 

The machine learning approach allows the calculation of relevance profiles that provide 
information about the most important wavelengths for the detection tasks. Relevance profiles for the 
identification of phytoplasma-infected greenhouse plants are depicted in Figure 5. Based on these 
relevance profiles up to 10 local maxima were selected. They are listed according to their importance 
in Table 11. Clear differences can be seen in the three differentiation tasks in both VNIR and SWIR. 

Regarding symptomatic plants infected with PGY, most important wavelengths in VNIR are 
around 459–492 and 679 nm with some minor peaks at 748 and 905 nm. The peak around 679 nm 
overlaps with that of BN-infected and symptomatic plants at 689 nm showing the importance of this 
spectral region for the discrimination of symptomatic and control plants. However, no further 
concordance could be shown between the two diseases. Regarding BN-infected but symptomless 
plants, wavelengths at 503, 616, and 734 nm as well as in the range of 932–972 nm seem to be of 
highest relevance. 

In the SWIR range, wavelengths around 1400 and 1865 nm are of importance for all three 
detection tasks, although peaks seem to be slightly shifted. Further significant wavelengths for the 
identification of PGY-symptomatic plants are 1545, 1709, and 2125 nm. Regarding BN-infected plants, 
wavelengths around 1239, 1549, 2010, and 2451 nm are highly relevant for the detection of 
symptomatic plants and wavelengths of 1343, 1658, 2000, 2180, and 2362 for asymptomatic plants. 
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Figure 5. Spectral relevance profiles in the VNIR (a) and SWIR (b) wavelength range regarding 
phytoplasma-infected greenhouse plants. 

3.3.2. Field Material 

Relevance profiles for the detection of symptomatic field material are depicted in Figure 6 and 
exact wavelengths are given in Table 12. Regarding PGY, most important wavelengths are around 
557, 639, 672, and in the range of 801–940 nm. Some of these are also relevant for the identification of 
BN-infected shoots of white varieties, e.g., 637, 553, and 812–966 nm with an additional important 
wavelength at 741 nm. Obvious differences become visible between symptomatic shoots of white and 
red varieties with 528, 586–626, and 673 nm being the key wavelength ranges for the detection of BN-
symptomatic shoots in red varieties. 
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Figure 6. Spectral relevance profiles in the VNIR (a) and SWIR (b) wavelength range regarding 
phytoplasma-infected field material. 

In contrast, a clear pattern can be seen in SWIR with wavelengths around 1585, 2135, and 
2300 nm being of relevance in all three differentiation tasks. Small differences between PGY and BN-
infected shoots can be found between 1880 and 2000 nm. Here, important wavelengths are slightly 
shifted. Further differences become apparent in the range of 1050–1490 nm, with 1072 nm being 
important for the identification of PGY and 1350 nm for BN. 

However, when comparing relevance spectra of greenhouse plants and field material only a few 
concordances can be found, for PGY, at 675 and 2130 nm and for BN, only at around 540 nm. 
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Table 11. The 10 most informative spectral bands for the detection of phytoplasma-infected greenhouse plants. 

Disease Symptoms VNIR SWIR 
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

PGY Yes 679 459 492 423 748 905 965 541 832 606 1373 1861 2125 1545 1709 2288 1214 2459 2000 1031 
BN Yes 689 971 861 539 486 752 914 811 431 631 1400 2451 1865 2010 1549 1239 1160 1734 1055 2313 
BN No 932 975 503 616 890 734 579 835 455 784 1893 1433 2180 2362 1658 1343 2000 2268 2102 1170 

BN: Bois noir; PGY: Palatinate grapevine yellows; 1–10: selected spectral bands; VNIR: visual and near infrared; SWIR: short-wave infrared. 

Table 12. The 10 most informative spectral bands for the detection of symptomatic phytoplasma-infected shoots taken from the field. 

Disease Cultivar 
VNIR SWIR 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 
PGY White 672 639 557 845 891 801 498 718 945 443 1587 2132 2305 1648 1918 1072 1239 2458 1784 1391 
BN White 637 741 667 862 553 966 509 812 913 452 1582 2131 1649 1353 2466 1981 2297 1204 1869 1034 
BN Red 626 528 586 673 773 969 718 458 899 839 1586 2294 2140 1347 1670 1965 1188 1881 2462 1019 

BN: Bois noir; PGY: Palatinate grapevine yellows; 1–10: selected spectral bands; VNIR: visual and near infrared; SWIR: short-wave infrared. 
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4. Discussion 

For high dimensional data, it is difficult to determine the best machine learning model in 
advance as every model underlies different mathematical conditions, which may lead to different 
performances when applied on the same dataset. Therefore, four different machine learning models 
were tested in this study. While for greenhouse plants rRBF showed highest CAs and TPRs, MLP 
performed best for shoots collected in the field. High-dimensional data are not easy to visualize in 
order to check if the datasets meet one of the mentioned conditions. The training was done using 
careful validation and performed on identical dataset splits in order to generate comparable results. 
Furthermore, we analyzed the relevance of wavelengths ranges for more interpretability of the 
modeling outcome. Comparing different classification algorithms is a common approach in 
hyperspectral data analysis as has been shown in various studies. For the detection of Botrytis cinerea 
and Colletotrichum acutatum infections on strawberry fruits, Siedliska et al. [45] analyzed four different 
classification methods of which a Backpropagation Neural Network (BNN) showed highest accuracy. 
Wiegmann et al. [46] used PLS, MLP, and an RBF network with Transfer Learning for the prediction 
of nutrient content in barley grain. Here, PLS was identified as the best compromise between good 
prediction performance and lowest computing demand. For the detection of laurel wilt disease on 
avocado plants, Abdulridha et al. [47] also applied MLP as well as RBF neural networks and 
additionally performed a stepwise discriminant (STEPDISC) analysis on hyperspectral data in the 
VNIR region. In both early and late infection stages, MLP performed significantly better than 
STEPDISC and RBF. 

Symptom development of BN and PGY is known to be influenced by environmental factors, 
scion-rootstock combination, and the grapevine cultivar [1]. Therefore, ungrafted vines grown under 
controlled greenhouse conditions were used as a first approach to assess the potential of 
hyperspectral imaging for GY disease detection. While high classification rates could be achieved for 
PGY-infected plants, BN symptom detection performed significantly worse with CAs of 68% and 79% 
for VNIR and SWIR, respectively. Although symptoms of GY are indistinguishable, their appearance 
on a vine may differ. Phytoplasmas associated to the 16SrV group like PGY or FD usually induce 
systemic symptoms, thus, affecting the entire plant. BN-infected vines, however, express symptoms 
only partially on some shoots, while others seem to remain healthy [2]. This could also be observed 
for greenhouse plants in the present study. PGY-infected plants showed symptoms along the whole 
shoot; in contrast, vines infected by BN developed only some symptomatic leaves and symptoms did 
not further expand as the season progressed. This mixture of symptomatic and nonsymptomatic 
leaves might be the reason for lower CAs in BN-infected greenhouse plants, especially since disease 
detection was performed successfully using plant material collected in the field. 

In general, phytoplasmas are erratically distributed in their host plants and their location as well 
as titer are assumed to play a significant role in symptom development [48]. In combination with the 
fact that some cultivars, most rootstocks, and wild Vitis species may be completely symptomless [12], 
identifying disease carriers would be a key element in reducing pathogen reservoirs in vineyards and 
nurseries and especially in rootstock motherblocks. The feasibility of such an approach has already 
been demonstrated for other phloem-limited pathogens such as citrus tristeza virus or grapevine 
leafroll-associated viruses [32,49]. Unfortunately, the detection of BN-infected but symptomless 
plants was not successful under greenhouse conditions, since VNIR and SWIR showed poor 
classification performances of 68% and 64%, respectively, which is close to a random classifier. Since 
results for symptom detection were significantly higher for PGY- than BN-infected vines, it would be 
interesting to evaluate in further studies whether this effect could also be observed in symptomless 
PGY-infected plants. 

Even though analyzing greenhouse-grown vines allows environmental factors to be precisely 
controlled, phenotypes strongly differ from those grown in the field since grapevines are naturally 
large perennial plants. Therefore, as a next step, shoots collected in the field were recorded under 
laboratory conditions. In general, better results could be obtained for plant material from the field 
than for greenhouse plants. This might be due to a higher amount of symptomatic leaves per sample 
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as shoots from field-grown grapevines were completely symptomatic and considerably larger than 
greenhouse vines. Moreover, symptoms slightly varied between greenhouse and field. As the season 
progresses, symptomatic leaves may turn crispy and brittle [11], thereby, influencing especially the 
NIR spectral range that is strongly affected by cell tissue structures [15]. However, this could only be 
observed for field material and not for greenhouse plants. Furthermore, Mannini et al. [50] found that 
vegetative propagation of infected vines might lead to reduced infection intensity in the progeny, 
which could also be one reason for lower CAs in greenhouse plants. 

In summary, disease detection could be performed successfully for both BN and PGY using 
field-grown plant material leading to the assumption that these two GY may also be detectable 
directly in the field, as has been demonstrated for FD [23–27]. Identifying the most relevant 
wavelengths for a multispectral disease detection system and, as a result thereof, reduced data 
dimensionality might be a promising concept for transferring BN and PGY detection into the field. 
Assessment of optimal spectral bands is a common approach that has widely been used for the 
detection of tomato spotted wilt virus [51], anthracnose on strawberries [52], three sugar beet diseases 
[53], or powdery mildew and Esca on grapevines [33,54]. In this study, a maximum of 10 relevant 
wavelength bands were selected separately for VNIR and SWIR, as more were not considered 
realistic for multispectral systems. Many of these wavelengths could be found in the visible range of 
the electromagnetic spectrum for both greenhouse plants and field material. Phytoplasmas are 
known to inhabit the phloem of their host plants, thus, callose is deposited near sieve plates and 
plasmodesmata to hinder pathogen spread [55]. As a consequence thereof, phloem transport is 
inhibited leading to an impairment of photosynthetic activity [56]. Moreover, infection typically 
causes a decrease in chlorophylls and carotenoids [57]. These changes in pigment content are 
predominantly expressed in the range of 400–700 nm [58]. Chlorophyll a and b strongly absorb 
incoming light in the blue and red region of the spectrum, thereby providing energy for 
photosynthesis [59]. Besides chlorophylls, carotenoids are the main factors influencing reflectance 
characteristic in the visible range of light, especially in the blue region [60]. The differences observed 
in VNIR reflectance spectra of BN-infected field material collected from red- and white-berried 
grapevines may be explained by an increase in anthocyanin content during symptom development 
[61] that is not observable in white cultivars since they lack several genes of the flavonoid biosynthetic 
pathway [62]. Anthocyanins affect leaves’ reflectance mainly around 550 nm. Based on this finding, 
Gitelson et al. [63] introduced the anthocyanin reflectance index (ARI). In general, several vegetation 
indices (VIs) have been described to estimate leaves’ pigment contents [16,64] and some of them 
might be applicable to the spectral data of this study. However, common VIs typically lack disease 
specificity, therefore, attempts have been made to develop individual spectral disease indices (SDIs) 
[53]. The generation of optimal wavelength pairs for suitable BN and PGY indices might be a subject 
for further studies.  

Regarding relevance profiles in the SWIR range, a consistent pattern could be seen for field 
material across the three detection tasks with 1585, 2135, and 2300 nm being of high importance. As 
described by Curran et al. [59], wavelengths around 1580 nm are strongly associated to the absorption 
of starch and sugar. Due to the disturbed photosynthesis and phloem blockage upon phytoplasma 
infection, synthesis and transport of carbohydrates and starch are modified leading to their 
accumulation in mature leaves [65]. Furthermore, phytoplasma infection may cause a significant 
decrease in lignin content [66]. According to Nagler et al. [67], cellulose and lignin have a relatively 
broad absorption feature around 2100 nm. In general, the range of 2100–2300 nm is not only heavily 
affected by leaf cellulose and lignin but also by protein content [68] that is known to be strongly 
reduced in many phytoplasma-infected plants [69]. However, these changes typically occur in 
heavily affected leaves only, which could explain the differences between relevance profiles of 
greenhouse and field material as field material was more affected by phytoplasma infection. 

The results of this study are based on 1-year data; therefore, selected spectral bands need to be 
verified in further experimental years. Sinha et al. [70] identified relevant wavelengths for the 
identification of grapevine leafroll-associated virus 3 in Cabernet Sauvignon vines over two 
consecutive years, but transfer of these wavelengths from one year to the other was only partially 
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satisfying. Moreover, Al-Saddik et al. [27,71] tried to assess optimal spectral bands for FD detection 
in different white and red grapevine cultivars, but the best bands selected were different from one 
case to another. Nevertheless, in further studies, it will be of interest to transfer BN and PGY detection 
to the field. 

5. Conclusions and Perspectives 

In this study, greenhouse plants and shoots collected in the field were analyzed under controlled 
laboratory conditions to evaluate the potential of hyperspectral imaging for disease detection. So far, 
no similar work on BN and PGY has been conducted as previous studies focused mainly on FD. While 
identification of PGY-infected greenhouse plants was successful reaching CAs of up to 96%, symptom 
detection of BN needs to be improved. Further investigations will also be necessary for infected but 
symptomless plants. Identification of these plants could help to improve nurseries’ ability to provide 
phytoplasma-free propagation material. However, symptomatic field material could be easily 
classified with CAs of 96–100%. Further studies could expand upon our work by transferring the 
developed disease detection models into the field. For viticulture, a tractor-mounted system might 
be a suitable method since data could be collected in parallel to fieldwork. An airborne approach 
using UAVs could be a fast and flexible alternative. For this purpose, it would be useful to develop a 
multispectral sensor using phytoplasma-specific wavelength bands, thereby, reducing data 
dimensionality and computational time. As a first step, the most relevant wavelengths for each 
differentiation tasks could be identified in this study. Selected bands differed from one case to the 
other, except for field material in the SWIR spectral range where consistent wavelengths could be 
observed. So far, Germany is considered FD-free but it cannot be excluded that the disease will be 
present in future. Due to the relatedness of FD and PGY, results of this study could be used as a basis 
to develop a sensor-based monitoring system that could then help to fulfill the required quarantine 
restrictions. In general, many future applications are possible; therefore, complementary studies with 
increased number of samples should be conducted in order to validate the results presented in this 
work. 
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