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ARTICLE INFO ABSTRACT

The paradox between environmental conservation and economic development is a challenge for Brazil, where
there is a complex and dynamic agricultural scenario. This reinforces the need for effective methods for the
detailed mapping of agriculture. In this work, we employed land surface phenological metrics derived from
dense satellite image time series to classify agricultural land in the Cerrado biome. We used all available Landsat
images between April 2013 and April 2017, applying a weighted ensemble of Radial Basis Function (RBF)
convolution filters as a kernel smoother to fill data gaps such as cloud cover and Scan Line Corrector (SLC)-off
data. Through this approach, we created a dense Enhanced Vegetation Index (EVI) data cube with an 8-day
temporal resolution and derived phenometrics for a Random Forest (RF) classification. We used a hierarchical
classification with four levels, from land cover to crop rotation classes. Most of the classes showed accuracies
higher than 90%. Single crop and Non-commercial crop classes presented lower accuracies. However, we
showed that phenometrics derived from dense Landsat-like image time series, in a hierarchical classification
scheme, has a great potential for detailed agricultural mapping. The results are promising and show that the
method is consistent and robust, being applicable to mapping agricultural land throughout the entire Cerrado.
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1. Introduction agricultural areas and its evolution over time, so that we can ensure
sustainable agricultural development and the preservation of the
biome.

TerraClass is the main official LULC mapping initiative in Brazil,

Brazilian agribusiness has great economic importance for the
country and it is considered as one of the most relevant agribusiness

frontier in the world (Spera, 2017; Ministry of Agriculture, 2016). With
over half of Brazil’s agricultural land falling within Cerrado biome, land
clearing in this region has been central to the development of the
agricultural sector (Spera, 2017). The Cerrado is the second-largest
biome in Brazil (Ministry of Environment, 2019), considered as a bio-
diversity hotspot, providing environmental services of global im-
portance. Despite that, the Cerrado has lost 88 Mha (46%) of its native
vegetation with a projection that 31-34% of remaining biome is likely
to be cleared by 2050 (Strassburg et al., 2017). This scenario underlines
the need for methods that accurately map the distribution of

initially focusing on Legal Amazon deforested areas (Almeida et al.,
2016) and later Cerrado (INPE, 2017). Recently, MapBiomas project
(Azevedo et al., 2018) has proposed to carry out the annual fully au-
tomatic mapping of all Brazilian biomes using Landsat imagery. How-
ever, agriculture in particular is mapped at low level of thematic detail,
consisting in a broad class for annual agriculture, which does not take
into account the cropping practices and rotation systems.

Remote sensing data is a valuable tool for agricultural mapping,
once can capture the seasonal behavior of vegetation (Wardlow et al.,
2007). Coarse spatial resolution sensors (250 m — 1 km) with up to daily
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Fig. 1. Locations of the study sites in the Cerrado biome (I). The sites A1 and A2 (II) are located in western Bahia, site B in southeastern Mato Grosso (III) and site C in

northeastern Sdo Paulo (IV).

revisit times have been widely used for agricultural mapping (Sakamoto
et al., 2005; Wardlow et al., 2007) and several studies highlighted
benefits of time series for agricultural mapping in Brazil (Esquerdo
et al., 2011; Rudorff et al., 2010; Arvor et al., 2011; Borges and Sano,
2014; Brown et al., 2013). However, even though their spatial resolu-
tion has been shown to be sufficient for mapping large-scale agri-
cultural practices, such as double and single cropping systems, it does
not allow for the detection of smaller fields, due to the spectral mixture
of the different targets, and which includes crops that has significant
importance for familiar agriculture.

With advances in computational processing performance and the
development of consistent methods to combine data from different
sensor there is an increase in advanced LULC mapping approaches that
use Landsat-like images (Zheng et al., 2015; Pena and Brenning, 2015;
Pan et al., 2015; Wulder et al., 2012; Miiller et al., 2015; Rufin et al.,
2015; Schwieder et al., 2016; Bendini et al., 2016; Bendini et al., 2017),
which can overcome the spatial resolution limitation. However, tem-
poral resolution is still a problem, since in many cases, especially in
tropical regions, there is a high cloud cover and the variability in the
agricultural calendar is highly dynamic, with different crop seasons
within the same year and different cultivation practices (e.g., no tillage,
center pivot irrigation, crop-livestock integration and the use of early
varieties). The 16-days temporal resolution may not be sufficient
(Bendini et al., 2017). Combining different sensors is an alternative to
increase the temporal resolution, especially after the launch of Sentinel-
2B, that provide with Sentinel-2A and Landsat-8 three medium re-
solution sun synchronous satellites on orbit. However, to map also the
past before the Sentinel launch in 2013, in this spatial resolution, it is
necessary to consider Landsat TM and ETM +, and consequently deal
with the Scan Line Corrector (SLC)-off data (Schwieder et al., 2016).

The use of phenological metrics (phenometrics) extracted from
image time series can be an important strategy for the development of

agriculture mapping methods. Different phenometrics were explored
for this purpose, mainly using MODIS time series (Sakamoto et al.,
2005; Arvor et al., 2011; Borges and Sano, 2014; Korting et al., 2013)
and recently also with Landsat-like images (Pan et al., 2015; Miiller
et al., 2015; Bendini et al., 2016; Bendini et al., 2017; Schmidt et al.,
2016). However, the full potential of these metrics has not yet been
fully explored, considering their applicability for mapping multiple
cropping systems considering the different cultivation practices in
highly dynamic agricultural regions.

Griffiths et al. (2019) reached overall accuracy of 81% mapping 12
agricultural classes in Germany using 10-day interval composites of
Sentinel 2A and Landsat imagery (Griffiths et al., 2019). However they
did not explore the use of phenometrics showing that it could improve
their results, which is linked to the need of more sophisticated gap-
filling techniques. Rufin et al. (2019) showed the potential of the Radial
Basis Function (RBF) fitting to derive gap-filled image time series to
classify cropping practices in Turkey using RandomForest algorithm,
achieving accuracies above 90% (Rufin et al., 2019). They opened a
perspective about the potential of phenological metrics as a way for
integrating features from multiple crop seasons which can be important
for mapping agriculture with higher thematic detail.

Hierarchical classification approaches is an efficient strategy to deal
with classification problems when evolving a high number of classes,
being possible to achieve higher accuracies in comparison with classical
approach (Lebourgeois et al., 2017). Furthermore, in the agricultural
domain, hierarchical approach enables the evaluation of the cropping
practices and crop types independently of the use of a priori cropland
mask.

The combination of phenological information derived from dense
Landsat image time series combined to the use of hierarchical classifi-
cation approaches and non-parametric classifiers such as RF, for our
knowledge was still not applied. Thus, the objective of this work is to
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use phenometrics derived from dense satellite image time series for
classifying agricultural land in the Cerrado biome at different thematic
levels with a hierarchical approach and RF classification.

2. Materials and methods
2.1. Study sites and definitions for the hierarchical classification

We tested the method in three different study areas within the
Cerrado (Fig. 1). The study areas were in the west of Bahia State (re-
gions Al and A2), southeast of Mato Grosso (region B) and northeast of
Sao Paulo (region C). Despite all of these areas being in the Cerrado
biome, they differ with respect to climate conditions, vegetation and
agricultural practices.

The areas in western Bahia and southeastern Mato Grosso (Fig. 1;
sites A1, A2, and B) consist mostly of large-scale and market-oriented
agriculture. The region of western Bahia belongs to the most recent
agricultural frontier of the Cerrado, which is called the Matopiba region
(Miranda et al., 2014), a continuous zone formed by the states of
Maranhdo, Tocantins, Piaui, and Bahia. The study area in southeastern
Mato Grosso is characterized by intensive double-cropping rotations,
while western Bahia features mostly single-cropping regimes. The study
area in northeastern Sao Paulo (Fig. 1; region C) is considered a
smallholder agricultural zone, characterized by high intra and inter-
field spatial variability. We collected data at different thematic detail
(Fig. 2) to test the approach using hierarchical classification scheme.
Field surveys were conducted during the 2015-2016 cropping seasons.
For the study area in western Bahia, we conducted the survey with the
“Rally da Safra 2016” team (AGROCONSULT, 2018), which is a project
that visits several farms on Brazil to evaluate crop yield during the
growing peak. We registered the samples locations for each class using a
GPS and collected information about crop rotations with farmers. The
fieldwork protocol and the database in region B are available in
(Sanches et al., 2018). We used the same protocol for region C. We used
TerraClass maps and interpretation of Google Earth imagery to collect
additional samples for non-cropped classes. Field boundaries were di-
gitized to obtain polygon database. We generated 841 polygons, where
a small fraction of randomly pixels were sampled from each polygon in
order to incorporate intraclass variability, totalizing 40,385 samples.

We used a hierarchical classification approach by which level 1
classes domains are isolated, and land cover is classified by corre-
spondence at level 2. Then we isolated the pixels classified as “Annual
crop” and used it to classify land use by correspondence for each do-
main for the subsequent nomenclature levels.

The land cover classes (Level 2) are based on the nomenclature of
the Systematic Survey of Agricultural Production of the Brazilian
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Institute of Geography and Statistics (IBGE, 2016). The natural vege-
tation classes consist into three main Cerrado physiognomies, based on
the definition of TerraClass Cerrado (INPE, 2017): forest, savanna and
natural grasslands (Ribeiro and Walter, 2008). The Crop Group (Level
3) is defined by the main agricultural practices in the Cerrado region
and the Crop Rotation level (Level 4) consists in the most detailed level,
with crop rotation types definitions.

2.2. Satellite data

We used all available ETM + and OLI data for the study areas
(Path/Row 226/070, 225/070, 226/071, 225/071, 220/068, 220/069,
220/070, 219/069 and 219/075), acquired between April 2013 and
April 2017. Assuming an 8-day temporal resolution, this 4-year period
contains 186 potential observations. The images were obtained from
the US Geological Survey (USGS) Earth Resources Observation and
Science (EROS) Center Science Processing Architecture (ESPA). These
data are provided with level 1 geometric correction (L1TP). Landsat 7
imagery was converted to surface reflectance by the atmospheric cor-
rection algorithm LEDAPS (Landsat Ecosystem Disturbance Adaptive
Processing) (Masek et al., 2006), and Landsat 8 data were corrected
using LaSRC (U.S. Geological Survey, 2017; Vermote et al., 2016). We
used the Enhanced Vegetation Index (EVI) (Liu and Huete, 1995),
which is known to increase sensitivity for biomass estimation through a
de-coupling of the canopy background from the signal and a reduction
in atmospheric and soil reflectance influence (Huete et al., 2002).

2.3. Landsat dense time series

Limiting factors of a dense time series are sensor errors and cloud
cover. To overcome these constrains, Schwieder et al. (2016) used a
weighted ensemble of Radial (Gaussian) Basis Function (RBF) con-
volution filters to approximate the missing data in a Landsat time series.
To approximate the given EVI observations into dense 8-day time series
without data gaps, we used the RBF approach (Schwieder et al., 2016)
with some adaptations. Let f(t) be a time series, where ¢t € {1, ...,N}.
The approximated values y(t) are calculated by Eq. 1.
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where ® is an operator for convolution, the kernels for the convolution
(K;) are given by the Gaussian function (Eq. 2), and T is the total
number of standard deviations (¢) that can be used for the kernel cal-
culation.

Level 4 - Crop Rotation

Soy / Maize (2427)
Soy / Cotton (2639)
Maize / Soy (129)

Level 2 - LandCover

Semi-perennial crop (4021)

Perennial crop (9067)
Planted forest (442)
Pasture (2927)

Level 1 - Cropland

Annual crop and
Semi-perennial crop (22203)
Perennial crop
and Non-crop (18182)

Annual crop (

Forest (2204)
Natural grasslands (1803)
Savanna (1739)

Level 3 - Crop Group

First crop

Second crop (5195)

First crop
‘Winter crop (1974)

Single crop (8690)

Single crop
Non-commercial crop (2323)

Maize / Carrot (91)
Maize / Onion (91)
Maize / Potato (235)
Maize / Beans (409)
Soy / Potato (1148)

Maize (1663)
Soy (5907)
Cotton (1120)

Soy / Millet (300)
Soy / Brachiaria (410)
Soy / Sorghum (159)
Millet / Cotton (837)
Crotalaria / Cotton (617)

Fig. 2. Thematic levels for definition of hierarchical classification.
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Fig. 3. Averaged EVI phenological profiles for each agriculture class of level 4 in the season 2015-2016 (black lines), with their respective standard deviations (blue
margins) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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(2)

The size of the kernel window (L) is given by o, which directly
translates into the number of observations (at 8-day intervals). The total
kernel width is limited to the points in time, which delineate 90% of the
area under the Gaussian kernel. Increasing o expands the kernel
window and lowers the kernel values. We used three different kernels
with 03 = 0.5, 0, =10, 03 =3.0. The final approximation is the
weighted average of the results of the three temporal convolution fil-
ters, where the weights (W) are also calculated by the kernel con-
volution (Eq. 3), but applied in d(t), which is a vector that expresses
data availability (Eq. 4), where cloud contaminated pixels were masked
by the Fmask algorithm (Zhu et al., 2015). The more data available in
each kernel window relative to the total kernel window, the higher its
weights in the final aggregation of the different kernels.

W =d®)® K 3
where,
0, if f(t) = NA
d
(”{1, i f(0) # NA @

We did not use a priori outlier detection. After an expert-driven vi-
sual inspection, we observed that using outlier detection masked some
intrinsic variations in the phenological profiles of agricultural targets
(abrupt greening, induced senescence or harvesting). Previous studies
showed that approaches using cloud masking with interpolation
methods are promising in reducing noise for this purpose in similar
regions (Bendini et al., 2017). Rufin et al., 2019 showed the potential of
RBF for deriving intra-annual Landsat dense time series for mapping
cropping practices in Turkey, where they reported an average of around
20.42 of clear sky observations (CSOs) per pixel during the study period
(Rufin et al., 2019).

2.4. Phenometrics

We obtained the phenological parameters using TIMESAT v3.2
software (Jonsson and Eklundh, 2015), where seasonal data are ex-
tracted from the time series for each growing season of the focal year. In
Brazil, the agricultural year of most crops is defined as between August
of a given year and October of the following year; therefore, when
extracting seasonality parameters, we used the period of August 4,
2015, to October 1, 2016, as the focal year. We fitted the time series
using the Savitzky-Golay filter (Jonsson and Eklundh, 2004) with a
window size of 4. A set of 13 phenometrics were derived for each
season (S1 and S2). Parameters included day-of-the-year (DOY) of start,
mid, end, and length of season and phenological proxies like peak and
base value, seasonal amplitude or rate of increase and decrease (see the
full list of predictors in Table B4). We also used the polar features,
which the purpose is represent time series by projecting values onto
angles in the interval [0,27]. So that, we can obtain the coordinates of a
closed shape and calculate the area of the resulting shape for each of the
quadrants (7, 37/2], [n/2, ], [0, /2] and [37/2, 27]), which are
supposed to represent the seasons. More details can be found in Korting
et al. (2013).

2.5. Random forest classification

After the time series feature extraction, we used our field database
to train RF (Breiman, 2001) and obtained a classifier for each nomen-
clature level (Fig. 2). RF needs two parameters to be tuned including
the number of trees (ntree), and the number of variables (mtry). The
mtry was empirically set to 5, and ntree values of each RF classification
model after tuning were respectively 50, 50, 70 and 90. The final maps
were validated using exhaustive method based on Monte Carlo simu-
lation (Rubinstein and Kroese, 2008) where, for each model, 1000 si-
mulations were carried out by randomly selecting 70% of samples to
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Fig. 4. Boxplots with the mean, 25, 75 percentiles and outliers of EVI phenological parameters for the main classes of level 4 classification.

train and 30% for validation. For each subdivision, a confusion matrix
was calculated, and the average confusion matrix was used to derive the
overall accuracy (Chinchor and Sundheim, 1993) and the class f1-scores
(Shapiro, 1999) for each model. The “randomForest” package in R was
used for our classification tasks (R Development Core Team, 2017; Liaw
and Wiener, 2002). For the visualization of the final maps, we grouped
the different non-crop classes into one. We used the Modified Nor-
malized Difference Water Index (MNDWI) (Xu, 2005) to derive a mask
of the water bodies.

3. Results and discussions
3.1. EVI temporal profiles

We derived pixel-wise EVI fitted time series with 8-day temporal
resolution for the period of 2013-2017. Fig. 3 shows averaged profiles
for the target period of 2015-2016 (correspondent to the field work
period); with the respective standard deviations for each agriculture
class of level 4 based on the sampled pixels of all the study sites (see Fig.
Al and A2 in Appendix for the level 2 and 3).

By assessing the Fmask products for the same period we found an
average of 30.45 CSOs per pixel (minimum 0; maximum 46) (see Figure
A3 in Appendix for spatially explicit visualization of the CSOs count and
Figure A4 for an example of RBF interpolation in a selected pixel pro-
file).

The temporal profiles of the First crop / Second crop classes are
mostly represented by a first season of soy, or maize, generally planted
from late September to mid-November or even in early December. The
harvest period occurs from late January to mid-March. The second
season commonly consists of maize or cotton and planting occurs be-
tween late February and early March, depending on when the first-
season crops are harvested, generally from June to early July. Our
approach sought to assesses agricultural phenological patterns not only
for major crops such as maize, soy and cotton, but also minor crops

which are significant at smaller scale. Nonetheless, we observed that
our phenological profiles for the major crops agree with findings of
other authors (Arvor et al., 2011; Oliveira et al., 2014), which worked
with coarse spatial resolution data and focused only on larger areas of
Mato Grosso state.

The first season of First crop / Winter crop classes begin approxi-
mately one month later than First crop / Second crop class. In region C,
winter crops are represented by potatoes or minor crops like carrots;
these are planted from mid-March to June and harvested by late
September or early October. The slope of the green-up curve is subtly
less pronounced, because the first crop in this class is usually maize,
which has longer green-up period than soy (Nguy-Robertson et al.,
2012). The EVI values in Soy / Maize and Soy / Cotton off-seasons are
higher than when second season is potato. Rotations systems in Brazil
are usually based on no-tillage, unless when the first season is potato,
once this crop require tillage before planting. This may explain the low
EVI values.

Non-commercial crops are planted to maintain a constant vegeta-
tion cover during the off-season when no-tillage is used. Millet and
crotalaria presented a very short cycle with low EVI peaks, and are
usually planted right after or before main season. We observed this
affected the TIMESAT season detection, and phenometrics extraction.
Soy / Sorghum and Soy / Maize spectral temporal behavior are similar.
Maize and sorghum plants have similar erectophile structure, what can
lead to confusion. This was also observed by Arvor et al. (2011) and
Zheng et al. (2015) reported the same issue with wheat and barley in
Central Arizona (Arvor et al., 2011; Zheng et al., 2015). The second
season in Maize / Beans temporal profiles behaved differently than
expected once we cannot see clearly second season. Soy and common
beans cultivated in Brazil are also similar in terms of structure, but
common beans have shorter cycle, being mostly cultivated in family
farming systems and irrigated areas. Planting dates can vary widely,
and combined to the short cycle reflected in problems with the phe-
nological characterization by EVI fitted values. This point to the fact
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that cloud cover is also contributing to mask important phenological
phenomena in such dynamic agricultural systems, what evidence the
potential of SAR sensors, in order to provide weather-independent ob-
servations.

Single-crop class is represented by cotton, soy and maize. When
cultivated in a single-cropping system, cotton is planted between
October and December and harvested from April to July. Single crops
are usually planted with soil tillage, so the EVI values on off-season are
lower than for double cropping systems.

3.2. Phenometrics

We used the derived EVI temporal profiles on TIMESAT to calculate
pixel-wise phenological parameters for the season 2015-2016. The
distribution of these parameters in each class highlighted phenological
differences. Fig. 4 displays the distribution of selected EVI phenological
parameters for classes in level 4.

Detecting planting date is an important challenge for remote sensing
in agriculture (Sakamoto et al., 2005), and can be applied for many
applications such as risk assessment for rural credit and yield estima-
tion. Analyzing the start of seasons, which is related to planting date,
we can observe that phenometrics are correctly describing the studied
crops. Soy planting dates varied between late September and the end of
November. Late planting dates in this case are observed especially when
soy is planted as single crop or in rotation with non-commercial sys-
tems. Usually, in double-cropping systems farmers use early varieties of
soy, in order to have time to plant the second crop season still during
the rainy periods (Cattelan and Dall’Agnol, 2018). This might be reason
for higher values of length of season for soy in single cropping systems
or with non-commercial crops.

Our phenometrics showed the potential for description of crop
phenology in the Cerrado, which is important from an agronomic per-
spective, for example, base values for winter and single crops are
considerably lower than other crops, which are possibly related to crops
as potatoes, that require intensive tillage operations for planting, while
other double-cropping systems are planted mostly without tillage. The
same is observed for single crops, largely represented by soy. Single
crops are usually planted through conventional systems, i.e. soil tillage.
This highlights the potential for using this information on the dis-
crimination of no-tillage agricultural areas, which is important for as-
sessments of long-term carbon dynamics in agricultural lands (Foley
et al., 2011).

Sugarcane crops constitute the Semi-perennial class; thus, higher
values were expected for length of season, since a normal sugarcane
cycle is about 9-18 months. By integrating different varieties of su-
garcane in our samples, the phenometrics showed start, end, and length
of season for this class varying widely. Despite this, variables generated
with polar representation, which does not depend on season detection,
and hierarchical classification efficiently separated semi-perennial
crops from annual crops. This can be also observed for the First crop /
Winter crop classes, once their EVI values are higher in the 4" quad-
rant, which represent the period from early August to mid-November
and June to October. The average season of the winter crops extend
from April to October, when the other classes are either still being
planted, greening-up or in senescence and being harvested.

3.3. Agricultural land classification

Table 1 shows the overall accuracy and the class fl-scores (see Ta-
bles B1, B2, B3 and B5 in Appendix for the complete confusion matrices
of each classification level and Fig. A5 shows boxplots of overall ac-
curacies of each model).

As we can see in Table 1 lower accuracies were found for classes
Soy/Millet and Soy/Sorghum. Fig. 5 displays predicted versus the ob-
served values for each class in level 4, using the model that achieved the
highest overall accuracy in the Monte Carlo simulation, in order to
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visualize accuracy and misclassifications.

Fig. 5 shows there was misclassification between these classes with
the Soy/Maize class. This can be explained by the fact of maize, millet
and sorghum plants have similar characteristics, as we observed by the
phenological profiles (Fig. 3). By analyzing confusion matrix, major
confusion is found between Soy / Sorghum and Soy / Maize, Soy /
Maize and Soy / Cotton. We can also observe misclassification between
Maize and Soy and Soy / Cotton with Crotalaria / Cotton. This mis-
classification problem was also reported by other authors (Arvor et al.,
2011; Picoli et al., 2017) and associated to spectral similarity between
classes. This shows opportunities on the use of methodologies that ex-
plore different spectral bands, such as the ones in red-edge domain as
provided by Sentinel-2.

The cropping patterns provide information about the spatial dis-
tribution of the croplands. Fig. 6 presents maps of regions Al and A2
obtained at level 2 and 4 of hierarchical classification. The water
bodies’ mask revealed some small dams, most of which are close to
center-pivot irrigated areas (see insets in Fig. 6).

The map of Fig. 6 showed that although single-cropping system is
not recommended, is still being widely used in this region, which agrees
with the results of Spera et al. (2016) which showed that, in 2015, 85%
of the large-scale agriculture in the Matopiba region was based on
single-cropping systems (Spera et al., 2016). The soils in this region are
sandier and less physically suitable than Mato Grosso, and the region
receives less rainfall; these aspects pose a challenge to adopting double-
cropping regimes (Spera, 2017). Double-cropping systems occur mostly
in irrigated areas or in the western side of the region Al, where pre-
cipitation is higher (Dourado et al., 2013). Perennial crops were
mapped in the northern study area, especially in irrigated areas. An
area in the eastern part of region A2 also has a large concentration of
perennial crops, which may be related to this region’s proximity to the
Sdo Francisco River, making it better for irrigation.

Fig. 7 presents map of region B (southeast of Mato Grosso) obtained
at levels 2 and 4 of the hierarchical classification. The map shows most
of the agricultural areas based on double-cropping systems of soy/
maize and soy/cotton, but some small areas of single cropping and non-
commercial crops remain, mostly in the northeast. We can also observe
semi-perennial crops in the south, which includes the municipality of
Jaciara, one of the biggest sugarcane producers of Mato Grosso State
(IBGE, 2016). This demonstrates the capacity of the proposed method
to map semi-perennial crops.

Fig. 8 presents the map of region C (northeast of Sdo Paulo), ob-
tained at levels 2 and 4. This map shows a great heterogeneity of
classes, because this is a smallholder agricultural zone, where farmers
grow different crops throughout the year.

Most of the agricultural areas are concentrated on western side of
the study area, which belongs to Cerrado biome and is characterized by
flat topography. This is one scenario of intensive agriculture, with
double-cropping systems using center-pivot irrigation, and different
crop systems are adopted within the same area. The map of Fig. 8 shows
what we expected by the field work, where we observed that there was
large areas of sugarcane and Soy/Potato crop rotations. Although the
high accuracies for the “Perennial crop” class, we could observe visually
that there was some misclassification errors where natural vegetation
were included. In general, we could observe that these misclassified
areas are located mostly near areas of transition to different biomes
(Caatinga and Atlantic Forest).

4. Conclusions and outlooks

The presented results show that phenometrics derived from dense
Landsat image time series can be used for describing phenological
patterns of complex and dynamic agricultural environment on the
Brazilian Cerrado and be used to map the distribution of crops over
these areas with accuracies above 90%. To our knowledge, this is the
first paper to provide a method for mapping agricultural land in the
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Table 1
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Overall accuracy and class wise fl-scores (within parentheses) obtained for the different hierarchical classification levels.

L1 (0.985) 1.2 (0.995 and 0.968)"

L3 (0.977) L4 (0.956)

Annual crop and Semi-perennial crop (0.988) Annual crop (0.996)

Semi-perennial crop (0.985)
Perennial crop (0.992)
Planted forest (0.893)
Pasture (0.969)

Forest (0.938)

Natural grasslands (0.939)
Savanna (0.924)

Perennial crop and Non-crop (0.983)

Soy / Maize (0.940)
Soy / Cotton (0.952)
Maize / Soy (0.993)
Maize / Carrot (0.994)
Maize / Onion (0.967)
Maize / Potato (0.997)
Maize / Beans (0.999)
Soy / Potato (0.9984)
Maize (0.9224)

Soy (0.976)

Cotton (0.946)

Soy / Millet (0.885)

Soy / Brachiaria (0.934)
Soy / Sorghum (0.827)
Millet / Cotton (0.933)
Crotalaria / Cotton (0.912)

First crop / Second crop (0.971)

First crop / Winter crop (0.998)

Single crop (0.991)

Single crop / Non-commercial crop (0.924)

* The overall accuracy of the model for the respective classification level.

** The overall accuracies of the model for the classification level of the respective hierarchical classes.

Brazilian Cerrado using Landsat-like data to consistently and re-
producibly achieve a detailed distinction between crops. This frame-
work can also be tested by integrating other satellite data such as
Sentinel 2-A and 2-B.

We also demonstrated the potential application of phenometrics to
describe phenological information about the major crops that Brazilian
farmers grow in the Cerrado biome. This provides information that can

predicted vs. observed in validation data

Maize -

Soy-

Cotton =
Crotalaria+Cotton -
Soy / Sorghum -
Soy / Millet-

Soy / Brachiaria -

a
8
) Millet / Cotton =
-
2
°
3 Soy / Potato-
o
'$
Maize / Potato -
SPd
.
Maize / Onion - t:?—r_-
o %
Maize / Carrot -
Maize / Beans -
Maize / Soy -
Soy / Cotton -
Soy / Maize -
@ & S @ & & © °
S 00{@ & & & K &° & '
\ I A\ \ \
) & o 2 N
o o K &4, &@ &dv @(b@ o

be useful for understanding agricultural practices and improve insights
for methods for detecting planting date and on the discrimination of no-
tillage agricultural areas, which is important for assessments of long-
term carbon dynamics in agricultural lands and understanding the ef-
fects of policy, trade, and global and technological change on food se-
curity.

The classification results showed that the classes of Soy / Sorghum

LandCover
Soy / Maize
Soy / Cotton

. Maize / Soy
Maize / Beans
Maize / Carrot

£] Maize / Onion

B8 Maize  Potato

E8 Soy/Potato

E$3 Millet/ Cotion
Soy / Brachiaria
Soy / Millet
Soy / Sorghum

B8 Crotalaria+Cotton
Cotton

£ soy

Maize

Observed Class

Fig. 5. Predicted versus the observed values for each class in level 4, based on the results obtained by the best model.
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Fig. 6. Map of regions Al and A2, obtained at level 2 and level 4 of the hierarchical classification approach. The insets (i), (ii), (iii) and (iv) show zoomed-in areas of
the maps.
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Fig. 7. Map of region B, obtained at level 2 and 4 of the hierarchical classification approach.
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Fig. 8. Map of region C, obtained at level 2 and 4 of the hierarchical classification.

and Soy / Maize still presented some confusion due to their spectral
temporal similarity, showing the need of more studies about meth-
odologies that explore different spectral bands, such as the ones in the
red-edge domain as provided by Sentinel-2 sensor.

A narrow interval between seasons is observed in rotation systems
with shorter cycle crops like common beans and non-commercial crops
such crotalaria and millet and resulted in challenging for the pheno-
logical characterization and classification. But more studies about the
impact of cloud covering in specific periods and how it is impacting the
fitting are necessary in these regions. This also highlights the potential
of SAR sensors, which are weather-independent and can enhance the
classification results for these crops. Variables generated with polar
representation, which does not depend on season detection, showed
great potential for classifying winter crops and semi-perennial crops
when combined to hierarchical classification.

For future works, we aim to apply this method to the entire
Brazilian Cerrado biome for long-term agricultural analysis in a prop-
erty level.
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