Jens Dudenhöffer Institut für Rebenzüchtung Geilweilerhof

Molekulare Untersuchung von Resistenzen gegen den Falschen Mehltau der Weinrebe (*Plasmopara viticola*)

Dissertationen aus dem Julius Kühn-Institut

Die Schriftenreihe "Dissertationen aus dem Julius Kühn-Institut" veröffentlicht Doktorarbeiten, die in enger Zusammenarbeit mit Universitäten an Instituten des Julius Kühn-Instituts entstanden sind

The publication series "Dissertationen aus dem Julius Kühn-Institut" publishes doctoral dissertations originating from research doctorates completed at the Julius Kühn-Institut (JKI) either in close collaboration with universities or as an outstanding independent work in the JKI research fields.

Der Vertrieb dieser Monographien erfolgt über den Buchhandel (Nachweis im Verzeichnis lieferbarer Bücher - VLB) und OPEN ACCESS im Internetangebot www.jki.bund.de Bereich Veröffentlichungen.

The monographs are distributed through the book trade (listed in German Books in Print - VLB) and OPEN ACCESS through the JKI website <u>www.jki.bund.de</u> (see Publications)

Wir unterstützen den offenen Zugang zu wissenschaftlichem Wissen. Die Dissertationen aus dem Julius Kühn-Institut erscheinen daher OPEN ACCESS. Alle Ausgaben stehen kostenfrei im Internet zur Verfügung: http://www.jki.bund.de Bereich Veröffentlichungen

We advocate open access to scientific knowledge. Dissertations from the Julius Kühn-Institut are therefore published open access. All issues are available free of charge under http://www.jki.bund.de (see Publications).

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation In der Deutschen Nationalbibliografie: detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Bibliographic information published by the Deutsche Nationalbibliothek (German National Library)

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.dnb.de.

ISBN 978-3-95547-030-2 DOI 10.5073/dissjki.2016.002

Herausgeber / Editor

Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Quedlinburg, Deutschland Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Quedlinburg, Germany

© Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen sowie der genannten Universität, 2016. Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersendung, des Nachdrucks, des Vortrages, der Entnahme von Abbildungen, der Funksendung, der Wiedergabe auf fotomechanischem oder ähnlichem Wege und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Molekulare Untersuchung von Resistenzen gegen den Falschen Mehltau der Weinrebe (*Plasmopara viticola*)

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN

(Dr. rer. nat.)

von der KIT-Fakultät für Chemie und Biowissenschaften

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Dipl.-Biol. Jens Dudenhöffer

aus

Kandel

KIT-Dekan: Prof. Dr. Willem Klopper Referent: apl. Prof. Dr. Eva Zyprian Korreferent: Prof. Dr. Peter Nick Tag der mündlichen Prüfung: 12.02.2016

Die Durchführung dieser Arbeit erfolgte am Julius Kühn-Institut (JKI) – Bundesforschungsinstitut für Kulturpflanzen, Institut für Rebenzüchtung Geilweilerhof in Siebeldingen und wurde durch den Europäischen Fonds für Regionalentwicklung (EFRE) im Rahmen des Programmes INTERREG IV Oberrhein der Europäischen Union (EU) über das Projekt "BACCHUS – Grenzüberschreitendes Netzwerk für Forschung und Wissenstransfer für nachhaltigen Weinbau" sowie durch das EU-Verbundprojekt "INNO-VINE" finanziell gefördert.

Teile dieser Arbeit wurden bereits in der Fachzeitschrift *Acta Horticulturae (Proceedings of the Eleventh International Conference on Grapevine Breeding and Genetics (Acta Horticulturae).* **1082**: 69-72) unter dem Titel "Sequence Analysis of Loci *Rpv10* and *Rpv3* for Resistance against Grapevine Downy Mildew (*Plasmopara viticola*)" sowie im Deutschen Weinbau Jahrbuch 2015 (*Deutsches Weinbau Jahrbuch.* **66**:170-174) unter dem Titel "Vergleichende Charakterisierung der Resistenz-Genorte *Rpv10* und *Rpv3* gegen den Falschen Mehltau der Weinrebe" veröffentlicht.

Inhaltsverzeichnis

Abbil	dungsverzeichnis	V
Tabel	llenverzeichnis	IX
Abkü	rzungsverzeichnis	XII
Zusar	mmenfassung	1
1.	Einleitung	2
1.1.	Resistenzzüchtung bei der Weinrebe	2
1.2.	Der Falsche Mehltau der Weinrebe (Plasmopara viticola)	7
1.3.	Pathogenabwehr bei Pflanzen	13
	1.3.1. Basale Abwehr	14
	1.3.2. Pathogenerkennung und induzierte Abwehr	15
1.4.	Genetische Kartierung von Resistenzloci	
	1.4.1. QTL-Analyse	
	1.4.2. Der Resistenzlocus <i>Rpv3</i>	
	1.4.3. Der Resistenzlocus <i>Rpv10</i>	23
1.5.	Zielsetzung der Arbeit	
2.	Material und Methoden	
2.1.	Material	
	2.1.1. Geräte	
	2.1.2. Software	
	2.1.3. Chemikalien und Verbrauchsmaterial	
	2.1.4. Pflanzenmaterial	39
	2.1.4.1. Die Kreuzungspopulation GF.GA-52-42 x 'Solaris'	39
	2.1.4.2. Ausgewählte Vitis-Arten und -Sorten	40
	2.1.5. Sporenmaterial von Plasmopara viticola	41
2.2.	Methoden	41
	2.2.1. Inokulationsversuche mit <i>Plasmopara viticola</i>	41
	2.2.2. DNA-Extraktion	
	2.2.3. Polymerase-Kettenreaktion und Agarose-Gelelektrophorese	
	2.2.4. Klonierung von PCR-Amplifikaten und "Primer Walking"	
	2.2.5. Sequenzierung einiger Klone aus der BAC-Bank von 'Solaris'	45
	2.2.6. RNA-Extraktion und fluorimetrische Vermessung	49

	2.2.7. cDNA-Synthese und quantitative Real-Time-PCR (qRT-PCR)	50
	2.2.8. RNA-Seq-Analyse	52
	2.2.9. Genexpressionsanalyse über qRT-PCR	57
3.	Ergebnisse	65
3.1.	Sequenzierung des <i>Rpv10</i> -Locus	65
	3.1.1. Darstellung über Amplikon-Sequenzierung	65
	3.1.2. Lückenschluss durch Sequenzierung von BAC-Klonen	69
3.2.	Identifikation von Kandidatengenen im <i>Rpv10</i> -Locus	72
3.3.	Darstellung von Kandidatengenen aus dem Rpv3-Locus	77
3.4.	Vergleichende RNA-Seq-Analyse	79
	3.4.1. Darstellung der Expressionsänderung in "Heatmaps"	82
	3.4.2. Darstellung der Expressionsänderung in "Clustern"	85
	3.4.3. Darstellung der Expressionsänderung in GO-Klassen	92
3.5.	Validierende Genexpressionsanalyse Resistenz-korrelierender Kandidatengene über qRT-PCR	09
4.	Diskussion	21
4.1.	Sequenzierung des <i>Rpv10</i> -Locus und Identifikation von Kandidatengenen 1	21
4.2.	Darstellung von Kandidatengenen aus dem Rpv3-Locus	25
4.3.	Vergleichende RNA-Seq-Analyse1	26
4.4.	Validierende Genexpressionsanalyse Resistenz-korrelierender Kandidatengene über qRT-PCR	29
5.	Schlussfolgerung und Ausblick1	35
Literaturverzeichnis		
VeröffentlichungenXL		
Anha	ngXI	II

Abbildungsverzeichnis

Abbildung 1: Schadbilder bedeutender Rebpathogene: Symptome des Echten Mehltaus
auf Blatt (a) und Beeren (b), Blattgallen der Reblaus (c), Nahaufnahme einer
Blattgalle mit Reblaus und Eiern (d), Symptome des Falschen Mehltaus auf
Blättern (e), Nahaufnahme der Sporangienträger von Plasmopara viticola (f), mit
Graufäule befallene Trauben (g) und Beeren (h) (Quelle: Bildarchiv JKI, IRZ
Geilweilerhof, Siebeldingen)
Abbildung 2: Symptome der Schwarzfäule auf Blatt (a) und Beere (b) (Quelle:
Dissertation Friederike Rex 2012
Abbildung 3: Befallssymptome von Plasmopara viticola, Ölflecken auf der
Blattoberseite (a), Sporangienträgerteppich auf Blattunterseite (b),
Sporangienträger auf Blattunterseite (c), befallene Beeren (d) (Quelle: Bildarchiv
JKI, IRZ Geilweilerhof, Siebeldingen)
Abbildung 4: Elektronenmikroskopische Aufnahme einer Zoospore, aus der ein
Infektionsschlauch in eine Spaltöffnung wächst (Quelle: Bildarchiv JKI, IRZ
Geilweilerhof, Siebeldingen)
Abbildung 5: Elektronenmikroskopische Aufnahmen von aus Stoma wachsenden
Sporangienträgern (Quelle: Bildarchiv JKI, IRZ Geilweilerhof, Siebeldingen) 10
Abbildung 6: Infektionszyklus von Plasmopara viticola. Außen (rot) ist der sexuelle,
innen (grün) der asexuelle Lebenszyklus dargestellt (Quelle: Gobbin 2004) 11
Abbildung 7: Gen-für-Gen-Modell der Pflanzen-Pathogen-Interaktion. Bei einer
kompatiblen Interaktion zwischen Resistenz-Protein (R-Gen) und
Pathogeneffektor/Elicitor (Avirulenz-Gen, Avr-Gen) kommt es zur
Pathogenresistenz mittels Hypersensitiver Antwort (HR). (Quelle: Gururani et al.
2012)
Abbildung 8: "Zig-Zag"-Modell der pflanzlichen Immunantwort. Phase 1: Pflanze
detektiert PAMPs über PRRs und PAMP-getriggerte Immunantwort (PTI) wird
ausgelöst. Phase 2: Effektoren des Pathogens hemmen PTI und es kommt zur
Effektor-getriggerten Anfälligkeit (ETS). Phase 3: Pathogeneffektor Avr (rot)
wird von NBS-LRR-Protein (R) detektiert und löst Effektor-getriggerte
Immunantwort (ETI) aus. Phase 4: Pathogeneffektoren haben roten Effektor
verloren und neue Effektoren über bspw. horizontalen Gentransfer erhalten,
sodass ETI unterdrückt werden kann. (Quelle: Jones & Dangl 2006) 19
Abbildung 9: Trauben der Eltern der Kreuzungspopulation 'Regent' x 'Lemberger', links:
'Regent', rechts: 'Lemberger' (Quelle: Bildarchiv JKI, IRZ Geilweilerhof,
Siebeldingen)
Abbildung 10: Trauben der Eltern der Kreuzungspopulation GF.GA-52-42 x 'Solaris',
links: GF.GA-52-42 (Quelle: Bildarchiv JKI, IRZ Geilweilerhof, Siebeldingen),
rechts: 'Solaris' (Quelle: Staatliches Weinbauinstitut Freiburg)
Abbildung 11: Quantitative Faktoren der Merkmalsausprägung (LOD) der P. viticola-
Resistenz auf LG 09 der integrierten Karte. Markerabstände in cM. IM (grün,

Quadrate) und MQM (rot, Kreise) mit Angabe der 1-LOD- (Box) und 2-LOD-
(Linie) Konfidenzintervalle (Quelle: Schwander 2011)
Abbildung 12: Quantitative Faktoren der Merkmalsausprägung (LOD) der P. viticola-
Resistenz auf LG 18 der integrierten Karte. Markerabstände in cM. IM (grün,
Ouadrate) und MOM (rot. Kreise) mit Angabe der 1-LOD- (Box) und 2-LOD
(Quelle: Schwander 2011)
Abbildung 13: Sämlinge der Kreuzungspopulation GF GA-52-42 x 'Solaris' im
Gewächshaus (Quelle: Florian Schwander) 40
Abbildung 14: Versuchsnflanzen in der Klimakammer vor der Inokulation mit dem
Pathagen
Abbildung 15: 7ur Vlaniorung vorwandeter Valter nIET1 2/blunt (Qualle: Formantee)
Abbildung 15. Zur Kiomerung verwendeter Vektor prE 11.2/biunt (Quene. Fermentas)
All iller 16 Colored to Konstaltion to compare the DAC Vilter CUCIDACI
Abbildung 16: Schema der Konstruktion des verwendeten BAC-Vektors pCUGIBACI
aus pIndigoBAC536 und pGEM-4Z (Quelle: Luo <i>et al.</i> 2001)
Abbildung 1/: Biomark ^{IM} HD zur Genexpressionsanalyse im Hochdurchsatz
Abbildung 18: 96.96 Dynamic Array [™] Chip für insgesamt 9.216 Einzelreaktionen 58
Abbildung 19: IFC Controller HX zur Vorbereitung des 96.96 Dynamic Array [™] Chip
Abbildung 20: Pipettierschema Beladung des 96.96 Dynamic Array [™] Chip
Abbildung 21: Übersicht der aus den Einzelamplikons assemblierten Contigs. Oben:
Contig A (21.357 bp), unten: Contig B (44.433 bp). In Rot sind Bereiche
dargestellt, die nur durch eine Sequenz gebildet werden. Blaue Bereiche
kennzeichnen eine Überlappung zweier Sequenzen67
Abbildung 22: Oben: Mapping der sequenzierten PCR-Amplikons gegen den Rpv10-
homologen Bereich im Referenzgenom PN40024 (12X) mit mindestens 70 %
Sequenzhomologie, die orangenen Rechtecke kennzeichnen die beiden Lücken;
Unten: Mapping der sequenzierten PCR-Amplikons gegen den Bereich von <i>Rpv10</i>
im Referenzgenom PN40024 (12X) mit mindestens 90 % Sequenzhomologie; die
schwarzen Pfeile markieren die Lage der SSR-Marker GF09-65, GF09-46 und
GF09-47, mit denen positive BAC-Klone aus der BAC-Bank von 'Solaris'
identifiziert wurden. Der Marker GF09-65 liegt nicht innerhalb sondern knapp vor
dem 1 Amplikon des <i>Rnv10</i> -Locus Blaue Bereiche kennzeichnen eine
Überlannung zweier Sequenzen 68
Abbildung 22: A geomblierung der jeweile zwei PAC Klone mit registentem (oben) und
Additidung 25. Assemblierung der jeweins zwei BAC-Kione init fesistentein (öben) und
anianigem (unten) Aner von <i>Rpv10</i> aus Solaris. Blaue Bereiche kennzeichnen
eine Überlappung zweier Sequenzen
Abbildung 24: Assemblierung von Contig A und Contig B sowie dem Amplikon LR-
Rpv10_09_reverse mit dem resistenten Allel (gebildet aus den BAC-Klonen
17M19 und 19A23) von <i>Rpv10</i> aus 'Solaris'. Blaue Bereiche kennzeichnen eine
Uberlappung zweier Sequenzen
Abbildung 25: Alignment des eingegrenzten resistenten (untere Sequenz) und
eingegrenzten anfälligen Allels (obere Sequenz) von Rpv10 aus 'Solaris'. Rote
Bereiche kennzeichnen Unterschiede zwischen den Allelen. Die Lage der SSR-
Marker GE00.46 und GE00.47 jet vormarkt (Grou) 71

Abbildung 26: Alignment des eingegrenzten resistenten (untere Sequenz) und
eingegrenzten anfälligen Allels (obere Sequenz) von Rpv10 aus 'Solaris'. Rote
Bereiche kennzeichnen Unterschiede zwischen den Allelen. In Blau sind die
durch FGENESH vorhergesagten Kandidatengene eingezeichnet. Die Lage der
SSR-Marker GF09-46 und GF09-47 ist ebenfalls vermerkt (Grau)
Abbildung 27: Gesamtzahl an DEG der drei Genotypen im Vergleich 0 hpi zu 6 hpi
(Fold change > 2; p-value < 0.05), Blau: 2008-059-020 ($Rpv - / Rpv$ -), Gelb:
2008-059-121 (<i>Rpv3</i> / <i>Rpv10</i>), Grün: 2011-003-013 (<i>Rpv10</i> / <i>Rpv10</i>)
Abbildung 28: Anzahl hochregulierter (links) und herabregulierter (rechts) DEG der
drei Genotypen im Vergleich 0 hpi zu 6 hpi (Fold change > 2 : n-value < 0.05)
Blau: 2008-059-020 ($Rmv - / Rmv - $) Gelb: 2008-059-121 ($Rmv3 / Rmv10$) Grün:
$2011_{-}003_{-}013 (Rm/10 / Rm/10) $ 82
Abbildung 29: Heatman der Expressionsänderung der DEG des Genotyns 2011-003-013
($R_{mv}10/R_{mv}10$) im Vergleich 0 hni zu 6 hni Fold change > 2: n-value < 0.05 Die
log10-transformierten Expressionswerte reichen von -3.483 (Blau) bis 14.211
(P ot)
Abbildung 20: Hastmans der Expressionsänderung der DEG der Genetumen 2008 050
Additional solution of the end o
(1000 (kpv - 7 kpv -)) (oben) and $2008-059-121$ (kpv5 7 kpv10) (anten) in vergeneric 0 kmi zu 6 kmi. Fold okongo > 2; n volue < 0.05. Dio log 10 transformierten
0 hpi zu 0 hpi, Fold change > 2 , p-value < 0.05 . Die log10-transformierten
Expressions werte reichen für 2008-059-020 von -0.717 (Blau) bis 4.575 (Rot) und 1000
Von -5,222 (Blau) bis 10,09 (Rot) lur 2008-059-121.
Abbildung 31: Durch Clusteranalyse mit der CLC Genomics workbench erstelltes
Verlaufsdiagramm der Expressionsanderung. Auf der y-Achse sind die
transformierten Expressionswerte und auf der x-Achse jeweils die drei
biologischen Replikate des Genotyps ohne <i>Rpv</i> -Locus zum Zeitpunkt 0 hpi (links)
und 6 hpi (rechts) aufgetragen
Abbildung 32: Ubersicht der GO-Klassen mit den meisten enthaltenen DEG, die
spezifisch für den Genotyp 2008-059-020 (<i>Rpv</i> - / <i>Rpv</i> -) sind. Dargestellt sind nur
GO-Klassen mit mindestens fünf VIT-Annotationen
Abbildung 33: Ubersicht der GO-Klassen mit den meisten DEG, die spezifisch für den
Genotyp 2008-059-121 (<i>Rpv3 / Rpv10</i>) sind. Dargestellt sind nur GO-Klassen mit
mindestens fünf VIT-Annotationen
Abbildung 34: Übersicht der GO-Klassen mit den meisten DEG, die spezifisch für den
Genotyp 2011-003-013 (Rpv10 / Rpv10) sind. Dargestellt sind nur GO-Klassen
mit mindestens fünf VIT-Annotationen
Abbildung 35: Übersicht der GO-Klassen mit den meisten DEG, die gemeinsam in den
beiden resistenten Genotypen 2011-003-013 (Rpv10 / Rpv10) und 2008-059-121
(Rpv3 / Rpv10) differentiell exprimiert wurden. Dargestellt sind nur GO-Klassen
mit mindestens drei VIT-Annotationen96
Abbildung 36: Gesamtzahl an unterschiedlichen GO-Klassen der DEG der drei
Genotypen im Vergleich 0 hpi zu 6 hpi (Fold change > 2; p-value < 0,05), Blau:
2008-059-020 (<i>Rpv</i> - / <i>Rpv</i> -), Gelb: 2008-059-121 (<i>Rpv3</i> / <i>Rpv10</i>), Grün: 2011-
003-013 (<i>Rpv10</i> / <i>Rpv10</i>)

- Abbildung 37: Alignment des resistenten (untere Sequenz) und anfälligen Allels (obere Sequenz) des RPS5-ähnlichen Resistenzproteins aus dem *Rpv10*-Locus von 'Solaris'. Rote Bereiche kennzeichnen Unterschiede zwischen den Allelen. 122

Tabellenverzeichnis

Tabelle 1: Anbauflächen und Menge eingesetzter Fungizide in den landwirtschaftlichen
Hauptkulturen in der Europäischen Union (EU-15). Angegeben sind die
Mittelwerte der Jahre 1999 bis 2003 (Quelle: Eurostat 2007) 4
Tabelle 2: Auswahl wichtiger Eigenschaften für die Rebenzüchtung (Quelle: Vitis
International Variety Catalogue (VIVC), Stand: 04.05.2015)
Tabelle 3: Taxonomie von Plasmopara viticola nach Species Fungorum
(www.speciesfungorum.org)7
Tabelle 4: Parameter für die Inokulationsversuche mit Plasmopara viticola
Tabelle 5: Zur Auswahl der BAC-Klone verwendete SSR-Marker (Schwander 2011). 47
Tabelle 6: Ansatz der Multiplex-PCR zur Überprüfung der BAC-Klone 47
Tabelle 7: Thermocycler-Programm der Multiplex-PCR
Tabelle 8: Ansatz cDNA-Synthese 50
Tabelle 9: Thermocycler-Programm der cDNA-Synthese 51
Tabelle 10: Getestete "Housekeeping"-Gene (Selim et al. 2012) 51
Tabelle 11: Ansatz qRT-PCR 52
Tabelle 12: Thermocycler-Programm der qRT-PCR
Tabelle 13: Ansatz STA-PCR
Tabelle 14: Thermocycler-Programm der STA-PCR 59
Tabelle 15: Ansatz Aufreinigung mit Exonuclease I
Tabelle 16: Inkubation zur Aufreinigung mit Exonuclease I
Tabelle 17: Ansatz aufgereinigte STA-PCR mit EvaGreen® 60
Tabelle 18: Ansatz Stock-Lösung je Primerpaar 61
Tabelle 19: Gewähltes Programm BioMark [™] HD63
Tabelle 20: Übersicht der sequenzierten Amplifikate aus dem Bereich von Rpv10 66
Tabelle 21: Übersicht der vier sequenzierten BAC-Klone. Je zwei tragen das resistente
bzw. das anfällige Allel des <i>Rpv10</i> -Locus aus 'Solaris'
Tabelle 22: Vergleich der Sequenzlänge der beiden aus BAC-Klonen und PCR-
Amplikons gebildeten Allele mit der eingegrenzten Region von Rpv10. Die
eingegrenzte Region entspricht dem Bereich von Amplikon LR-
Rpv10_01_reverse bis zu Amplikon LR-Rpv10_19b_reverse
Tabelle 23: Vergleich der im anfälligen und resistenten Allel des eingegrenzten <i>Rpv10</i> -
Locus liegenden Gene nach Blastx-Abgleich. Die Exonzahl sowie die Gesamt-
Länge der Exons stammt aus der Untersuchung mit FGENESH. * = Sequenz des
Proteins war nicht vollständig im eingegrenzten Bereich von <i>Rpv10</i> . Die
Vervollständigung erfolgte mit Sequenzinformation aus den BAC-Klonen
(anfälliges Allel) sowie aus der RNA-Sequenzierung (resistentes Allel) (siehe
Abschnitt 3.4 Vergleichende RNA-Seq-Analyse)
Tabelle 24: Ubersicht über die Proteindomänen der vorhergesagten Gene im <i>Rpv10</i> -
Locus und deren Funktion (soweit bereits bekannt) (Quelle: NCBI Conserved
Domain Search)75

Tabelle 25: Oligonukleotidpaare zur Genexpressionsanalyse der interessanten
Kandidatengene aus dem <i>Rpv10</i> -Locus
Tabelle 26: Vergleich des Blastx-Abgleichs der Kandidatengene im <i>Rpv3</i> -Locus nach
Erweiterung der Contigs aus 'Villard blanc' mit NGS-Daten von 'Regent'. Die
Exonzahl sowie die Länge der Exons in Summe stammt aus der Untersuchung mit
FGENESH
Tabelle 27: Oligonukleotidpaar zur Genexpressionsanalyse des Kandidatengens 18 aus
dem <i>Rpv3</i> -Locus
Tabelle 28: Statistik der bei der RNA-Sequenzierung generierten "paired-end reads". 79
Tabelle 29: Vergleich der DEG der drei Genotypen 80
Tabelle 30: Anteil der hoch- bzw. herabregulierten DEG an der Gesamtzahl DEG des
jeweiligen Genotyps
Tabelle 31: Cluster der Expressionsverläufe der DEG. Je Genotyp wurden fünf Cluster
errechnet Der auf der v-Achse aufgetragene Bereich der log10-transformierten
Expressionsänderung ist über dem jeweiligen Cluster angegeben. Anhand des
Histogramms rechts daneben lässt sich die prozentuale Verteilung der GO-
Vlaggen auf die Cone des Clusters ablegen. Die CO Klaggen unrden auferund der
Klassell auf die Gene des Clusters ablesell. Die GO-Klassell wurden aufgrund der
moglichen Beteiligung an der Resistenzantwort gegen Pathogene ausgewahlt 86
Tabelle 32: Übersicht aller gemeinsam in den resistenten Genotypen 2008-059-121
(Rpv3 / Rpv10) und 2011-003-013 $(Rpv10 / Rpv10)$ hochregulierten DEG.
Zusätzlich ist jeweils das annotierte Protein (Blastx) mit der größten Ahnlichkeit
angegeben
Tabelle 33: Zusammenstellung aller DEG, für die Oligonukleotidpaare zur
Genexpressionsanalyse entwickelt wurden. Zusätzlich zu den für die Genotypen
spezifischen Genen, wurden auch für die gemeinsam in allen Genotypen
exprimierten Gene Oligonukleotidpaare erstellt
Tabelle 34: Proben des Inokulationsversuchs für die Genexpressionsanalyse der DEG
Tabelle 35: Ergebnisse der validierenden Genexpressionsanalyse durch gRT-PCR der
Kandidatengene aus dem <i>Rpv10</i> -Locus, 100 % bildet den Nullpunkt und bedeutet
keine Expressionsänderung. Die aufgetragenen Werte ergaben sich aus der
Differenz zwischen den Expressionswerten der <i>P. viticola</i> -Inokulation und der
Behandlung mit Wasser als Kontrolle. Die Legende befindet sich am Anfang der
Taballa 2008 050 121 träst Drug 2 und Drug 10, 2011 002, 012 träst Drug 10
112
nomozygot. 2008-059-020 besitzt keinen der beiden Loci
Tabelle 36: Ergebnisse der validierenden Genexpressionsanalyse durch qRT-PCR des
Kandidatengens aus dem <i>Rpv3</i> -Locus. 100 % bildet den Nullpunkt und bedeutet
keine Expressionsänderung. Die aufgetragenen Werte ergaben sich aus der
Differenz zwischen den Expressionswerten der <i>P. viticola</i> -Inokulation und der
Behandlung mit Wasser als Kontrolle. Die Legende befindet sich am Anfang der
Tabelle. 2008-059-121 trägt <i>Rpv3</i> und <i>Rpv10</i> . 2011-003-013 trägt <i>Rpv10</i>
homozygot. 2008-059-020 besitzt keinen der beiden Loci 115
Tabelle 37: Ergebnisse der validierenden Genexpressionsanalyse durch qRT-PCR von
DEG aus der RNA-Seq-Analyse. 100 % bildet den Nullpunkt und bedeutet keine

Expressionsänderung. Die aufgetragenen Werte ergaben sich aus der Differenz
zwischen den Expressionswerten der P. viticola-Inokulation und der Behandlung
mit Wasser als Kontrolle. Die Legende befindet sich am Anfang der Tabelle.
2008-059-121 trägt <i>Rpv3</i> und <i>Rpv10</i> . 2011-003-013 trägt <i>Rpv10</i> homozygot.
2008-059-020 besitzt keinen der beiden Loci
Tabelle 38: Primerpaare zur Darstellung des Rpv10-Locus über Amplikon-
Sequenzierung (basierend auf PN40024 12X) XLII
Tabelle 39: Primerpaare zur Darstellung des Rpv10-Locus über Amplikon-
Sequenzierung nach 1. Sequenzierung (basierend auf PN40024 12X)XLIII
Tabelle 40: Primerpaare zur Darstellung des Rpv10-Locus über Amplikon-
Sequenzierung nach 1. Sequenzierung (basierend auf für <i>Rpv10</i> homozygotem
Selbstungsnachkommen von 'Solaris')XLIII
Tabelle 41: Oligonukleotidpaare aus Kandidatengenen für <i>Rpv10</i> (Nr. 2, 3, 4, 6) und
<i>Rpv3</i> (Nr. 5)XLV
Tabelle 42: Oligonukleotidpaare aus DEG spezifisch für Genotyp 2011-003-013 (Rpv10
/ <i>Rpv10</i>)
Tabelle 43: Oligonukleotidpaare aus DEG spezifisch für Genotyp 2008-059-020 (Rpv - /
<i>Rpv</i> -)XLVI
Tabelle 44: Oligonukleotidpaare aus DEG spezifisch für Genotyp 2008-059-121 (Rpv3 /
Rpv10)XLVII
Tabelle 45: Oligonukleotidpaare aus gemeinsamen DEG aller drei GenotypenXLIX
Tabelle 46: Ergebnisse der validierenden Genexpressionsanalyse über qRT-PCR von
DEG aus der RNA-Seq-Analyse. 100 % bildet den Nullpunkt und bedeutet keine
Expressionsänderung. Die aufgetragenen Werte ergaben sich aus der Differenz
zwischen den Expressionswerten der P. viticola-Inokulation und der Behandlung
mit Wasser als Kontrolle. Die Legende befindet sich am Anfang der Tabelle.
2008-059-121 trägt <i>Rpv3</i> und <i>Rpv10</i> . 2011-003-013 trägt <i>Rpv10</i> homozygot.
2008-059-020 besitzt keinen der beiden Loci. * = y-Achse ist logarithmisch
skaliertLI

Abkürzungsverzeichnis

ACT1	<u>Act</u> in 1
Avr	Avirulenz
BAC	Bacterial Artificial Chromosome
BBCH	Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie
BLAST	Basic Local Alignment Search Tool
BLAT	<u>B</u> LAST- <u>l</u> ike <u>A</u> lignment <u>T</u> ool
Bp	<u>B</u> ase <u>p</u> airs
CC	<u>C</u> oiled- <u>C</u> oil domain
CED-4	<u>Caenorhabditis elegans death-4</u> protein
CFU	<u>C</u> olony <u>F</u> orming <u>U</u> nit
сM	<u>C</u> enti <u>m</u> organ
Ct	Cycle threshold
DEG	Differentiell exprimierte Gene
DEPC	<u>Die</u> thyl <u>p</u> yro <u>c</u> arbonat
DLG	Deutsche Landwirtschafts-Gesellschaft e.V.
DLR	<u>D</u> ienstleistungszentrum <u>L</u> ändlicher <u>R</u> aum
EDTA	<u>E</u> thylen <u>d</u> iamin <u>t</u> etra <u>a</u> cetat
ERF	Ethylene-responsive transcription factor
ETI	Effector-triggered immunity
(6-)FAM	6-Carboxyfluorescein
FDW	Forschungsring des Deutschen Weinbaus
FPKM	<u>F</u> ragmente <u>p</u> ro <u>K</u> ilobase Exonsequenz pro <u>M</u> illion kartierter Reads
GAPDH	<u>G</u> lycerin <u>a</u> ldehyd-3- <u>p</u> hosphat- <u>D</u> e <u>h</u> ydrogenase
GF/Gf	<u>G</u> eilweilerho <u>f</u>
GFP	<u>G</u> emeinschaft zur <u>F</u> örderung der privaten deutschen <u>P</u> flanzenzüchtung
	e.V.
GO	<u>G</u> ene <u>O</u> ntology
GPZ	<u>G</u> esellschaft <u>f</u> ür <u>P</u> flanzenzüchtung e.V.
HEX	<u>Hex</u> achlorofluorescein
HKG	<u>H</u> ouse <u>k</u> eeping- <u>G</u> en
hpi	hours post inoculation

HR	Hypersensitive Reaktion		
IFC	Integrated fluidic circuit		
IM	<u>Interval Mapping</u>		
IRZ	Institut für <u>R</u> eben <u>z</u> üchtung		
JKI	<u>J</u> ulius <u>K</u> ühn- <u>I</u> nstitut		
LG	<u>L</u> inkage <u>G</u> roup		
LOD	Logarithmic Odds Ratio		
LRR	<u>L</u> eucine- <u>r</u> ich <u>r</u> epeat		
MAMP	<u>M</u> icrobe- <u>a</u> ssociated <u>m</u> olecular <u>p</u> attern		
МАРК	Mitogen-activated protein kinase		
MAS	<u>Marker-assisted</u> selection		
MOPS	3-(N- <u>Mo</u> rpholino) <u>p</u> ropan <u>s</u> ulfonsäure		
MQM	<u>M</u> ultiple <u>Q</u> TL <u>M</u> apping		
MTI	<u>M</u> AMP- <u>t</u> riggered <u>i</u> mmunity		
NB-ARC	<u>N</u> ucleotide- <u>b</u> inding adaptor shared by <u>A</u> PAF-1, <u>R</u> proteins, and <u>C</u> ED-4		
NBS	<u>N</u> ucleotide- <u>b</u> inding <u>s</u> ite		
NCBI	National Center for Biotechnology Information		
NRC	<u>N</u> o <u>R</u> eagent <u>C</u> ontrol		
NTC	<u>N</u> o <u>T</u> emplate <u>C</u> ontrol		
OD	Optische Dichte		
ORF	Open <u>R</u> eading <u>F</u> rame		
OIV	Organisation Internationale de la Vigne et du Vin		
PAMP	Pathogen-associated molecular pattern		
PANTHER	Protein Analysis Through Evolutionary Relationships		
PCD	<u>P</u> rogrammed <u>c</u> ell- <u>d</u> eath		
PR	Pathogenesis-related		
PRR	Pattern recognition receptor		
PTI	PAMP-triggered immunity		
PVPP	<u>P</u> oly <u>v</u> inylpolypyrrolidon		
PVP40	<u>P</u> oly <u>v</u> inyl <u>p</u> yrrolidon <u>40</u>		
QTL	Quantitative Trait Locus		
R-Gen	<u>R</u> esistenz- <u>Gen</u>		
Ren	<u>R</u> esistance to <u>Erysiphe necator</u>		
RGA	<u>R</u> esistenzgen- <u>A</u> naloga		

RLK	<u>R</u> eceptor- <u>l</u> ike <u>k</u> inase
RLP	<u>R</u> eceptor- <u>l</u> ike <u>p</u> rotein
ROS	<u>R</u> eactive <u>o</u> xygen <u>species</u>
RPKM	<u>R</u> eads <u>pro K</u> ilobase Exonsequenz pro <u>M</u> illion kartierter Reads
rpm	<u>r</u> evolutions <u>per minute</u>
Rpv	<u>R</u> esistance to <u>Plasmopara viticola</u>
RT	<u>R</u> everse <u>T</u> ranskriptase
SAND	SAND-family protein
SAR	Systemic acquired resistance
SDS	Sodium Dodecyl Sulfate (Natriumdodecylsulfat)
SNP	Single Nucleotide Polymorphism
Ssp.	<u>S</u> ub <u>sp</u> ecies
SSR	Simple Sequence Repeats
STA	Specific Target Amplification
T _a	Annealing-Temperatur
T_m	Schmelztemperatur
TAE	<u>T</u> RIS/ <u>A</u> cetat/ <u>E</u> DTA
TAMRA	<u>T</u> etr <u>am</u> ethyl <u>r</u> hod <u>a</u> min
TE	<u>T</u> RIS/ <u>E</u> DTA
TfB	<u>T</u> rans <u>f</u> ormation <u>B</u> uffer
TIR	<u>T</u> oll/ <u>i</u> nterleukin-1 <u>r</u> eceptor-like domain
T _m	Schmelztemperatur eines Primerpaars
TM-LRR	<u>T</u> rans <u>m</u> embrane- <u>L</u> eucine <u>r</u> ich <u>r</u> epeat
TRIS	Tris(hydroxymethyl)-aminomethan
UBQ	<u>Ubiq</u> uitin C
U	<u>U</u> nit
VIVC	<u>Vitis</u> International Variety Catalogue
VMC	<u>Vitis M</u> icrosatellite <u>C</u> onsortium

Zusammenfassung

In dieser Arbeit wurde versucht, die durch die Resistenzloci Rpv3- und Rpv10vermittelten Resistenzmechanismen in der Weinrebe nach Inokulation mit P. viticola zu analysieren. Durch Sequenzierung von PCR-Amplikons eines für Rpv10 homozygotem Selbstungsnachkommen von 'Solaris' und BAC-Klonen aus 'Solaris' konnten das resistente (83.656 bp) und das anfällige (81.508 bp) Allel von Rpv10 vollständig dargestellt werden. Zwischen den beiden Allelen existieren neben einem Längenunterschied von rund 2.100 bp auch deutliche Unterschiede innerhalb der Nukleotidsequenzen. Im Bereich von Rpv10 liegen neun Gene, die zwischen den beiden Allelen Sequenzunterscheide aufweisen, welche vermutlich im anfälligen Allel zum Verlust der Resistenz führen. Fünf dieser Gene zeigen Ähnlichkeit zu zwei Ankyrin-haltigen Proteinen, einem Ethylen-responsiven Transkriptionsfaktor (ERF), einem Protein ähnlich dem Resistenzprotein RPS5 aus Vitis labrusca und einem Aquaporin. Weitere Kandidatengene für die durch Rpv10 und Rpv3 vermittelte Resistenz konnten durch RNA-Seq-Analyse identifiziert werden. Es konnte gezeigt werden, dass im anfälligen Genotyp ohne Resistenzloci zwar vermutlich Pathogene durch Rezeptorproteine detektiert werden, es aber danach zu keiner Signalweiterleitung und Expression weiterer Resistenzproteine kommt.

Mithilfe der Genexpressionsanalyse dreier Genotypen mit unterschiedlichen Kombinationen von *Rpv3* und *Rpv10* zu verschiedenen Zeitpunkten nach Inokulation wurden Gene detektiert, die spezifisch für die durch *Rpv3* und *Rpv10* vermittelte Resistenz gegen *P. viticola* sind. Dabei zeigte sich, dass typische Rezeptorproteine wie z. B. das RPS5-ähnliche Rezeptorprotein vom Typ CC-NBS-LRR aus *Rpv10* nach Pathogeninokulation keine besonders gesteigerte Expression zeigen. Dennoch ist die Detektion und Signalweiterleitung durch ein funktionelles Rezeptorprotein entscheidend für eine erfolgreiche Resistenzantwort. Die weiteren an der Resistenzantwort beteiligten Elemente (v. a. Proteinkinasen, Transkriptionsfaktoren und Gene des Sekundärstoffwechsels) werden danach erst um ein Vielfaches induziert. Besonders charakteristisch für *Rpv3* scheint z. B. der "PREDICTED: Probable WRKY transcription factor 47-like isoform X1" zu sein. Für *Rpv10* können die Serin/Threonin-Proteinkinase SAPK3 und die "Hydroxycinnamoyl CoA shikimate/quinate hydroxycinnamoyl transferase" genannt werden, die für die durch *Rpv10* vermittelte Resistenz gegen *Plasmopara viticola* mit verantwortlich erscheinen.

1. Einleitung

1.1. Resistenzzüchtung bei der Weinrebe

Die Weinrebe (*Vitis vinifera* L.) zählt zu den ältesten Kulturpflanzen der Welt. Bereits vor rund 7.000 Jahren wurde die Möglichkeit der Weinerzeugung aus Trauben entdeckt (Creasy & Creasy 2009, This *et al.* 2006). Im Laufe der Zeit entwickelte sich die Rebe zu einer der ökonomisch wichtigsten Nutzpflanzen. Im Jahr 2014 betrug weltweit die Weinanbaufläche ungefähr 7,6 Mio. ha (OIV 2015). In Deutschland sind rund 102.000 ha mit Keltertrauben bestockt. Die Weinproduktion für diese Fläche belief sich auf ungefähr 920 Mio. Liter (Statistisches Bundesamt 2015). Die Weinrebe wurde schon früh in Form von Rosinen als Nahrung genutzt. Später begann man sie zur Produktion von Traubensaft und Wein zu nutzen. Da insbesondere rote Weintrauben besonders reich an Polyphenolen wie z. B. Resveratrol sind, wird die Weinrebe mittlerweile auch als Ausgangsprodukt für medizinische Anwendungen als Antioxidans bei Arteriosklerose, Herzkrankheiten usw. genutzt (Labinskyy *et al.* 2006).

Schwerwiegend getroffen wurde der Weinbau in Europa im Verlauf des 19. Jahrhunderts als im Zuge der Einfuhr von nordamerikanischen Reben verschiedene Pathogene der Weinrebe nach Europa verschleppt wurden. Der erste Rebenschädling in Europa war der Echte Mehltau der Weinrebe *Erysiphe necator* Schwein. (syn. *Uncinula necator* Schw., anamorph: *Oidium tuckeri* Schw./Burr); er wurde 1845 zum ersten Mal gesichtet (Mohr 2011). Seine Einschleppung hatte Ernteausfälle von bis zu 80 % zur Folge (Creasy & Creasy 2009). Nachdem etwa im Jahre 1863 die Reblaus (*Daktulosphaïra vitifoliae* Fitch) als Schädling folgte, konnte der europäische Weinbau nur durch Verwendung amerikanischer Unterlagsreben mit Wurzelreblauswiderstandsfähigkeit vor größeren Schäden bewahrt werden (Campbell 2004). Allerdings wurde durch die Einfuhr von reblaustoleranten Rebstöcken ein weiterer Schädling im Jahr 1878 eingeschleppt: Der Falsche Mehltau der Weinrebe (*Plasmopara viticola* (Berk. & Curt) Berl. & de Toni)). An Trieben und Blättern kann ein besonders starker Befall zur vollständigen Entlaubung führen. Ein starker Befall kurz vor oder während der Rebblüte führt im schlimmsten Fall zu einem kompletten Ernteverlust (Mohr 2011, Nicholas *et al.* 1994).

Neben den bereits genannten Schädlingen gibt es noch eine Reihe weiterer Pathogene der Weinrebe, die ohne Pflanzenschutzmaßnahmen ebenfalls zu großen Problemen führen können. Dazu zählen als Beispiel Schwarzfäule (*Guignardia bidwellii* (Ellis) Viala & Ravaz, anamorph: *Phyllosticta ampelicida* (Engelman) Van der Aa) oder auch die endemische Graufäule (*Botryotinia fuckeliana* (de Bary) Whetzel, anamorph: *Botrytis cinerea* Pers.) (Galet 1993, Mohr 2011, Rex 2012).

Abbildung 1: Schadbilder bedeutender Rebpathogene: Symptome des Echten Mehltaus auf Blatt (a) und Beeren (b), Blattgallen der Reblaus (c), Nahaufnahme einer Blattgalle mit Reblaus und Eiern (d), Symptome des Falschen Mehltaus auf Blättern (e), Nahaufnahme der Sporangienträger von *Plasmopara viticola* (f), mit Graufäule befallene Trauben (g) und Beeren (h) (Quelle: Bildarchiv JKI, IRZ Geilweilerhof, Siebeldingen)

Abbildung 2: Symptome der Schwarzfäule auf Blatt (a) und Beere (b) (Quelle: Dissertation Friederike Rex 2012

Aufgrund dieser Bedrohungslage durch unterschiedliche Pathogene bedarf es aufwändiger Pflanzenschutzmaßnahmen seitens der Winzer, um einen qualitativ hochwertigen und rentablen Weinanbau zu gewährleisten. Im Vergleich zu anderen landwirtschaftlichen Kulturarten sind im Weinbau besonders hohe Mengen an Fungiziden erforderlich. Rund 58 % aller Fungizide in der Europäischen Union wurden 1999 bis 2003 im Weinbau eingesetzt. Die mit Reben bestockte Fläche machte dabei aber nur 5 % der gesamten Anbaufläche aus (siehe Tabelle 1, Eurostat 2007).

	Anbaufläche		Fungizide	
	[ha]	[%]	[t]	[%]
Getreide	43.974.000	59,8	11.433	7,5
Mais	10.023.000	13,6	0	0,0
Raps	7.393.000	10,1	1.035	0,7
Reben	3.573.000	4,9	88.325	58,2
Obst	3.119.000	4,2	25.202	16,6
Zuckerrüben	2.304.000	3,1	1.521	1,0
Kartoffeln	2.302.000	3,1	10.497	6,9
Gemüse	794.000	1,1	13.720	9,0

Tabelle 1: Anbauflächen und Menge eingesetzter Fungizide in den landwirtschaftlichen Hauptkulturen in der Europäischen Union (EU-15). Angegeben sind die Mittelwerte der Jahre 1999 bis 2003 (Quelle: Eurostat 2007)

In Verbindung mit dem dafür notwendigen hohen Zeit- und vor allem Kostenaufwand entstehen sowohl für den Winzer als auch für die Umwelt große Belastungen. Aus diesem Grund sind Alternativen in Form von neuen widerstandsfähigeren Rebsorten von Nöten.

Die Edle Weinrebe *Vitis vinifera* ssp. *vinifera* ist die einzige *Vitis*-Art, die weltweit im Weinbau verwendet wird (This *et al.* 2006). Da sie aber gegenüber den genannten Schaderregern keinerlei Resistenzen aufweist, macht sich die moderne Rebenzüchtung die in den amerikanischen und asiatischen Wildarten vorkommenden Resistenzeigen-

schaften gegenüber einer Vielzahl von Pathogenen zu Nutze (Di Gaspero & Cipriani 2003, Liu *et al.* 2015, Riaz *et al.* 2013, Xu *et al.* 2014). Hierbei muss darauf geachtet werden, dass in den Neuzüchtungen die guten Qualitätseigenschaften der europäischen Kulturrebe erhalten bleiben, da *Vitis*-Wildarten zu einer Verschlechterung der Weinqualität in Kreuzungsnachkommen führen (Töpfer *et al.* 2011a, Töpfer *et al.* 2011b).

Um erste Aussagen über die Qualitätseigenschaften machen zu können, dauert es drei bis vier Jahre im Rahmen klassischer Kreuzungszüchtung bis zum ersten Mal Beeren ausgebildet werden (Töpfer et al. 2011b). Die in allen Teilen der Pflanze identisch vorkommende DNA kann mithilfe genetischer Marker dazu genutzt werden, um die Weinrebe über MAS (Marker-assisted selection) bereits im Sämlingsstadium zu charakterisieren (Lande & Thompson 1990). Die Marker sind von der Umwelt sowie vom Entwicklungs- und Gesundheitszustand der Pflanze unabhängig (Sefc et al. 2009). Voraussetzung für die MAS sind Marker, die möglichst eng an die betrachteten Merkmale gekoppelt sind. Optimal wäre es, wenn sie direkt im Resistenzgen liegen würden. Dazu muss allerdings zunächst die Genfunktion identifiziert und u. a. über Genexpressionsanalysen etc. geklärt werden. Auch Kombinationen mehrerer verschiedener genetischer Marker sind in der züchterischen Anwendung möglich und sorgen für Zeitgewinne im Züchtungsprogramm von einigen Jahren (Töpfer et al. 2011b). Bei der Pyramidisierung d. h. der zielgerichteten Kombination mehrerer verschiedener Resistenzmechanismen zur Generierung einer möglichst breiten und dauerhaften Resistenz in einer neuen Rebsorte finden entsprechende molekulare Marker ebenso Verwendung (Eibach et al. 2007).

Bei der Weinrebe als mehrjähriger Pflanze kommt der Dauerhaftigkeit der Resistenz eine weitaus größere Bedeutung zu als bei einjährigen Kulturpflanzen, da das Roden und Neupflanzen einer Anlage üblicherweise frühestens nach etwa 30 oder mehr Jahren erfolgt. Aus diesem Grund wird seit einigen Jahren bei Neuzüchtungen darauf geachtet, dass möglichst mindestens zwei, besser noch mehr Resistenzloci je Pathogen kombiniert werden. Eine ausdauernde Resistenz könnte aus der Kombination von beispielsweise dichter Blattbehaarung, eingelagerter antimikrobiell-wirkender Substanzen und der Fähigkeit zur hypersensitiven Reaktion (HR) nach Pathogenbefall entstehen. Voraussetzung hierfür ist das Verständnis der Resistenzmechanismen der verschiedenen Resistenzquellen, was derzeit Gegenstand der Forschung ist. Auf diese Weise ließe sich das Risiko minimieren, dass ein Pathogen eine Resistenz vollständig übergehen kann (Schwander *et al.* 2012, Töpfer *et al.* 2011b). Bereits mehrfach konnte das Überwinden einer Resistenz durch Pathogene beobachtet werden (McDonald & Linde 2002). Vor einigen Jahren wurde zudem beschrieben, dass der in 'Bianca' und 'Regent' vorliegende *Rpv3*-Resistenzlocus gegen den Falschen Mehltau durch ein tschechisches Isolat von *Plasmopara viticola* überwunden wurde (Peressotti *et al.* 2010). Daher sollte die Resistenz gegen das jeweilige Pathogen polygen und nicht nur monogen verankert sein, sodass nach Zusammenbrechen einer Resistenzvariante noch eine zweite wirksam werden kann.

Die Zuchtdauer einer neuen Rebsorte kann durch die gezielte Nutzung der derzeit vorhandenen Merkmals-gekoppelten molekularen Marker um bis zu zehn Jahre verkürzt werden (Töpfer *et al.* 2011b). Mittlerweile existieren unterschiedliche molekulare Marker für die verschiedenen Pathogene der Weinrebe, die zur Pyramidisierung mehrerer Eigenschaften in neuen Sorten genutzt werden (Tabelle 2). Dabei werden neben Resistenzeigenschaften auch Aspekte der Weinqualität sowie Blüh- und Reifezeitpunkt bei der Züchtung neuer Sorten berücksichtigt (Fechter *et al.* 2012, Fechter *et al.* 2014, Schwander *et al.* 2014).

Bezeichnung	Eigenschaft	Chromosom	Referenz	
Be size	Beerengröße (Beeren- gewicht)	18	Doligez et al. 2002	
Mtc	Gehalt an Monoterpe- nen	5	Battilana <i>et al.</i> 2009	
Lin	Gehalt an Linalool	10	-	
Rdv1	Resistenz gegen Daktu- losphaïra vitifoliae	12	Zhang <i>et al.</i> 2009	
Rpv1	Resistenz gegen Plas- mopara viticola	12	Merdinoglu et al. 2003	
Rpv2		18	Bellin et al. 2009	
Rpv3			Bellin <i>et al.</i> 2009, Fischer <i>et al.</i> 2004, Welter <i>et al.</i> 2007	
Rpv4		4	Welter et al. 2007	
Rpv5		9	Management at al. 2000	
Rpv6		12	Marguern <i>et al.</i> 2009	
Rpv7		7	Bellin et al. 2009	
Rpv8		14	Blasi <i>et al.</i> 2011	
Rpv9		7	Moreira et al. 2011	
Rpv10		9	Schwander et al. 2012	
Rpv11		5	Bellin <i>et al.</i> 2009, Fischer <i>et al.</i> 2004, Schwander <i>et al.</i> 2012	

Tabelle 2: Auswahl wichtiger Eigenschaften für die Rebenzüchtung (Quelle: *Vitis* International Variety Catalogue (VIVC), Stand: 04.05.2015)

Rpv12		14	Venuti et al. 2013
Rpv13	_	12	Moreira et al. 2011
Rpv14	_		Fechter et al. (in Vorberei-
			tung)
Rpv15		18	Pap et al. (in Vorbereitung)
Rgb1	Resistenz gegen Guig-	14	\mathbf{P} as at al 2014
Rgb2	nardia bidwellii	16	Rex <i>et ut</i> . 2014
Ren1		13	Hoffmann et al. 2008
Ren2		14	Dalbó et al. 2001
Ren3		15	Welter et al. 2007
Ren4	Resistenz gegen Erysi-	18	Mahanil et al. 2012, Riaz et
	phe necator		<i>al.</i> 2012
Ren5	_	14	Blanc <i>et al.</i> 2012
Ren6		9	Pap at al (in Vorbereitung)
Ren7		19	Tap et al. (in Vorberentung)
Run1	- Desistanz gagan Emisi	12	Barker et al. 2005
Run2.1	- nhe (Uncinula) necator	18	\mathbf{P}_{int} at al. 2011
<i>Run2.2</i>	phe (Oneinaid) necalor		Ridz et ul. 2011
Sdl	Samenlosigkeit	18	Cabezas et al. 2006,
			Costantini et al. 2008, Doligez
			<i>et al.</i> 2002
			Battilana <i>et al.</i> 2013, Dalbo <i>et</i>
Sex	Blütengeschlecht	2	<i>al.</i> 2000, Fechter <i>et al.</i> 2012,
			Lowe & Walker 2006
Ver	Véraison (Beginn der	16	Costantini <i>et al.</i> 2008, Fischer
	Keire)		<i>et al.</i> 2004
Xir1	Resistenz gegen Xiphi-	19	Hwang <i>et al</i> . 2010, Xu <i>et al</i> .
	nema inaex		2008
5-gt	Genalt an Anthocyanin-	9	Hausmann et al. 2009
1	5,5-aigiacosiden		

1.2. Der Falsche Mehltau der Weinrebe (Plasmopara viticola)

Der Falsche Mehltau (*Plasmopara viticola* (Berk. & Curt) Berl. & de Toni)), oft auch in der Praxis als "Rebenperonospora" bezeichnet, ist eines der Hauptpathogene der Weinrebe und wird innerhalb der Chromista zum Stamm der Oomycota (Eipilze) gezählt (Tabelle 3). Zwischen der Klasse der Peronosporea und den Echten Pilzen bestehen zwar Gemeinsamkeiten in ihrer Lebensweise, sie werden aber dennoch zu den Algen gezählt (Adl *et al.* 2005).

Tabelle 3: Taxonomie von Plasmopara viticola nach Species Fungorum (www.speciesfungorum.org)

Domäne	Eukaryota
Reich	Chromista
Stamm	Oomycota

Klasse	Peronosporea
Unterklasse	Peronosporidae
Ordnung	Peronosporales
Familie	Peronosporaceae
Gattung	Plasmopara
Art	Plasmopara viticola

Der 1878 nach Europa eingeschleppte Schädling stammt ursprünglich aus Nordamerika und kann sich bei feuchtwarmen Wetterbedingungen sehr schnell ausbreiten, da grundsätzlich alle europäischen Kultursorten von *Vitis vinifera* hoch anfällig sind. Alle grünen Teile der Rebe mit Spaltöffnungen können befallen werden. Als erste Anzeichen einer erfolgreichen Infektion sind sog. "Ölflecken", gelbliche Aufhellungen auf der Oberseite jüngerer Blätter, sichtbar (Abbildung 3a). Dadurch, dass Nährstoffe entzogen werden, kommt es zu einem Abbau des Chlorophylls, was die Verfärbungen zur Folge hat. Auf der Blattunterseite gegenüber des Ölflecks bildet sich nach einer warmen und feuchten Nacht ein weißer Belag aus Sporangienträgern (Abbildung 3b und Abbildung

Abbildung 3: Befallssymptome von *Plasmopara viticola*, Ölflecken auf der Blattoberseite (a), Sporangienträgerteppich auf Blattunterseite (b), Sporangienträger auf Blattunterseite (c), befallene Beeren (d) (Quelle: Bildarchiv JKI, IRZ Geilweilerhof, Siebeldingen)

3c). Im Anschluss daran trocknen diese Befallsstellen von innen her ein und verfärben sich durch Nekrose bräunlich. Besonders starker Befall kann eine vollständige Entlaubung des Stockes zur Folge haben. Tritt ein Befall der Gescheine kurz vor oder nach der Rebblüte sowie der Beeren bis zur Erbsengröße (BBCH 75) auf, werden statt gesunden Beeren sog. "Lederbeeren" gebildet, die sich rötlich braun verfärben und schrumpfen. Daher wurde die Krankheit früher auch "Lederbeerenkrankheit" genannt. Ohne entsprechende Pflanzenschutzmaßnahmen ist dadurch ein kompletter Ausfall der Ernte möglich (Mohr 2011, Nicholas *et al.* 1994).

Die Lebensweise des Falschen Mehltaus ist obligat biotroph. Dies bedeutet, dass ein lebendiger pflanzlicher Organismus als Wirt für die Ernährung und Fortpflanzung des Schaderregers zwingend notwendig ist. Neuinfektionen können als Primär- und Sekundärinfektionen ablaufen. Die erste zu Beginn der Vegetationsperiode stattfindende Infektion bezeichnet man als Primärinfektion, da sie von den am Boden überdauernden

Abbildung 4: Elektronenmikroskopische Aufnahme einer Zoospore, aus der ein Infektionsschlauch in eine Spaltöffnung wächst (Quelle: Bildarchiv JKI, IRZ Geilweilerhof, Siebeldingen)

Wintersporen ausgeht. Ab einer Temperatur von 11 °C beginnt ihre Keimung und begeißelte Zoosporen werden aus dem Primärsporangium freigesetzt sobald Kontakt mit Wasser besteht (Mohr 2011). Freigesetzte Zoosporen sind unter günstigen Bedingungen über einen Zeitraum von bis zu neun Tagen infektionsfähig (Kast & Stark-Urnau 1999). Nur max. 5 % der Reben einer Anlage werden durch eine solche Primärinfektion befallen (Mohr 2011). Dementsprechend groß ist die Bedeutung der anschließenden Sekundärin-

fektionen für die Ausbreitung des Falschen Mehltaus über die restlichen Rebstöcke hinweg (Gobbin *et al.* 2005). Durch Niederschläge werden die Zoosporen vom Boden auf grüne Teile der Rebe befördert und schwimmen zu den Stomata auf der Blattunterseite (Kiefer *et al.* 2002). Dabei besteht nicht unbedingt eine Korrelation zwischen Regenintensität und Anzahl der Infektionsereignisse (Rossi & Caffi 2012). Zoosporen orientieren sich anhand eines über die Stomata freigesetzten Nonanal-Gradienten in Richtung der Stomata. Es konnte gezeigt werden, dass die Störung des Gradienten durch exogen zugeführtes Nonanal einen stark negativen Effekt auf die Infektionsrate hat (Schröder 2010). An einem Stoma enzystieren sich die Zoosporen zunächst und ein Infektionsschlauch wird ausgebildet, der dann in das Blattinnere wächst (Kortekamp 2006, Kortekamp & Zyprian 2003; Abbildung 4).

Sobald eine Zellwand im Inneren erreicht wird, bildet sich ein Haustorium, mit welchem die Nährstoffversorgung des Schädlings erfolgt. Durch Anfärben mit Anilinblau konnte die Ausbreitung innerhalb des Gewebes nachvollzogen werden (Diez-Navajas *et al.* 2007, Jürges *et al.* 2009, Kiefer *et al.* 2002, Kortekamp 2005). Der Infektionsprozess beginnt bereits bei 6 bis 8 °C und erreicht sein Optimum bei 22 bis 25 °C. Die Besiedelung des Wirtes erfolgt durch Ausbildung weiterer Haustorien und kann äußerlich ab einem gewissen Grad an den Ölflecken erkannt werden. Die Inkubationszeit, d. h. der Zeitraum zwischen Eindringen in das Blatt und Ausbildung eines Ölflecks, ist primär abhängig von der Temperatur und beträgt zwischen fünf und zwölf Tagen (Mohr 2011). Gerade bei älteren Blättern kann die Inkubationszeit länger ausfallen bzw. die Infektion

vollständig ausbleiben (Steimetz *et al.* 2012).

Ab dem ersten Auftreten von Ölflecken beginnen im Weinbau die Pflanzenschutzmaßnahmen. Dabei helfen auch verschiedene Vorhersagemodelle, um eine möglichst optimale Anwendung zu ermöglichen (Bleyer 2008, Bugliosi *et al.* 2006, Caffi *et al.* 2013, Gessler *et al.* 2011). Der weitere Lebenszyklus kann ab diesem Zeitpunkt sexuell und asexuell ablaufen. Bei optimalen Bedingungen, d.

Abbildung 5: Elektronenmikroskopische Aufnahmen von aus Stoma wachsenden Sporangienträgern (Quelle: Bildarchiv JKI, IRZ Geilweilerhof, Siebeldingen)

h. mindestens vier Stunden Dunkelheit (< 3 Lux), über 11,5 °C Durschnittstemperatur und mindestens 95 % Luftfeuchtigkeit, beginnt der asexuelle Zyklus (Abbildung 6). Sporangienträger wachsen aus den Stomata an der Blattunterseite heraus (Abbildung 5). An deren Spitze bilden sich Sporangien, die bei Vorhandensein von Wasser wieder neue Zoosporen freisetzen, was in Folge wiederum neue Infektionen ermöglicht (Caffi *et al.* 2013, Mohr 2011). Auf diese Weise kann sich das Pathogen über eine größere Entfernung im Weinberg ausbreiten (Gobbin *et al.* 2007). Im Gegensatz zur Bildung der Sporangienträger wird für die Differenzierung der Sporangien und Infektion durch Zoosporen Dunkelheit nicht zwingend benötigt. Licht hat allerdings einen Einfluss auf die Differenzierung der Sporangien (Rumbolz *et al.* 2002). Da der Falsche Mehltau der Weinrebe heterothallisch ist, kann der Lebenszyklus auch sexuell ablaufen (Abbildung 6, Gobbin 2004). Vor allem im Herbst steigt die Wahrscheinlichkeit, dass sich zwei heterothallische Hyphen innerhalb des Pflanzengewebes treffen. Dabei werden winterharte Oosporen gebildet, welche durch Laubfall und Blattzerfall in den Boden gelangen und dort den Winter überdauern. Sobald wieder günstige Bedingungen im folgenden Frühjahr vorherrschen, erfolgen ausgehend von diesen Wintersporen die Neuinfektionen (Wong *et al.* 2001).

Die genetische Diversität von *P. viticola* wurde mit verschiedenen SSR (Simple Sequence Repeats)- bzw. SNP (Single Nucleotide Polymorphism)-Marker-Analysen charakterisiert (Delmotte *et al.* 2006, Delmotte *et al.* 2011, Gobbin *et al.* 2007, Gobbin *et al.* 2003a, Gobbin *et al.* 2003b, Gobbin *et al.* 2006, Gobbin *et al.* 2001, Koopman *et al.*

Abbildung 6: Infektionszyklus von *Plasmopara viticola*. Außen (rot) ist der sexuelle, innen (grün) der asexuelle Lebenszyklus dargestellt (Quelle: Gobbin 2004)

2007, Matasci et al. 2010, Mochizuki et al. 2012, Rouxel et al. 2014, Rouxel et al. 2013, Rouxel et al. 2012, Rumbou & Gessler 2006, Scherer & Gisi 2006). Neuere Untersuchungen ergaben, dass entgegen früherer Meinungen nur eine geringe genetische Diversität von Plasmopara viticola mit zwei verschiedenen genetischen Clustern in West- und Osteuropa vorliegt. Diese entwickelten sich ausgehend von einem genetischen Flaschenhals nach der Einschleppung aus Nordamerika (Fontaine et al. 2013). Das Potenzial, vorhandene Resistenzen relativ schnell zu überwinden, wurde bereits mehrfach gezeigt (Bellin et al. 2009, Delmotte et al. 2013, Peressotti et al. 2010). Teilweise bestehen große Unterschiede in der Sporulationsfähigkeit der Plasmopara-Stämme, sodass auf älteren widerstandsfähigen Neuzüchtungen wie z. B. 'Regent' gelegentlich starker Befall nachgewiesen werden konnte (Gómez-Zeledón et al. 2013). Auf amerikanischen Vitis-Wildarten konnten ebenso diverse unterscheidbare Stämme nachgewiesen werden (Schröder et al. 2011). Auch die vorherrschende Veränderung des Klimas hat Auswirkungen auf die Evolution des Pathogens, sodass Resistenzen schneller überwunden werden könnten (Pugliese *et al.* 2011). Dies unterstreicht die Bedeutung und den Bedarf an nachhaltigen Neuzüchtungen und erfordert innovative Züchtungsstrategien. In Verbindung mit integriertem Pflanzenschutz kann damit eine Reduzierung der Fungizide auf das Notwendigste erzielt werden (Kamoun et al. 2015).

Das erste wirksame Bekämpfungsmittel gegen den Falschen Mehltau der Weinrebe war Kupferkalkbrühe ("Bordeauxbrühe"). Die fungitoxische Wirkung des enthaltenen Kupfers wurde durch Zufall entdeckt (Müller & Sleumer 1934). Cu²⁺-Ionen bewirken innerhalb des Pathogens die Blockierung der Enzymreaktionen. In Form von Kupferoxichlorid, Kupferoktanoat oder auch Kupferhydroxid findet es heute noch vor allem im ökologischen Weinanbau Verwendung, da es dort der einzig zugelassene Stoff mit zuverlässiger Wirkweise ist (Berkelmann-Löhnertz et al. 2008, Kauer et al. 2008, La Torre et al. 2011). Aus sieben verschiedenen Wirkstoffgruppen stammen die chemischen Fungizide, die im deutschen Weinbau gegen den Falschen Mehltau eingesetzt werden dürfen (Staatliches Weinbauinstitut Freiburg 2014). Weitere Kontaktfungizide zum protektiven Einsatz vor einer Infektion sind z. B. die chemisch-organischen Präparate Metiram (Hemmung der oxidativen Decarboxylierung von Pyruvat im Pyruvatdehydrogenase-Komplex), Dithianon (Breitbandfungizid) oder Folpet (u. a. Hemmung der Sporenkeimung durch genotoxische Wirkung) (Arce et al. 2010, Bahadir et al. 2000, Flemming et al. 1963). Zur kurativen Behandlung einer bereits erfolgten Infektion können beispielsweise die Wirkstoffe Cymoxanil (Hemmung der Nuklein- und Aminosäuresynthese) sowie Dimethomorph (Hemmung der Zellwandbildung und Sporulation) eingesetzt werden (Toffolatti et al. 2015). Dabei kann der Befall noch nach ein bis zwei Wochen abgestoppt werden (Mohr 2011). Von einigen Fungiziden ist die genaue Wirkungsweise noch nicht bekannt. Bereits mehrfach wurden bei Plasmopara viticola Resistenzbildungen gegen Fungizide festgestellt (Chen et al. 2007, Matasci et al. 2008, Nanni et al. 2015, Toffolatti et al. 2015). Daher sollte je nach Wirkstoff und Mittel die maximale Anzahl an Anwendungen pro Saison beachtet werden, um das Risiko weiterer Fungizidresistenzen zu vermindern (Staatliches Weinbauinstitut Freiburg 2014). Weitere natürliche Stoffe (z. B. Diketopiperazin aus Alternaria alternata oder Thiamin und Methionin) mit Wirkung gegen Plasmopara viticola wurden zudem bereits positiv getestet (Boubakri et al. 2012, Boubakri et al. 2013, Musetti et al. 2007, Musetti et al. 2006, Schnee et al. 2013). Zur optimalen Anwendung der Pflanzenschutzmaßnahmen sind verschiedene Vorhersagemodelle (z. B. VitiMeteo) verfügbar, mit denen die Pathogenentwicklung und das Infektionsrisiko anhand der Wetterdaten prognostiziert werden (Bleyer 2008). In aktuellen Studien wurde zudem die Möglichkeit beschrieben, frühzeitig im Blatt vorhandene Plasmopara-Infektionen zu detektieren und dadurch einen rechtzeitigen Einsatz von Fungiziden zu ermöglichen (Bellow et al. 2013, Peressotti et al. 2011). Die Züchtung neuer Rebsorten mit Resistenzen gegen die unterschiedlichen Schaderreger trägt erheblich zur Verminderung der eingesetzten Fungizidmengen bei.

1.3. Pathogenabwehr bei Pflanzen

Pflanzen werden ständig durch Pathogene und Schädlinge in ihrer Umwelt bedroht. Im Laufe der Evolution haben sie daher diverse Abwehrmechanismen entwickelt. Am häufigsten kommt die Nichtwirtsresistenz vor. Hierbei ist eine Pflanzenspezies gegen sämtliche Vertreter einer für andere Pflanzen pathogenen Spezies immun, da das Pathogen keinerlei Anpassungen an den Wirt besitzt. Sie ist die stärkste pflanzliche Resistenzart (Gill *et al.* 2015, Heath 2000b, Mysore & Ryu 2004, Strugala *et al.* 2015).

Unter den weiteren Abwehrmechanismen wird zwischen präformierter und induzierter Abwehr unterschieden. Als präformierte Mechanismen bzw. basale Abwehr werden z. B. die Zellwand, Wachsauflagerungen, dichte Behaarung sowie in der Vakuole eingelagerte toxische Substanzen (Saponine, Phenole und andere sekundäre Pflanzenstoffe) bezeichnet. Eine induzierte Abwehrreaktion kann durch nichtwirtsspezifische (PAMPs, z. B. Bestandteile der Zellwand von Pilzen) sowie wirtsspezifische Elicitorrezeptoren (R-Gene) ausgelöst werden. Diese Mechanismen sind spezifisch für einzelne Pathogene. Die Wirtspflanze ist suszeptibel und die Wirt-Pathogen-Interaktion verläuft kompatibel. Falls der Wirt nicht durch das Pathogen befallen werden kann, ist die Wirtspflanze resistent gegenüber dem Schaderreger. Das Pathogen ist in diesem Fall avirulent und die Wirt-Pathogen-Interaktion verläuft inkompatibel. Zur Beschreibung dieser Interaktion wurde das Gen-für-Gen-Modell entwickelt (Flor 1971). Pathogene besitzen Avirulenz-Gene (Avr-Gene), potenzielle Wirtspflanzen Resistenz-Gene (R-Gene). Avr-Gene co-dieren für rassenspezifische Elicitoren (Effektoren). Die R-Gene codieren für die entsprechenden Rezeptoren dieser Elicitoren. Wenn Avr- und R-Gen zueinander passen, so ist der Wirt resistent und eine Abwehrreaktion durch typischerweise hypersensitiven Zelltod wird induziert (Abbildung 7). Zu einem Befall durch das Pathogen kommt es immer dann, wenn Avr- und R-Gene nicht miteinander kompatibel sind oder mindestens einer der beiden Beteiligten kein Avr- bzw. R-Gen besitzt (Flor 1971, Gururani *et al.* 2012, Strasburger & Sitte 2002).

Abbildung 7: Gen-für-Gen-Modell der Pflanzen-Pathogen-Interaktion. Bei einer kompatiblen Interaktion zwischen Resistenz-Protein (R-Gen) und Pathogeneffektor/Elicitor (Avirulenz-Gen, Avr-Gen) kommt es zur Pathogenresistenz mittels Hypersensitiver Antwort (HR). (Quelle: Gururani *et al.* 2012)

1.3.1. Basale Abwehr

Präformierte Strukturen bilden die erste Stufe der Abwehrmechanismen einer Pflanze gegen eindringende Schaderreger. Diese sind stets vorhanden und werden nicht erst bei Vorhandensein eines Pathogens aktiviert. Dicke Zellwände mit aufgelagerter hydrophober Wachsschicht oder die Kutikula bilden ein erstes physikalisches Hindernis für Schädlinge (Malinovsky *et al.* 2014, Nürnberger & Lipka 2005, Santamaria *et al.* 2013). Unter Umständen kann eine dichte Blattbehaarung in Form von Trichomen als basales Abwehrelement den Befall durch *Plasmopara viticola* verhindern (Kortekamp *et al.* 1999, Kortekamp & Zyprian 1999, Santamaria *et al.* 2013). Actin-Mikrofilamente als Bestandteil des Cytoskeletts der Zelle verhindern ein Eindringen in die pflanzliche Zelle (Kobayashi *et al.* 1997). Auch beim Transport antimikrobieller Stoffe oder Zellwand-

verstärkender Komponenten (z. B. Callose) ist Actin involviert (Janda *et al.* 2014). Nach Kontakt mit *Plasmopara* konnte die Ausbildung eines Netzes von Actinfilamenten um den Zellkern herum beobachtet werden (Guan *et al.* 2014). Da der Falsche Mehltau nur durch die Stomata in das Pflanzeninnere gelangen kann, können auch Veränderungen an diesen Strukturen als Abwehrmechanismus fungieren. Bei *Vitis riparia*, *V. rupestris, V. californica, V. amurensis* sowie einzelnen Akzessionen von *V. sylvestris* konnte zudem eine zusätzlich auftretende innere Kutikularkante an den Schließzellen der Spaltöffnungen nachgewiesen werden. Diese stellen eine potenzielle Barriere für eindringende Infektionshyphen dar (Jürges *et al.* 2009, Schröder 2010, Schröder *et al.* 2011).

Zoosporen orientieren sich anhand von Wirtsfaktoren wie beispielsweise Nonanal oder Decanal zu den Stomata hin (Kiefer et al. 2002, Schröder 2010). Eine Störung der Chemotaxis der Zoosporen durch Ausströmung chemotaktisch wirksamer Substanzen könnte zur Steigerung der Widerstandsfähigkeit beitragen. Unter präformierter Resistenz kann auch der Fall gezählt werden, wenn einem Pathogen die notwendigen Rezeptoren fehlen, um einen möglichen Wirtsorganismus zu erkennen (Thordal-Christensen 2003). In Vakuolen und anderen Organellen eingelagerte antimikrobiell wirksame sekundäre Pflanzenstoffe bilden ein chemisches Hindernis für das eindringende Pathogen. Terpenoide, Alkaloide oder phenolische Stoffe zählen dazu (Dixon 2001, Pusztahelyi et al. 2015, Santamaria et al. 2013). Trotz der verschiedenen Arten präformierter Resistenz sind manche Phytopathogene in der Lage, diese Mechanismen zu umgehen. Es wurde zum Beispiel bereits beschrieben, dass in der Weinrebe vier VvMLO-Gene durch Befall mit dem Echten Mehltau (Erysiphe necator) induziert wurden. Diese Gene spielen vermutlich eine Rolle in der Anfälligkeit gegenüber diesem Schaderreger (Feechan et al. 2009). Seitens der Wirtspflanze werden daher weitere Prozesse aktiviert, um den eindringenden Schädling zu bekämpfen.

1.3.2. Pathogenerkennung und induzierte Abwehr

Bevor eine induzierte Resistenzantwort durch die Pflanze erfolgen kann, muss das eindringende Pathogen zunächst erkannt werden. Dies geschieht mithilfe von Resistenzgen-Analoga (RGA), welche potenzielle R-Gene darstellen und in acht verschiedene Klassen eingeteilt werden können (Gururani *et al.* 2012, Sekhwal *et al.* 2015). Als R-Gene können NBS-LRR- (Nucleotide binding site-Leucine rich repeat) und TM-LRR-Gene (Transmembrane-Leucine rich repeat) als wichtigste Klassen von R-Genen genannt werden. TM-LRR-Gene umfassen RLKs (Receptor like kinase) und andere RLPs (Receptor like protein) (Hammond-Kosack & Jones 1997). RLKs und RLPs sind sog. PRRs (Pattern recognition receptors), die spezifische PAMPs (Pathogen-associated molecular patterns) bzw. MAMPs (Microbe-associated molecular patterns) aus der Umwelt erkennen (Chisholm et al. 2006). Je nach Art des Pathogens sind unterschiedliche PAMPs/MAMPs bekannt (DeYoung & Innes 2006). Bei gramnegativen Bakterien sind dies verschiedene Bestandteile der äußeren Hülle wie z. B. Lipopolysaccharide oder Peptidoglycane. Charakteristisch für grampositive Bakterien ist ihr Flagellin. Pilzliche PAMPs sind Chitin, Ergosterole und andere Strukturproteine der Zellwand. Bei Vertretern der Oomyceten (Oomycota), zu denen auch der Falsche Mehltau gezählt wird, können Glucane als typische molekulare Muster genannt werden (Nürnberger & Lipka 2005, Sekhwal et al. 2015). RLKs und RLPs vermitteln nach Erkennung eines PAMP/MAMP die PTI/MTI (PAMP triggered immunity/MAMP triggered immunity) (Chisholm et al. 2006).

Die zweite wichtige und gleichzeitig am besten beschriebene Klasse von RGA sind cytoplasmatische NBS-LRR-Gene, welche anhand ihrer N-terminalen TIR- oder Nicht-TIR-Domäne unterschieden werden. Die häufigste Nicht-TIR-Domäne ist die Coiled coil-Struktur (CC) (Maekawa et al. 2011). Am C-terminalen Ende der NBS-LRR-Gene sitzen Leucine rich repeats (LRR), welche bei der Mehrzahl der R-Gene vorkommen. Sie sind wichtig für die spezifische Erkennung der Effektoren (Avr-Gene der Pathogene), die Interaktion zwischen Proteinen und/oder Kohlenhydraten sowie Peptid und Ligand (Dangl & Jones 2001, Jones 2001). Zwischen der NBS- und LRR-Domäne sitzt die ARC-Domäne, die zusammen mit der NBS-Domäne die Nukleotidbindung ermöglicht (Tameling et al. 2002). Ihr Name leitet sich von dem Vorkommen in <u>APAF-1</u>, <u>R-</u> Proteinen und CED-4 ab (Van der Biezen & Jones 1998). Die NBS-Domäne ist zuständig für ATP-Bindung und -Hydrolyse und damit für die Signaltransduktion (Tameling et al. 2002, Tameling et al. 2006). Sowohl TIR-NBS-LRR- als auch CC-NBS-LRR-Gene detektieren Effektorproteine eines Pathogens und vermitteln im weiteren Verlauf die Effektor-getriggerte Immunantwort (ETI) (Chisholm et al. 2006). Charakteristisch für die meisten Vertreter der Oomyceten ist beispielsweise das RXLR-Motiv in den Effektorproteinen (Win et al. 2012). Beide Arten von NBS-LRR-Genen kommen in der Weinrebe vor. Insgesamt 84 codierende CC-NBS-LRR, 37 codierende TIR-NBS-LRR,

16

5 verkürzte TIR-NBS sowie 112 verkürzte NBS-LRR konnten durch Sequenzierung der Rebsorte 'Pinot noir' identifiziert werden. 103 Gene besitzen nur eine NBS-Domäne (Velasco *et al.* 2007). Die sechs weiteren Klassen der R-Gene bestehen aus: 1. extracytoplasmatische LRR und TrD (Transmembrane domain), 2. extrazelluläre LRR, TrD und intrazelluläre Serin-Threonin-Kinase, 3. extrazelluläre LRR, PEST-Domäne (Pro-Glu-Ser-Thr) und ECS-Motif (Transport des Proteins zur Rezeptor-vermittelnden Endocytose), 4. TrD und CC, 5. TIR-NBS-LRR mit NLS (Nuclear localization signal) und WRKY-Domäne, 6. Proteinkinasen mit unterschiedlichen Funktionen (ohne NBS oder LRR) (Brueggeman *et al.* 2002, Deslandes *et al.* 2003, Jones & Jones 1997, Martin *et al.* 1993, Song *et al.* 1995, Thomma *et al.* 2011, Wang *et al.* 2009a).

Gelangt ein Pathogen auf die Oberfläche einer Wirtspflanze, so werden dessen PAMPs von den PRRs der Pflanze erkannt und die PTI als erste "Instanz" der Pathogenabwehr wird induziert. Hierbei kann es je nach Pflanzenart und Pathogen zu unterschiedlichen Arten von Abwehrreaktionen kommen, an denen verschiedene Signalwege beteiligt sind. Am Beispiel des bakteriellen Flagellins konnte gezeigt werden, dass nach dessen Detektion die Produktion von ROS (<u>Reactive oxygen species</u>), Aktivierung von MAPKs (<u>Mitogen-activated protein kinases</u>), Bildung von Kallose an der Zellwand und Expression weiterer Abwehrgene induziert wird (Ali & Reddy 2008, Bigeard *et al.* 2015, Gómez-Gómez *et al.* 1999). Nach Infektion durch den Falschen Mehltau kommt es z. B. bei der widerstandsfähigen Rebsorte 'Solaris' zur Bildung von Kallose an den Stomata als strukturelle Barriere (Gindro *et al.* 2003). Weder in den beiden gegenüber *P. viticola* anfälligen Sorten 'Kerner' und 'Riesling' noch in den toleranten Sorten 'Orion' und 'Phoenix' konnte dagegen eine nach der Inokulation frühe Kallosebildung nachgewiesen werden. In diesen Sorten scheint die Kalloseeinlagerung keine spezifische Abwehrreaktion auf *P. viticola*-Befall zu sein (Kortekamp *et al.* 1997).

Chemische Abwehrstoffe können ebenfalls nach einer Infektion gebildet werden, um dadurch beispielsweise bei Infektionen mit *Plasmopara viticola* die Zoosporen in ihrer Bewegung oder die Bildung von Sporangienträgern zu hemmen. Die Stilbenderivate Resveratrol sowie δ - und ε -Viniferin z. B. wirken dabei fungitoxisch auf das Pathogen (Chang *et al.* 2011, Pezet *et al.* 2004a, Pezet *et al.* 2004b). Typische Vertreter von ROS sind Wasserstoffperoxid (H₂O₂) und Superoxid-Anion (O₂⁻⁻). Sie können über den sog. "Oxidative Burst" direkt antimikrobiell wirken oder auch als Signalmoleküle für weitere Abwehrmechanismen wie z. B. der hypersensitiven Reaktion (HR) dienen (Kadota *et*

al. 2015, Lamb & Dixon 1997, Wojtaszek 1997). Die HR führt zum relativ schnellen Absterben von betroffenen Zellen um eine Infektion herum durch programmierten Zelltod (PCD; Programmed cell-death). Dadurch können Pathogene sowohl in ihrer Ausbreitung gestoppt als auch vollständig abgetötet werden. Zudem können noch weitere Abwehrreaktionen bei der PTI seitens der Pflanze in Gang gesetzt werden (Heath 2000a). PR-Proteine (Pathogenesis related proteins) zählen dazu. Deren Familie umfasst 17 Klassen unterschiedlicher Vertreter (PR-1 bis PR-17). Teils sind ihre genauen Funktionen noch unbekannt. Zum einen wirken sie lokal, aber auch systemisch und sind damit an der SAR (Systemic acquired resistance) mitbeteiligt. Unter den 17 Klassen befinden sich Chitinasen (PR-3, PR-4, PR-8 und PR-11) und β -(1,3)-Glucanasen (PR-2), die die pilzliche Zellwand abbauen können. Weitere PR-Proteine sind Proteinase-Inhibitoren (PR-6), Endoproteinasen (PR-7), Peroxidasen (PR-9), Defensine (PR-12), Thionine (PR-13), Lipid-Transfer-Proteine (PR-14) und Oxalatoxidasen (PR-15 und PR-16). Weiterhin zählen Proteine dazu, die Ähnlichkeit mit Thaumatin (PR-5) oder Ribonukleasen (PR-10) aufweisen (van Loon et al. 2006, Van Loon & Van Strien 1999). Mit Ausnahme von PR-13 konnten alle Klassen von PR-Proteinen auch in der Weinrebe nachgewiesen werden (Gomès & Coutos-Thévenot 2009). Die Expression von PR-Genen konnte auch nach P. viticola-Befall nachgewiesen werden (Kortekamp 2006).

Damit eine Wirtspflanze trotz PAMP-getriggerter Immunantwort erfolgreich besiedelt werden kann, haben Phytopathogene Mechanismen entwickelt, um den Abwehrprozess der Pflanze mithilfe von Effektorproteinen zu hemmen. Für Oomyceten charakteristisch sind Effektorproteine mit RXLR-Motiv. Als Beispiel können die Effektorproteine AVR3a4 und AVR3a11 (Paraloge von *Phytophthora capsici*), PexRD2 (von *Phytophthora infestans*) oder ATR1 (von *Hyaloperonospora arabidopsidis*) genannt werden (Hein *et al.* 2009, Win *et al.* 2012). Wenn die Effektorproteine (Avr-Gene) vermutlich über Translokationsdomänen durch die Haustorien in die Pflanze gelangen, wird die Anfälligkeit der Wirtspflanze durch Effektor-getriggerte Anfälligkeit (ETS; Effector triggered susceptibility) wieder hergestellt (Jones & Dangl 2006, Whisson *et al.* 2007). Im Falle, dass sie jedoch durch spezifische NBS-LRR-Gene (R-Gene) detektiert und die Effektor-getriggerte Immunantwort (ETI) als zweite Instanz der pflanzlichen Immunantwort nach der PTI ausgelöst wird, geht die ETS verloren und es kommt zu einer hypersensitiven Reaktion (HR) (Bozkurt *et al.* 2012, Jones & Dangl 2006, Kamoun *et al.* 1999; Abbildung 8). Drei CC-NBS-LRR-Resistenzgene konnten in der resistenten *Vitis*

riparia-Selektion 'Gloire de Montpellier' als Kandidatengene nach *P. viticola*-Inokulation nachgewiesen werden (Kortekamp *et al.* 2008). Sehr früh nach Inokulation mit dem Pathogen beginnen die ersten Abwehrreaktionen. ROS werden nach vier bis sechs Stunden gebildet. Die HR erfolgt sechs bis acht Stunden nach Inokulation. Zu einer Akkumulierung von phenolischen Substanzen kommt es schließlich 12 bis 15 Stunden nach Inokulation mit *P. viticola*. Eine starke Korrelation zwischen der Peroxidase-Aktivität (u. a. Verstärkung der Zellwand) in den Blättern um befallene Bereiche herum und der Resistenz der Weinrebe gegen den Schädling konnte zehn bis zwölf Stunden nach Inokulation an *in vitro*-Pflanzen nachgewiesen werden (Kortekamp & Zyprian 2003).

Da die hypersensitive Reaktion nach dem Gen-für-Gen-Modell von Flor als charakteristisch für die rassenspezifische Erkennung von Schaderregern gilt, wirkt sie spezifisch gegen wenige Pathogene. Aus diesem Grund führen Veränderungen innerhalb der Pathogenpopulation in relativ kurzer Zeit zu einer Überwindung der Resistenz (Király *et al.* 2007). Eine solche Entwicklung konnte bei der Weinrebe für den Resistenzlocus *Rpv3* gegen den Falschen Mehltau beobachtet und beschrieben werden (Casagrande *et al.* 2011, Peressotti *et al.* 2010). Neben lokal relativ eng begrenzten Abwehrreaktionen

Abbildung 8: "Zig-Zag"-Modell der pflanzlichen Immunantwort. Phase 1: Pflanze detektiert PAMPs über PRRs und PAMP-getriggerte Immunantwort (PTI) wird ausgelöst. Phase 2: Effektoren des Pathogens hemmen PTI und es kommt zur Effektor-getriggerten Anfälligkeit (ETS). Phase 3: Pathogeneffektor Avr (rot) wird von NBS-LRR-Protein (R) detektiert und löst Effektor-getriggerte Immunantwort (ETI) aus. Phase 4: Pathogeneffektoren haben roten Effektor verloren und neue Effektoren über bspw. horizontalen Gentransfer erhalten, sodass ETI unterdrückt werden kann. (Quelle: Jones & Dangl 2006)

können Pflanzen über Signalstoffe wie z. B. Salicylsäure (SA; Salicylic acid), Jasmonsäure (JA; Jasmonic acid) oder Ethylen eine weiterreichende systemische Reaktion (SAR) auslösen, um einer weiteren Ausbreitung des Schaderregers über die Wirtspflanze hinweg entgegenzuwirken (Chisholm *et al.* 2006).

Im Laufe der Evolution konnten Pflanzen ein breites Spektrum unterschiedlicher Abwehrmechanismen gegen verschiedene Phytopathogene entwickeln. Dennoch ist kein vollständiger Schutz möglich, da auch die Pathogene in einer Art "Wettrüsten" mit den Pflanzen ständig neue Mechanismen hervorbringen, um Wirtspflanzen erfolgreich besiedeln zu können. Da sich alle kultivierten Rebsorten in Europa bis zur Mitte des 19. Jahrhunderts ohne die eingeschleppten Rebpathogene entwickelt hatten, konnten im Gegensatz zu den nordamerikanischen Wildarten keine Resistenzen aufgebaut werden. Daher ist die gezielte Züchtung neuer widerstandsfähiger Rebsorten durch Einkreuzung und Kombination verschiedener außereuropäischer Resistenzquellen der sinnvollste Weg, um die eingesetzten Fungizidmengen zu reduzieren und gleichzeitig die Zukunft des Weinbaus zu garantieren.

1.4. Genetische Kartierung von Resistenzloci

1.4.1. QTL-Analyse

Zur Lokalisation Merkmals-ausprägender Genombereiche wird die QTL-Analyse (Quantitative <u>T</u>rait <u>L</u>oci) angewendet. Berücksichtigt man die beiden dabei häufig verwendeten Methoden <u>Interval Mapping</u> (IM) und <u>M</u>ultiple <u>QTL Mapping</u> (MQM) zusammen, lassen sich zuverlässige und aussagekräftige QTLs berechnen. Voraussetzung dafür ist allerdings ein nahezu normalverteilter phänotypischer Datensatz von Testindividuen einer für das zu beobachtende Merkmal segregierenden Kreuzungspopulation sowie eine genetische Karte mit möglichst hoher Abdeckung durch molekulare Marker. Für derartige Kartierungsarbeiten werden häufig SSR-Marker (<u>S</u>imple <u>S</u>equence <u>R</u>epeats) verwendet. Aber auch SNP-Marker (<u>S</u>ingle <u>N</u>ucleotide <u>P</u>olymorphism) oder andere Typen von Markern sind möglich. Das Amplifikat von SSR-Markern ist durch wiederholte kurze Sequenzabschnitte von in der Regel zwei bis sechs Basen gekennzeichnet. Die Amplifikation eines diploiden Organismus wie z. B. der Weinrebe über PCR unter Verwendung von SSR-Markern ergibt für jedes Allel spezifische Fragmentlängen. Wenn die Auswertung der Fragmentlängen mittels eines Kapillarsequenziergerätes erfolgt, müssen zum einen die SSR-Marker fluoreszenzmarkiert werden und zum
anderen darf die Amplikongröße maximal 500 bp betragen. Durch die Fluoreszenzmarkierung lassen sich mehrere SSR-Marker in einer Multiplex-PCR kombinieren, vorausgesetzt es kommt zu keiner Überlagerung der erwarteten Fragmentlängen mit der gleichen Fluoreszenzmarkierung. Speziell für Reben konnte bereits gezeigt werden, dass SSR-Marker optimal für Kartierungsarbeiten geeignet sind, da sie über die verschiedenen Arten von *Vitis* eine hohe Konservierung aufweisen (Sefc *et al.* 2009).

Zur Erstellung einer genetischen Karte müssen zu jedem Testindividuum einer Kreuzungspopulation Markerdaten erhoben werden. Als nächstes müssen der genetische Abstand in Centimorgan (cM) und die Kopplung der verschiedenen Marker zueinander berechnet werden. Ein Centimorgan entspricht einer Rekombinationsrate von einem Prozent pro Meiose zwischen zwei Loci. Weil die Inzuchtdepression der Weinrebe sehr stark ist, werden F1-Kreuzungspopulationen von heterozygoten Eltern genutzt. Zunächst wird je eine separate Kopplungskarte pro Elternteil nach einer Doppel-Pseudotestkreuzung errechnet. Diese beiden werden dann zu einer integrierten Karte zusammengeführt. Eine Doppel-Pseudotestkreuzung wird angewendet, da vor der Kreuzung nicht bekannt ist, ob die Allele der Marker homo- oder heterozygot vorliegen (Grattapaglia & Sederoff 1994). Bevor die QTL-Verrechnung erfolgen kann, müssen phänotypische Daten aller Individuen der F1-Kreuzungspopulation erhoben werden. Dabei wird das Merkmal bewertet, für das ein QTL ermittelt werden soll (z. B. Resistenz gegenüber *Plasmopara viticola* durch Blattscheibentests; siehe Schwander *et al.* 2012).

Bei der Berechnung der QTL wird zunächst das 1989 von Lander & Botstein entwickelte Interval Mapping (IM) angewendet. Dabei wird für jede Position innerhalb des Genoms unter Berücksichtigung jeweils zweier nebeneinander liegender Marker die Wahrscheinlichkeit eines segregierenden QTL errechnet (Lander & Botstein 1989). Ein detektierter QTL wird je nach Stärke der Ausprägung mit dem LOD-Wert (Logarithmic Odds Ratio) näher beschrieben. Der LOD-Wert gibt die Wahrscheinlichkeit an, dass zwei Loci in der Nähe liegen und damit zusammen an die nächste Generation vererbt werden. Übersteigt der LOD-Wert die Signifikanzgrenze, geht man von einer Genkopplung aus. In der Regel wird als Signifikanzgrenze der Wert 3 angenommen. Dies bedeutet, die Wahrscheinlichkeit liegt 1000-fach höher, dass die beiden Gene gekoppelt vererbt werden, als dass dies zufällig geschieht. Mithilfe eines Permutationstests lässt sich die Signifikanzgrenze ermitteln (Churchill & Doerge 1994). Um weitere, schwächer ausgeprägte QTL festzustellen, kann die MQM-Methode genutzt werden. Dazu müssen Marker als Cofaktoren in der Nähe bereits ermittelter QTL definiert werden. Ein weiterer Aspekt dieser Methode ist die oftmals genauere Auflösung detektierter QTL, falls deren Konfidenzintervall relativ breit ausfällt (Jansen 1993, Jansen 1994, Jansen & Stam 1994).

1.4.2. Der Resistenzlocus Rpv3

Der Resistenzlocus *Rpv3* wurde durch die Arbeiten von Fischer *et al.* 2004 und Welter *et al.* 2007 am Institut für Rebenzüchtung Geilweilerhof in Siebeldingen durch QTL-Analyse identifiziert und beschrieben. Eine Kreuzungspopulation von 'Regent' x 'Lemberger' (Abbildung 9) mit 144 F1-Individuen wurde auf Resistenz gegen *Plasmopara viticola* phänotypisiert und genetisch kartiert. Die Rotweinsorte 'Regent' wurde 1967 am Institut für Rebenzüchtung Geilweilerhof aus 'Diana' und 'Chambourcin' gekreuzt. Seit 1996 besitzt sie die Zulassung für den Qualitätsweinbau (Fischer *et al.* 2004). Das Resistenzniveau gegenüber dem Echten (*Erysiphe necator*) und Falschen Mehltau (*Plasmopara viticola*) ist hoch (Anonymous 2000). Im Stammbaum von 'Regent' konnten bis zu sieben *Vitis*-Wildarten (*V. aestivalis, V. berlandieri, V. cinerea, V. labrusca, V.*

Abbildung 9: Trauben der Eltern der Kreuzungspopulation 'Regent' x 'Lemberger', links: 'Regent', rechts: 'Lemberger' (Quelle: Bildarchiv JKI, IRZ Geilweilerhof, Siebeldingen)

lincecumii, *V. riparia* und *V. rupestris*) nachgewiesen werden. Der genaue Ursprung der Resistenzeigenschaften ist allerdings noch unklar (Fischer *et al.* 2004). Im Gegensatz zu 'Regent' weist 'Lemberger' keinerlei Pilzwiderstandsfähigkeit gegen den Echten oder Falschen Mehltau auf. Die Abstammung von 'Lemberger' ist unklar. Sicher gilt nur die Tatsache, dass ein Elternteil die Sorte 'Heunisch' bildet (Hachenberger 2000).

Die genetische Karte aus den Arbeiten von Fischer et al. 2004 wurde als Grundlage genutzt, verbessert und zusätzlich 122 neue SSR-Marker mitaufgenommen. Zusätzlich wurden zwölf Resistenzgen-Analoga-korrelierende Marker (RGA-Marker) und drei SCAR-Marker aus den Arbeiten von Akkurt et al. 2007 integriert, sodass insgesamt 398 molekulare Marker für die Erstellung der genetischen Karte verwendet wurden. Nach der QTL-Analyse ergaben sich ein starker QTL auf Kopplungsgruppe 18 (LG 18, Linkage Group 18) und ein schwacher QTL auf LG 4. Der starke Peak auf LG 18 wurde als *Rpv3* bezeichnet und stellte sich als sehr stabil über die Jahre der Phänotypisierung (1999, 2000 und 2004) dar. Er erklärt bis zu 37,3 % der phänotypischen Varianz mit einem maximalen LOD-Wert von 17,6 für das Multiple QTL Mapping (MQM). Das Konfidenzintervall überspannt rund 35 cM, was einem relativ großen Bereich entspricht. Da die Position des QTL-Peaks in den untersuchten Jahren variierte, scheint mehr als ein Resistenzfaktor in diesem Bereich von Rpv3 zu liegen (Welter et al. 2007). Weitere Untersuchungen identifizierten auch die Rebsorte 'Bianca' als Träger des Rpv3-Locus. Dabei wurde zusätzlich nachgewiesen, dass der Resistenzmechanismus auf HR basiert und vermutlich durch TIR-NBS-LRR-Gene vermittelt wird. Dementsprechend müsste die Resistenzantwort rassenspezifisch sein (Bellin et al. 2009). Verschiedene PR-Proteine sind ebenso am Abwehrprozess involviert (Casagrande et al. 2011). Vor einigen Jahren wurde beschrieben, dass ein tschechisches P. viticola-Isolat die Resistenz in 'Bianca' überwinden konnte, da der Resistenzlocus Rpv3 gegen den Falschen Mehltau dort nur monogen verankert ist (Peressotti et al. 2010). Verschiedene Haplotypen des Rpv3-Resistenzlocus konnten in unterschiedlichen Vitis-Akzessionen nachgewiesen werden. Daraus ergibt sich die Möglichkeit, mehrere Rpv3-Haplotypen in neuen Rebsorten zu kombinieren, um einer frühzeitigen Überwindung der Resistenz entgegenzuwirken (Di Gaspero et al. 2012).

1.4.3. Der Resistenzlocus Rpv10

Der Resistenzlocus *Rpv10* wurde am Institut für Rebenzüchtung Geilweilerhof des Julius Kühn-Instituts in Siebeldingen durch QTL-Analyse identifiziert (Schwander *et al.* 2012). Dazu wurde eine 265 F1-Individuen-umfassende Kreuzungspopulation GF.GA-52-42 x 'Solaris' (Abbildung 10) mit SSR-Markern genetisch kartiert. Die Kreuzung wurde 2008 durchgeführt (Schwander *et al.* 2012). Der Zuchtstamm GF.GA-52-42 wurde ebenfalls am Institut für Rebenzüchtung Geilweilerhof aus den Eltern 'Bacchus' und 'Villard blanc' gekreuzt und besitzt gute Resistenzeigenschaften gegenüber dem Falschen Mehltau. Die Resistenzquelle *Rpv3* stammt aus amerikanischen Wildarten und ist beispielsweise auch in den Rebsorten 'Regent' und 'Bianca' zu finden. 'Solaris' ist eine pilzwiderstandsfähige Ertragsrebsorte und wurde 1975 am Staatlichen Weinbauinstitut Freiburg aus 'Merzling' und Geisenheim 6493 gekreuzt. Der weibliche Elternteil

Abbildung 10: Trauben der Eltern der Kreuzungspopulation GF.GA-52-42 x 'Solaris', links: GF.GA-52-42 (Quelle: Bildarchiv JKI, IRZ Geilweilerhof, Siebeldingen), rechts: 'Solaris' (Quelle: Staatliches Weinbauinstitut Freiburg)

Х

'Merzling' stammt aus der Kreuzung 'Seyval' x ('Riesling' x 'Pinot gris'). Für dessen Bestäubung wurde eine Pollenmischung aus der Kreuzungspopulation Geisenheim 6493 verwendet. Diese wurde 1963 in der ehemaligen Tschechoslowakei gekreuzt und an der Forschungsanstalt Geisenheim als Rückkreuzung nach einer 1936 in der ehemaligen Sowjetunion erfolgten Introgression eines Genotyps der asiatischen Wildart *Vitis amurensis* kultiviert (Becker 1981, Schwander 2011).

Insgesamt 208 SSR-Marker wurden für die Erstellung einer integrierten genetischen Karte verwendet. Nach QTL-Analyse wurde je ein starker QTL auf Kopplungsgruppe 18 und 9 festgestellt. Der Peak auf Kopplungsgruppe 18 ist der durch GF.GA-52-42 übertragene und bereits bekannte Resistenzlocus *Rpv3* und erklärt 15,5 % der phänotypischen Varianz mit einem maximalen LOD-Wert von 8,4 für das Intervall Mapping (IM) und 16,8 für das Multiple QTL Mapping (MQM) (Abbildung 12). Resistenz-korrelierender Marker ist UDV-737. Von 'Solaris' stammt der neu identifizierte Resistenzlocus *Rpv10* auf Kopplungsgruppe 9. Der maximale LOD-Wert liegt bei 39,9 für

das IM und 47,9 für das MQM. Er erklärt damit 50 % der phänotypischen Varianz. Das Konfidenzintervall dieses QTLs überspannt 2,1 cM, was rund 314 kb im Referenzgenom PN40024 (12X) entspricht (Abbildung 11). Resistenz-korrelierender Marker ist GF09-46. Innerhalb dieses Bereichs liegen acht RGA vom Typ NBS-LRR und noch weitere potenzielle Resistenz-korrelierende Kandidatengene (Schwander *et al.* 2012).

Abbildung 11: Quantitative Faktoren der Merkmalsausprägung (LOD) der *P. viticola*-Resistenz auf LG 09 der integrierten Karte. Markerabstände in cM. IM (grün, Quadrate) und MQM (rot, Kreise) mit Angabe der 1-LOD- (Box) und 2-LOD- (Linie) Konfidenzintervalle (Quelle: Schwander 2011)

Abbildung 12: Quantitative Faktoren der Merkmalsausprägung (LOD) der *P. viticola*-Resistenz auf LG 18 der integrierten Karte. Markerabstände in cM. IM (grün, Quadrate) und MQM (rot, Kreise) mit Angabe der 1-LOD- (Box) und 2-LOD (Quelle: Schwander 2011)

1.5. Zielsetzung der Arbeit

Ziel dieser Arbeit war es zum einen, den Bereich des Resistenzlocus *Rpv10* vollständig durch Sequenzierung von Amplikons darzustellen. Dazu wurden PCR-Amplifikate einer im *Rpv10*-Bereich homozygoten Selbstung von 'Solaris' zuerst kloniert und sequenziert. Mit bioinformatischen Methoden wurden die Amplikons nach der Sequenzierung zu größeren Contigs assembliert. Da dieser Ansatz jedoch eine vollständige Darstellung des Locus nicht ermöglichte, wurde der finale Lückenschluss über die Nutzung einer BAC-Bank der Rebsorte 'Solaris' durchgeführt. Zum anderen sollte im Anschluss daran, diese Region auf RGA-Kandidatengene hin untersucht werden, die möglicherweise die Resistenz gegenüber dem Falschen Mehltau der Weinrebe (*Plasmopara viticola*) vermitteln. Der genaue Domänenaufbau der RGA-Kandidatengene sollte ebenso untersucht werden. Durch bioinformatische Genvorhersage und Abgleich mit bekannten Resistenz-protein-Domänen wurden potenzielle Resistenz-korrelierende Kandidatengene identifiziert.

Weiterhin erfolgte die Analyse der differentiellen Genexpression verschiedener Genotypen zu unterschiedlichen Zeiten nach Inokulation mit dem Pathogen durch RNA-Sequenzierung ("RNA-Seq"). Drei Genotypen mit unterschiedlichen Kombinationen der Resistenzloci *Rpv3* und *Rpv10* nebst Kontrollen wurden in der Klimakammer künstlich mit einer Sporangiensuspension von *Plasmopara viticola* inokuliert und zu zwei Zeitpunkten nach Inokulation Blattproben entnommen. Nach Präparation und Sequenzierung derer RNA wurden mittels Bioinformatik differentiell exprimierte Gene (DEG) nach Pathogeninokulation identifiziert. Durch den Vergleich der Transkriptome dreier Genotypen mit unterschiedlichen Kombinationen von Resistenzloci sollten Unterschiede in der Resistenzantwort der Weinrebe nach Inokulation mit dem Falschen Mehltau dargestellt werden.

Die potenziellen RGA-Kandidatengene aus der *Rpv10*-Sequenzierung und die wichtigsten DEG aus der RNA-Seq-Analyse wurden anschließend durch Genexpressionsanalyse im Hochdurchsatz untersucht. Zunächst wurde für die Gesamtheit aller ausgewählten Gene eine Genvorhersage mit Vorhersage der Intron-Exon-Struktur durchgeführt. Danach erfolgte die Entwicklung von Oligonukleotidpaaren zur quantitativen Real-Time-PCR. Der dabei untersuchte Probensatz setzte sich aus Blattproben eines weiteren Inokulationsversuches mit einer Sporangiensuspension von *Plasmopara viticola* zusammen. Die Proben wurden wiederum von drei Genotypen mit denselben unterschiedlichen Kombinationen an Resistenzloci wie auch zur RNA-Sequenzierung genommen. Die Probenahme erfolgte nun zu insgesamt sechs Zeitpunkten nach Inokulation mit dem Pathogen. Ziel dieser Analyse war es, die Expression der RGA-Kandidatengene sowie ausgewählter DEG in einem unabhängigen Ansatz zu untersuchen und Resistenzkorrelierende Gene zu identifizieren. Durch Studie der Expressionsverläufe sowie der Art der nach Pathogeninokulation differentiell exprimierten Gene sollte versucht werden, die Abwehrmechanismen nach *P. viticola*-Befall zu verstehen. Dabei sollten durch Vergleich der beteiligten Gene für *Rpv3* und *Rpv10* möglichst charakteristische Abwehrmechanismen sowie die Unterschiede zwischen den beiden Loci dargestellt werden. Positiv eingestufte Resistenz-korrelierende Kandidatengene könnten in einem weiteren Schritt zur Entwicklung verbesserter molekularer Marker für den Einsatz in der Rebenzüchtung verwendet werden.

2. Material und Methoden

2.1. Material

2.1.1. Geräte

Autoklaven

Bezeichnung	Hersteller	Ort
Horizontaler Tischau-	Tuttnauer Europe b.v.	Breda, Niederlande
toklav 2540 EL		
Horizontaler Tischau-	Systec GmbH	Linden, Deutschland
toklav DX-23		
Vertikaler Standautoklav	Tuttnauer Europe b.v.	Breda, Niederlande
5050 ELVC		

Elektrophorese

Bezeichnung	Hersteller	Ort
Agagel Mini	Biometra [®] GmbH	Göttingen, Deutschland
EC 330 Primo Midicell [®]	Thermo Fisher Scientific,	Waltham, Massachusetts,
Gel Electrophoresis Sys-	Inc.	USA
tem		
EC 360M Primo Maxi-	Thermo Fisher Scientific,	Waltham, Massachusetts,
cell [®] Gel Electrophoresis	Inc.	USA
System		
Electrophoresis Power	Consort bvba	Turnhout, Belgien
Supply E861		
Maxi-Plus-Kammer	Biostep [®] GmbH	Jahnsdorf, Deutschland
HU25		
Power Supply EC-105	E-C Apparatus Corporation	Milford, Massachusetts,
		USA

Fluidigm®

Bezeichnung	Hersteller	Ort
Biomark [™] HD	Fluidigm [®] Corporation	South San Francisco, Kali-
		fornien, USA
IFC Controller HX	Fluidigm [®] Corporation	South San Francisco, Kali-
		fornien, USA

Gel-Dokumentation

Bezeichnung	Hersteller	Ort
Dunkelhaube DH-30/32	Biostep [®] GmbH	Jahnsdorf, Deutschland
Quantum ST4	VILBER LOURMAT	Eberhardzell, Deutschland
	Deutschland GmbH	
UV-Transilluminator	Biostep [®] GmbH	Jahnsdorf, Deutschland
UST-20M-8E	-	

Inkubation

Bezeichnung	Hersteller	Ort
Concentrator plus	Eppendorf AG	Hamburg, Deutschland
Inkubationshaube	B. Braun Biotech Interna-	Göttingen, Deutschland
Certomat [®] H	tional (Sartorius AG)	
Schüttelinkubator 3031	GFL Gesellschaft für La-	Burgwedel, Deutschland
	bortechnik GmbH	
Thermomixer compact	Eppendorf AG	Hamburg, Deutschland
Wärmeschrank Heraeus [®]	Thermo Fisher Scientific,	Waltham, Massachusetts,
Function Line	Inc.	USA

Kapillarsequenziergerät

Bezeichnung	Hersteller	Ort
ABI PRISM 3130xl Ge-	Applied Biosystems [™]	Foster City, Kalifornien,
netic Analyzer		USA

Photometer

Bezeichnung	Hersteller	Ort
Mikroplatten-Reader	BMG Labtech GmbH	Ortenberg, Deutschland
CLARIOstar		
NanoPhotometer TM	Implen, Inc.	Westlake Village, Kalifor- nien, USA

pH-Messgerät

Bezeichnung	Hersteller	Ort
C860	Consort bvba	Turnhout, Belgien
FE-20 – FiveEasy™ pH	Mettler-Toledo GmbH	Greifensee, Schweiz

Probenvorbereitung

Bezeichnung	Bezugsquelle	Ort
Schwingmühle Tissue- Lyser manufactured by Retsch [®]	QIAGEN GmbH	Hilden, Deutschland

Schüttler

Bezeichnung	Hersteller	Ort
Reagenzglasschüttler	Beveler & Hobein AG	Zürich, Schweiz
Vortex Genie 2 TM		
Tischschüttler Certomat [®]	B. Braun Biotech Interna-	Göttingen, Deutschland
R	tional (Sartorius AG)	

Sterilbank

Bezeichnung	Hersteller	Ort
Safe 2020	Thermo Fisher Scientific,	Waltham, Massachusetts,
	Inc.	USA

Thermocycler

Bezeichnung	Hersteller	Ort
96-Well GeneAmp [®] PCR	Applied Biosystems [™]	Foster City, Kalifornien,
System 9700		USA
7500 Fast Real-Time	Applied Biosystems [™]	Foster City, Kalifornien,
PCR System		USA
Mastercycler [®] gradient	Eppendorf AG	Hamburg, Deutschland
Mastercycler [®] personal	Eppendorf AG	Hamburg, Deutschland

Waage

Bezeichnung	Hersteller	Ort
Analysewaage BP310S	Sartorius AG	Göttingen, Deutschland
Präzisionswaage M-	Sartorius AG	Göttingen, Deutschland
power		

Zentrifugen

Bezeichnung	Hersteller	Ort
Laborzentrifuge 4K15	Sigma Laborzentrifugen	Osterode am Harz,
	GmbH	Deutschland
Mikroliterzentrifuge Z	HERMLE Labortechnik	Wehingen, Deutschland
160 M		
Tischzentrifuge 2K15	Sigma Laborzentrifugen	Osterode am Harz,
	GmbH	Deutschland

2.1.2. Software

Bioinformatik

Bezeichnung	Hersteller/Bezugsquelle	Ort
BioEdit (Version 7.0.9.0)	Ibis Biosciences	Carlsbad, Kalifornien,
		USA
Chromas Lite (Version	Technelysium Pty Ltd	South Brisbane, Queens-
2.1.1)		land, Australien
CLC Genomics Work-	CLC bio	Aarhus, Dänemark
bench (Version 6.5.1)		
CLC Main Workbench	CLC bio	Aarhus, Dänemark
(Version 7.6.4)		
CLC Sequence Viewer	CLC bio	Aarhus, Dänemark
(Version 7.6.1)		

DNASTAR SeqMan	DNASTAR, Inc.	Madison, Wisconsin, USA
Pro TM (Version 9.1.0)		
DNASTAR EditSeq TM	DNASTAR, Inc.	Madison, Wisconsin, USA
(Version 9.1.0)		
DNASTAR MegAlign TM	DNASTAR, Inc.	Madison, Wisconsin, USA
(Version 9.1.0)		
DNASTAR SeqBuilder TM	DNASTAR, Inc.	Madison, Wisconsin, USA
(Version 9.1.0)		
FastQC High Through-	Babraham Institute	Cambridge, England
put Sequence QC Report		
(Version 0.11.2)		
Tablet (Version	The James Hutton Institute	Aberdeen, Schottland
1.14.10.20)		

Datenbanken

Bezeichnung	Anbieter	Ort
Genbank Vitis – Interna-	Julius Kühn-Institut, Bun-	Quedlinburg, Deutschland
tionaler und europäischer	desforschungsinstitut für	
Rebsortenkatalog (Versi-	Kulturpflanzen	
on 3.3)		
Literaturdatenbank VI-	Julius Kühn-Institut, Bun-	Siebeldingen, Deutschland
TIS-VEA (www.vitis-	desforschungsinstitut für	
vea.de)	Kulturpflanzen	
VIVC – Vitis Internatio-	Julius Kühn-Institut, Bun-	Siebeldingen, Deutschland
nal Variety Catalogue	desforschungsinstitut für	
(www.vivc.de)	Kulturpflanzen	

Gel-Dokumentation

Bezeichnung	Hersteller	Ort
Argus X1 (Version 5.3.18)	Biostep [®] GmbH	Jahnsdorf, Deutschland
Quantum ST4 (Version	VILBER LOURMAT	Eberhardzell, Deutschland
16.07)	Deutschland GmbH	

Grafikprogramme

Bezeichnung	Hersteller	Ort
CorelDRAW [®] X3 (Ver-	Corel Corporation	Ottawa, Kanada
sion 13.0.0.576)		
Corel [®] Photo-Paint [®] X3	Corel Corporation	Ottawa, Kanada
(Version 13.0.0.576)		

Internetressourcen

Bezeichnung	Anbieter	Ort
BLAST®	National Center for Biotechnology Infor-	Bethesda,
(www.blast.ncbi.nlm.nih.g	mation (NCBI)	Maryland,
ov/Blast.cgi)		USA

Conserved Domain	National Center for Biotechnology Infor-	Bethesda,
Search	mation (NCBI)	Maryland,
(www.ncbi.nlm.nih.gov/St		USA
ructure/cdd/wrpsb.cgi)		
Ensembl Genomes (Re-	European Molecular Biology Laboratory	Cambridge,
lease 27, 19.06.2015,	(EMBL) & Wellcome Trust Sanger Insti-	England
Monaco <i>et al.</i> 2014)	tute (WTSI)	
(www.ensemblgenomes.or		
g)		
FGENESH (Solovyev et	Softberry, Inc.	Mount
al. 2006)		Kisco, New
(www.softberry.com/berr		York, USA
y.phtml?topic=fgenesh&g		
roup=programs&subgrou		
p=gfind)		
Gramene (Release 45,	Cold Spring Harbor Laboratory	Cold
04.02.2015, Cunningham		Spring
<i>et al.</i> 2015)		Harbor,
(www.gramene.org)		New York,
		USA
	Oregon State University	Corvallis,
		Oregon,
		USA
	European Molecular Biology Laboratory -	Cambridge,
	European Bioinformatics Institute (EMBL-	England
	EBI)	
Gene Ontology	Gene Ontology Consortium (GOC)	-
(www.geneontology.org,		
Release: 06.08.2015)		
ORF Finder	National Center for Biotechnology Infor-	Bethesda,
(www.ncbi.nlm.nih.gov/go	mation (NCBI)	Maryland,
rf/gorf.html)		USA
PANTHER (<u>P</u> rotein	Prof. Paul D. Thomas, University of	Los Ange-
<u>An</u> alysis <u>Th</u> rough <u>E</u> volu-	Southern California	les, Kalı-
tionary <u>R</u> elationships)		formien,
(www.pantherdb.org)		USA
PubMed	National Center for Biotechnology Infor-	Bethesda,
(www.ncbi.nlm.nih.gov/pu	mation (NCBI)	Maryland,
bmed)		USA
Venny 2.0.2 (Oliveros	Juan Carlos Oliveros, Computational Ge-	Madrid,
2007-2015)	nomics Service, Centro Nacional de Bio-	Spanien
(http://bioinfogp.cnb.csic.e	tecnologia (CNB-CSIC)	
s/tools/venny/)		

Sonstige Programme

Bezeichnung	Hersteller	Ort
7500 Fast System Se-	Applied Biosystems [™]	Foster City, Kalifornien,
quence Detection Soft-		USA
ware (Version 1.4.0.27)		

BioMark TM Data Collec-	Fluidigm [®] Corporation	South San Francisco, Kali- fornien USA
CLARIOstar MARS Da-	BMG Labtech GmbH	Ortenberg, Deutschland
ta Analysis Software		
(Version 3.00 R2)		
EndNote TM (Version X7.4	Thomson Reuters TM	Toronto, Kanada
Build 8818)		
Fluidigm [®] Real-Time	Fluidigm [®] Corporation	South San Francisco, Kali-
PCR Analysis Software		fornien, USA
(Version 4.1.3)		
GeneMapper [®] Software	Applied Biosystems TM	Foster City, Kalifornien,
v5 (Build Id: FC3)		USA

2.1.3. Chemikalien und Verbrauchsmaterial

Antibiotika

Bezeichnung	Lieferant	Ort
Ampicillin	AppliChem GmbH	Darmstadt, Deutschland
Chloramphenicol	SERVA Electrophoresis	Heidelberg, Deutschland
	GmbH	

Bakterien

Bezeichnung	Hersteller	Ort
5-alpha kompetente <i>E</i> .	New England BioLabs [®]	Ipswich, Massachusetts,
<i>coli (</i> High Efficiency)	Inc.	USA
DH5α des Genotyps		
fhuA2 ∆(argF-lacZ)U169		
phoA glnV44 Φ 80		
Δ (lacZ)M15 gyrA96 recA1		
relA1 endA1 thi-1 hsdR17		

Chemikalien

Bezeichnung	Lieferant	Ort
Diethylpyrocarbonat	Carl Roth GmbH + Co. KG	Karlsruhe, Deutschland
(DEPC)		
DNA Stain Clear G	SERVA Electrophoresis	Heidelberg, Deutschland
	GmbH	
Ethanol (absolut)	AppliChem GmbH	Darmstadt, Deutschland
LE Agarose	Biozym Scientific GmbH	Hess. Oldendorf, Deutsch-
		land
LiChrosolv [®] Wasser	Merck KGaA	Darmstadt, Deutschland
2-Mercaptoethanol	Carl Roth GmbH + Co. KG	Karlsruhe, Deutschland
(≥99 %)		
Polyvinylpolypyrrolidon	Carl Roth GmbH + Co. KG	Karlsruhe, Deutschland
(PVPP)		

2-Propanol (≥ 99,8 %)	Carl Roth GmbH + Co. KG	Karlsruhe, Deutschland
Quant-iT [™] PicoGreen [®]	Life Technologies GmbH	Carlsbad, Kalifornien,
dsDNA Reagent		USA
Quant-iT [™] RiboGreen [®]	Life Technologies GmbH	Carlsbad, Kalifornien,
RNA Reagent	-	USA
RNaseZap [®]	Ambion [®] (Thermo Fisher	Waltham, Massachusetts,
	Scientific, Inc.)	USA

Enzyme

Bezeichnung	Bezugsquelle	Ort
Exonuclease I (20 U/µl)	New England BioLabs [®]	Ipswich, Massachusetts,
	Inc.	USA
Fast Digest BamHI	Fermentas GmbH	St. Leon-Rot, Deutschland
Fast Digest <i>Bgl</i> II	Fermentas GmbH	St. Leon-Rot, Deutschland
Fast Digest <i>Eco</i> RI	Fermentas GmbH	St. Leon-Rot, Deutschland
Fast Digest <i>Mfe</i> I	Fermentas GmbH	St. Leon-Rot, Deutschland

Fluidigm®

Bezeichnung	Hersteller	Ort
96.96 Control Line Fluid	Fluidigm [®] Corporation	South San Francisco,
		Kalifornien, USA
96.96 Dynamic Array™	Fluidigm [®] Corporation	South San Francisco,
Chip		Kalifornien, USA
Assay Loading Reagent	Fluidigm [®] Corporation	South San Francisco,
(2x)		Kalifornien, USA
DNA Binding Dye Sample	Fluidigm [®] Corporation	South San Francisco,
Loading Reagent (20x)		Kalifornien, USA
DNA Suspension Buffer	Teknova	Hollister, Kalifornien,
(10 mM TRIS ; 0,1 mM		USA
EDTA; pH 8,0)		
Einwegtücher AlphaWipe [®]	ITW Contamination Control	Hoofddorp, Nieder-
TX [®] 1003		lande
PCR Certified Water	Teknova	Hollister, Kalifornien,
		USA
SsoFast [™] EvaGreen® Su-	Bio-Rad Laboratories, Inc.	Hercules, Kalifornien,
permix with Low ROX		USA
TaqMan [®] Gene Expression	Life Technologies GmbH	Carlsbad, Kalifornien,
Assay (20x)		USA
TaqMan [®] PreAmp Master	Applied Biosystems [™]	Foster City, Kalifor-
Mix (2x)		nien, USA

Größenmarker für Gelelektrophorese

Bezeichnung	Hersteller	Ort
O'GeneRuler™ DNA	Fermentas GmbH	St. Leon-Rot, Deutschland
Ladder Mix		
O'GeneRuler™ 100 bp	Fermentas GmbH	St. Leon-Rot, Deutschland

Plus DNA Ladder		
RiboRuler High Range	Thermo Fisher Scientific,	Waltham, Massachusetts,
RNA Ladder	Inc.	USA

DNA-Polymerasen

Bezeichnung	Hersteller	Ort
KAPA2G [™] Fast Multi-	Kapa Biosystems, Inc.	Wilmington, Massachus-
plex ReadyMix		etts, USA
KAPAHiFi™ Hot Start	Kapa Biosystems, Inc.	Wilmington, Massachus-
PCR Kit		etts, USA
'Long Range PCR'-	PEQLAB Biotechnologie	Erlangen, Deutschland
System	GmbH	
'Mid Range PCR'-System	PEQLAB Biotechnologie	Erlangen, Deutschland
	GmbH	
peqGOLD <i>Taq</i> -DNA-	PEQLAB Biotechnologie	Erlangen, Deutschland
Polymerase	GmbH	
Phusion [®] High-Fidelity	Finnzymes Oy	Vantaa, Finnland
DNA Polymerase		
Power SYBR [®] Green	Applied Biosystems [™]	Foster City, Kalifornien,
PCR Master Mix		USA

Puffer und Nährmedien

Bezeichnung	Zusammensetzung	Hersteller	Ort
50x TAE- Duffor (pH	242 g/l TRIS (Tris(hydroxymethyl)	Carl Roth GmbH +	Karlsruhe,
8,3)	(IIIs(ii) aminomethan) = 2 M	C0. KU	Deutsemanu
	57,1 ml/l 100 % Essigsäure = 1 M	Merck KGaA	Darmstadt, Deutschland
	18,61 g/l EDTA-Na ₂ (Ethyl- endiamin-tetraessigsäure Di- natriumsalz) = 50 mM	Merck KGaA	Darmstadt, Deutschland
50x TE-	60,57 g/l TRIS	Carl Roth GmbH +	Karlsruhe,
Puffer (pH	(Tris(hydroxymethyl)-	Co. KG	Deutschland
8,0)	aminomethan) = 0.5 M		
	18,6 g/l EDTA-Na ₂ (Ethylen-	Merck KGaA	Darmstadt,
	diamin-tetraessigsäure Dinat- riumsalz) = 50 mM		Deutschland
6x DNA-	30 % Glycerin in ddH ₂ O	AppliChem GmbH	Darmstadt,
Ladeputter			Deutschland
	0,35 % Orange G	Merck KGaA	Darmstadt,
			Deutschland
	0,25 % Bromphenolblau	Merck KGaA	Darmstadt,
			Deutschland
	0,25 % Xylene Cyanol	Sigma-Aldrich [®]	St. Louis,
			Missouri,
			USA
LB-Medium	10 g/l Bacto-Trypton	A. Hertenstein Ge-	Würzburg,

(pH 7 +/- 0,2)		sellschaft für Labor- und Medizintechnik mbH	Deutschland
	5 g/l Hefeextrakt	A. Hertenstein Ge- sellschaft für Labor- und Medizintechnik mbH	Würzburg, Deutschland
	10 g/l Natriumchlorid	Merck KGaA	Darmstadt, Deutschland
	1 1 ddH ₂ O	-	-
LB-Agar (pH 7 +/- 0,2)	10 g/l Bacto-Trypton	A. Hertenstein Ge- sellschaft für Labor- und Medizintechnik mbH	Würzburg, Deutschland
	5 g/l Hefeextrakt	A. Hertenstein Ge- sellschaft für Labor- und Medizintechnik mbH	Würzburg, Deutschland
	10 g/l Natriumchlorid	Merck KGaA	Darmstadt, Deutschland
	15 g/l Bacto-Agar	A. Hertenstein Ge- sellschaft für Labor- und Medizintechnik mbH	Würzburg, Deutschland
	1 1 ddH ₂ O	-	-
TfB1 (pH 5,8)	7,46 g/l KCl = 100 mM		
Steril filtriert	9,90 g/l MnCl ₂ = 50 mM		
	$1,47 \text{ g/l CaCl}_2 = 10 \text{ mM}$		
	2,95 g/l K-Acetat = 30 mM		
	15 % Glycerin = 66,7 ml/l		
TfB2	2,09 g/l MOPS (pH 7) = 10		
Steril filtriert	<u>mM</u>		
	1,21 g/l RbCl = 10 mM		
	$\frac{11,03 \text{ g/l CaCl}_2 = 75 \text{ mM}}{15.07 \text{ Class arise}} = (7.7 - 17)^{1/1}$		
	15 % Glycerin = 66, $/ \text{ ml/l}$		

Reaktions- und Aufreinigungskits

Bezeichnung	Hersteller	Ort
CloneJET [™] PCR Cloning	Fermentas GmbH	St. Leon-Rot, Deutsch-
Kit		land
GeneJET [™] Gel Extraction	Fermentas GmbH	St. Leon-Rot, Deutsch-
Kit		land
GeneJET [™] PCR Purifica-	Fermentas GmbH	St. Leon-Rot, Deutsch-
tion Kit		land
GeneJET [™] Plasmid Mi-	Fermentas GmbH	St. Leon-Rot, Deutsch-
diprep Kit		land
GeneJET [™] Plasmid Mi-	Fermentas GmbH	St. Leon-Rot, Deutsch-
niprep Kit		land

High Capacity cDNA Re- verse Transcription Kit	Applied Biosystems [™]	Foster City, Kalifor- nien, USA
peqGOLD Plant DNA Mini Kit	PEQLAB Biotechnologie GmbH	Erlangen, Deutschland
RNase-Free DNase Set	QIAGEN GmbH	Hilden, Deutschland
RNeasy [®] MinElute [®] Cleanup	QIAGEN GmbH	Hilden, Deutschland
Spectrum [™] Plant Total RNA Kit	Sigma-Aldrich [®]	St. Louis, Missouri, USA

Sonstiges

Bezeichnung	Hersteller	Ort
Drucksprüher Tukan [®] (1,5	GLORIA Haus- und Garten-	Witten, Deutschland
1)	geräte GmbH	
Zählkammer "Neubauer"	Paul Marienfeld GmbH &	Lauda-Königshofen,
	Co. KG	Deutschland

Verbrauchsmaterial

Bezeichnung	Hersteller/Bezugsquelle	Ort
96-Well PCR-Platten	Kisker Biotech GmbH & Co.	Steinfurt, Deutschland
	KG	
Biologische Testschalen (23	Nunc [™] (Thermo Fisher Sci-	Waltham, Massachu-
x 23 x 2,5 cm)	entific, Inc.)	setts, USA
MicroAmp [®] Optical 96-	Applied Biosystems TM	Foster City, Kalifor-
Well Reaktionsplatten		nien, USA
Mikrotiterplatten	BRAND GmbH + CO KG	Wertheim, Deutschland
BRAND plates [®]		
Petrischalen	Greiner Bio-One International	Kremsmünster, Öster-
	GmbH	reich
Reaktionsgefäße (0,2 und	Thermo Fisher Scientific, Inc.	Waltham, Massachu-
0,5 ml)		setts, USA
Reaktionsgefäße (1,5 und 2	Eppendorf AG	Hamburg, Deutschland
ml)		
Zentrifugenröhrchen (15	VWR International GmbH	Darmstadt, Deutschland
und 50 ml)		

2.1.4. Pflanzenmaterial

2.1.4.1. Die Kreuzungspopulation GF.GA-52-42 x 'Solaris'

Ein Teil der Untersuchungen wurde mit Individuen aus der Kreuzungspopulation GF.GA-52-42 ('Bacchus' x 'Villard blanc') und 'Solaris' ('Merzling' x Geisenheim 6493) durchgeführt. Es handelt sich dabei um die Population, mit deren Hilfe der Resistenzlocus *Rpv10* (,,<u>R</u>esistance against <u>Plasmopara viticola</u>") in 'Solaris' ursprünglich identi-

fiziert werden konnte (Schwander *et al.* 2012). Die Kreuzungsnachkommen sind aus dem Jahr 2008. Daher besitzt diese Kreuzung die Kreuzungsnummer 2008-059. Einzel-

Abbildung 13: Sämlinge der Kreuzungspopulation GF.GA-52-42 x 'Solaris' im Gewächshaus (Quelle: Florian Schwander)

ne Genotypen daraus werden mit der Zuchtnummer 2008-059-XXX bezeichnet. XXX steht dabei für eine fortlaufende Nummer von 001 bis 265, da 265 Pflanzen für die Erhebung von phänotypischen sowie genetischen Daten zur QTL-Berechnung verwendet wurden (Schwander *et al.* 2012). Aus der Population wurden die beiden Genotypen 2008-059-020 sowie 2008-059-121 verwendet. Ende 2012 wurden diese über Zweiaugenstecklinge vegetativ vermehrt und weiter im Gewächshaus kultiviert, um die jeweiligen Untersuchungen im Rahmen dieser Arbeit unter kontrollierteren Bedingungen als im Freiland durchführen zu können. Aus den Arbeiten von Schwander *et al.* war bekannt, dass der Genotyp 2008-059-020 kein *Rpv3* sowie kein *Rpv10* trägt. Genotyp 2008-059-121 besitzt sowohl *Rpv3* als auch *Rpv10* (Schwander 2011).

2.1.4.2. Ausgewählte Vitis-Arten und -Sorten

Neben Pflanzen aus der Kreuzungspopulation GF.GA-52-42 x 'Solaris' wurden noch weitere Zuchtstämme und Rebsorten aus der Sammlung des Instituts für Rebenzüchtung Geilweilerhof für die unterschiedlichen Analysen verwendet. Die gegenüber dem Fal-

schen Mehltau der Weinrebe hoch anfällige Sorte 'Müller-Thurgau' wurde bei allen Inokulationsversuchen mit *Plasmopara viticola* als Positivkontrolle genutzt. Zur Sequenzierung des *Rpv10*-Locus wurde ein Selbstungsnachkomme von 'Solaris' verwendet (2011-003-013), welcher homozygot im Bereich von *Rpv*10 ist. 'Solaris' wurde genutzt, um eine BAC-Bank (<u>Bacterial Artificial Chromosome</u>) herstellen zu lassen.

2.1.5. Sporenmaterial von Plasmopara viticola

Für Inokulationsversuche mit *Plasmopara viticola* wurde Sporenmaterial von Blättern verschiedener anfälliger Rebsorten aus dem Freiland gesammelt. Dazu wurde nach typischen Anzeichen einer *Plasmopara viticola*-Infektion – sog. "Ölflecken" auf der Oberseite der Blätter – gesucht und die jeweiligen Blätter über Nacht dunkel und mit hoher Luftfeuchtigkeit in einem Plastikbeutel inkubiert. Am nächsten Tag hatte sich anstelle des Ölflecks ein dichter Teppich von Sporangienträgern gebildet, welcher anschließend zur Herstellung einer Sporangiensuspension durch Abpinseln der Sporangienträger verwendet wurde.

2.2. Methoden

2.2.1. Inokulationsversuche mit Plasmopara viticola

Zur Untersuchung des Transkriptoms der Weinrebe zu einem bestimmten Zeitpunkt nach Pathogenbefall wurden verschiedene Genotypen künstlich mit einer zuvor durch Abpinseln eines befallenen Blattes hergestellten Sporangiensuspension inokuliert. Zunächst wurde mithilfe einer Neubauer-Zählkammer die Sporangiendichte der Suspension ausgezählt und anschließend auf eine Konzentration von ungefähr 40.000 Sporangien pro Milliliter mit Wasser eingestellt.

Abbildung 14: Versuchspflanzen in der Klimakammer vor der Inokulation mit dem Pathogen

Je drei Pflanzen (biologische Replikate) der Genotypen 2008-059-020 (ohne *Rpv3* / ohne *Rpv10*), 2008-059-121 (mit *Rpv3* und *Rpv10*) aus der Kreuzungspopulation

GF.GA-52-42 x 'Solaris', der im *Rpv10*-Locus homozygoten Selbstung von 'Solaris' (2011-003-013) sowie 'Müller-Thurgau' als Positivkontrolle der Infektion wurden in einer Klimakammer mit einer Sprühflasche mit der vorher angesetzten Sporangiensuspension einmal bis zum Abtropfen der Blätter (insbesondere von der Blattunterseite) besprüht und anschließend 24 Std. lang im Dunkeln bei ungefähr 25 °C und maximaler Luftfeuchtigkeit inkubiert. Nach einem Tag wurde der normale Tag-Nacht-Rhythmus von 16 Std. Tag und 8 Std. Nacht eingestellt (siehe Tabelle 4).

Tabelle 4: Parameter für die Inokulationsversuche mit Plasmopara viticola

	Zeit	Temperatur	Luftfeuchte	Beleuchtung
Tag	6:00 – 22:00 Uhr	ca. 25 °C	ca. 60 %	65 klux
Nacht	22:00 – 6:00 Uhr	ca. 22 °C	ca. 100 %	-

Die Probenahme für die RNA-Seq-Analyse erfolgte unmittelbar vor der Inokulation (0 hpi; "hours post inoculation") mit dem Pathogen sowie sechs Stunden nach der Inokulation (6 hpi) im April 2014. Jeweils ein vollständiges Blatt wurde dazu in flüssigem Stickstoff schockgefroren. Die drei biologischen Replikate wurden mit den römischen Zahlen I, II und III versehen. Beim zweiten Inokulationsexperiment im April 2015 wurden Proben zu weiteren Zeitpunkten nach Inokulation mit dem Pathogen genommen. Zusätzlich zu den Zeitpunkten 0 hpi und 6 hpi wurden die Zeitpunkte 3 hpi, 12 hpi, 24 hpi sowie 72 hpi ausgewählt. Die Proben aus diesem Experiment wurden für die Genexpressionsanalyse der DEG (Differentiell exprimierte Gene) genutzt.

2.2.2. DNA-Extraktion

Die Extraktion der DNA aus frischem Blattmaterial erfolgte mit dem peqGOLD Plant DNA Mini Kit von PEQLAB laut Arbeitsanleitung des Herstellers. Dabei wurden Zentrifugationssäulen mit Silikamembranen verwendet, an die die genomische DNA während der Arbeitsschritte gebunden wird. Als Ausgangsmaterial wurde ca. 1 cm² Blattmaterial vom dritten Blatt eines Triebes gesammelt, in flüssigem Stickstoff schockgefroren und anschließend in einer Schwingmühle (QIAGEN GmbH) homogenisiert. Nach der finalen Elution mit jeweils 50 µl Elutionspuffer wurden die DNA-Konzentration und Reinheit der Proben spektralphotometrisch mit dem NanoPhotometerTM von Implen bestimmt und alle DNA-Proben im Anschluss mit ddH₂O (<u>d</u>oppelt <u>d</u>estilliertem Wasser) auf 5 ng/µl eingestellt.

2.2.3. Polymerase-Kettenreaktion und Agarose-Gelelektrophorese

Zum Nachweis spezifischer Genomabschnitte wurde die Polymerasekettenreaktion (PCR) verwendet. Für die meisten Anwendungen wurde die Phusion® High-Fidelity DNA Polymerase von Finnzymes in einem 20 µl-Ansatz genutzt. Dazu wurden 0,4 µM jedes Oligonukleotids (Primer), ungefähr 10 ng Template-DNA als Matrize, 40 mM eines dNTP-Mixes (jeweils 10 mM von dATP, dCTP, dGTP und dTTP) zusammen mit dem 5x HF Phusion® Reaktionspuffers vermischt und mit ddH₂O auf ein Gesamtvolumen von 20 µl aufgefüllt. Die Amplifikation erfolgte je nach Anzahl der Proben bzw. Reaktionsgefäße mit dem Mastercycler® personal (Eppendorf AG) oder 96-Well GeneAmp® PCR System 9700 (Applied BiosystemsTM). Nach der initialen Denaturierung für 30 s bei 98 °C folgten zyklisch 10 s Denaturierung bei 98 °C, 10 s Annealing (je nach Oligonukleotid bei unterschiedlichen Annealingtemperaturen) sowie die Elongation bei 72 °C (30 s pro kb Amplifikat). Je nachdem wieviel Amplifikationsprodukt hergestellt werden sollte, wurde die Anzahl der Zyklen zwischen 25 und bis zu 40 variiert. Nach der finalen Elongation bei 72 °C für 7 min. war die Reaktion beendet und die Produkte wurden im Thermocycler zur Aufbewahrung auf 10 °C herunter gekühlt.

Je nach Art des Templates, der gewünschten Amplifikate bzw. der Anwendung wurden neben der Standard-PCR mit der Phusion®-Polymerase noch weitere DNA-Polymerasen verwendet bzw. getestet (siehe 2.1.3 Chemikalien und Verbrauchsmaterial). Darin sind jeweils unterschiedliche Polymerasen und spezielle Reaktionspuffer für Templates mit Sekundärstruktur sowie repetitiven Sequenzen bzw. zur Darstellung längerer PCR-Amplikons aufgeführt.

2.2.4. Klonierung von PCR-Amplifikaten und "Primer Walking"

Da manche Oligonukleotidpaare neben dem gewünschten Produkt auch weitere unspezifische Produkte ergaben, mussten die PCR-Amplifikate aus der *Rpv10*-Region vor der Sequenzierung zunächst kloniert werden, um eine spätere Überlagerung der beiden Allele zu verhindern. Zur Klonierung wurde das ConeJET[™] PCR Cloning Kit von Fermentas verwendet. Der enthaltene Vektor pJET1.2/blunt trägt das Gen für das Restriktionsenzym *Eco*47IR, welches letal auf den Wirtsorganismus wirkt. Bei erfolgreicher Klonierung des Genprodukts wird die Funktion des Enzyms durch den Einbau des zu transformierenden Stücks DNA zerstört und die letale Wirkung des codierten Restriktionsenzyms geht verloren (siehe Abbildung 15). Somit können nur Bakterienzellen mit rekombinanten Plasmiden Kolonien bilden.

Die Durchführung der Transformation erfolgte genau nach dem beiliegenden "Blunt-End Cloning" Protokoll. Eine "Sticky-End"-Behandlung war im Vorfeld nicht notwendig, da die Phusion[®] High-Fidelity DNA Polymerase PCR-Produkte "blunt-ends" amplifiziert. Zur Transformation wurden die chemokompetenten Zellen *E. coli* DH5α des Geno-

Abbildung 15: Zur Klonierung verwendeter Vektor pJET1.2/blunt (Quelle: Fermentas)

typs fhuA2 Δ (argF-lacZ)U169 phoA glnV44 Φ 80 Δ (lacZ)M15 gyrA96 recA1 relA1 end-Al thi-1 hsdR17 von NEB verwendet. Teilweise wurden chemokompetente Zellen auch nach dem Protokoll von Hanahan hergestellt (Hanahan 1983). Als erstes wurde dabei eine Übernachtkultur einer Einzelkolonie von E. coli DH5α erstellt. 1 % der Kultur wurde am nächsten Morgen in 200 ml frisches LB-Medium überimpft und die Zellen bis zu einer OD₆₀₀ (Optische Dichte bei einer Wellenlänge von 600 nm) von ca. 0,4 bis 0,5 inkubiert. Danach wurden diese 30 min. auf Eis gestellt, 10 min. bei 1000 g (4 °C) abzentrifugiert und das Pellet in jeweils 30 ml TfB1 (Transformation Buffer 1) resuspendiert. Nun wurden die Zellen 1 Std. auf Eis gestellt, 8 min. bei 1000 g (4 °C) abzentrifugiert und das Pellet in je 4 ml TfB2 (Transformation Buffer 2) pro 100 ml Kultur resuspendiert. Nach dem Aliquotieren zu je 50 µl wurden die Zellen in flüssigem Stickstoff schockgefroren und bis zur Verwendung bei -70 °C aufbewahrt. Auch die Durchführung der Transformation erfolgte streng nach dem mitgelieferten Protokoll des Herstellers NEB. Jeweils 50, 100 und 200 µl der Zellsuspension wurden auf LB-Platten mit 100 µg Ampicillin pro ml ausplattiert und über Nacht bei 37 °C inkubiert. Am nächsten Tag wurden die entstandenen Kolonien in einer LB-Flüssigkultur mit Ampicillin (100 µg/ml) wiederum über Nacht angezogen und im Anschluss die Plasmid-DNA präpariert. Zuerst wurde das GeneJETTM Plasmid Miniprep Kit von Fermentas dazu verwendet.

Das Insert wurde dann mit dem Restriktionsenzym *Bg*/II überprüft. Die Größe des Vektors pJET1.2/blunt liegt bei etwa 3 kb. Dementsprechend waren nach der Elektrophorese mindestens zwei unterschiedlich große Banden auf dem Agarose-Gel zu erkennen: der Vektor (ca. 3 kb) sowie das jeweilige Insert, das durch das Enzym *Bgl*II aus der "Multiple Cloning Site" heraus geschnitten wurde. Je nach erwarteter Amplikongröße der PCR konnten auf diese Weise positive mit der korrekten Insertgröße von "falsch" positiven rekombinanten Plasmiden unterschieden werden bevor diese anschließend zur Sequenzierung gegeben wurden.

Um möglichst schnell eine größere Anzahl von Plasmiden zu sequenzieren, wurde deren Sequenzierung mittels "Primer Walking" durchgeführt. Dazu wird eine klassische Sequenzierung nach Sanger vom Vektor her in das Insert durchgeführt (Sanger *et al.* 1977). Rund 1.000 bp werden dabei pro Sequenzlauf gelesen. Im Anschluss wurde ein neues Oligonukleotid anhand der neuen Sequenzinformation definiert und dort beginnend der nächste Sequenzierschritt durchgeführt. Die jeweiligen Oligonukleotide wurden so entwickelt, dass eine Überlappung zwischen den beiden Sequenzabschnitten gegeben war und dadurch eine spätere Assemblierung der Sequenzstücke ermöglicht wurde. Diese Vorgehensweise wurde bis zur kompletten Sequenzierung des Inserts wiederholt.

2.2.5. Sequenzierung einiger Klone aus der BAC-Bank von 'Solaris'

Da die vollständige Darstellung des Rpv10-Locus durch Sequenzierung von PCR-Amplikons mittels Primer Walking nicht ohne Probleme funktionierte und zwei Lücken auch mit anderen PCR-Techniken wie z. B. Mid- oder Long-Range-PCR nicht zu schließen waren, wurde mithilfe von BACs (Bacterial Artificial Chromosomes) versucht, diese Bereiche zu vervollständigen. BACs sind Vektoren, die Inserts von bis zu 300 kb aufnehmen können. Darüber lassen sich beispielsweise größere Bereiche genomischer DNA durch Sequenzierung darstellen (O'Connor et al. 1989, Shizuya et al. 1992). Ungefähr 80 g junge Blattmasse der Rebsorte 'Solaris' wurde gesammelt, in flüssigem Stickstoff schockgefroren und auf Trockeneis an einen externen Dienstleister (Genomics Institute der Clemson University, Clemson, South Carolina, USA) gesendet, der eine BAC-Bank im Auftrag erstellte. Als erstes wurde hochmolekulare DNA aus den Blättern extrahiert und mit einem Restriktionsenzym fragmentiert. DNA-Fragmente mit einer Größe von mindestens 140 kb wurden in den linearisierten und dephosphorylierten BAC-Vektor pCUGIBAC1 (Luo et al. 2001) ligiert und anschließend durch Elektroporation in den Escherichia coli Stamm K12 DH10B (F- endAl recAl galE15 galK16 nupG rpsL $\Delta lacX74 \Phi 80 lacZ\Delta M15$ araD139 $\Delta (ara, leu)7697$ mcrA $\Delta (mrr-$ 45

hsdRMS-mcrBC) λ -) transformiert. Aus 21 "Pools" mit jeweils 2.000 CFU (Colony Forming Unit) wurde eine BAC-Bibliothek mit insgesamt 42.000 BAC-Klonen erstellt. Erwartet wurde eine bis zu zehnfache Abdeckung ("Coverage") des 'Solaris'-Genoms (ca. 480 Mb) durch die BAC-Bank. Dies bedeutet, dass ungefähr zehnmal das Genom von 'Solaris' durch alle BAC-Klone der BAC-Bank abgebildet werden kann. Mit zwei für den Bereich von Rpv10 spezifischen Oligonukleotidpaaren als SSR-Marker (Simple Sequence Repeat-Marker) (GF09-46 und GF09-65), die die beiden Sequenzlücken im Rpv10-Locus umspannten, wurden die 21 "Pools" mittels PCR getestet und zwei positive "Pools" identifiziert. Diese beiden positiven "Pools" wurden auf Selektivmedium ausplattiert und in jeweils 24 384-Well-Mikrotiterplatten überführt. Dies ergab eine Gesamtzahl von 18.432 BAC-Klonen in 48 384-Well-Mikrotiterplatten. Durch DNA-Hybridisierung mit dem Marker GF09-46 konnten 14 positive Klone identifiziert werden. Die Hybridisierung mit dem Marker GF09-65 ergab 19 positive Klone. Darunter waren 13 BAC-Klone, die für beide Marker ein positives Ergebnis ergaben. Nach der Fertigstellung aller Arbeiten wurde die 48 Mikrotiterplatten (je 384 Wells) umfassende BAC-Bank und die identifizierten positiven Klone an das Institut für Rebenzüchtung Geilweilerhof gesendet.

Vor der Sequenzierung mussten die positiven Klone final überprüft werden. Primär sollten BAC-Klone mit dem Resistenz-tragenden Allel identifiziert und sequenziert werden. Aber auch die Untersuchung des alternativen Allels ist von Interesse, da Unterschiede für die Resistenz gegen den Falschen Mehltau der Weinrebe stehen könnten. Nach DNA-Präparation der vorausgewählten doppelt positiven Klone mithilfe des Gene-JETTM Plasmid Miniprep Kit wurde mit dem Marker GF09-65 eine PCR durchgeführt und über Agarose-Gelelektrophorese analysiert. Dieser Marker liefert nur bei Vorhandensein des Resistenz-tragenden Allels eine Bande (312 bp). Daher konnte das Ergebnis in diesem Fall ohne den Einsatz eines Kapillarsequenziergerätes dargestellt werden. Zusätzlich zu den Markern GF09-46 und GF09-65 wurde der Marker GF09-47 (siehe Tabelle 5) zur Überprüfung genutzt, da dieser am hinteren Ende des *Rpv10*-Locus liegt und sich damit die Sequenzbereiche der BAC-Inserts genauer bestimmen ließen (Schwander 2011). Bei durchschnittlich 140 kb Insertgröße sollte der direkt an den *Rpv10*-Locus (ca. 90 kb) angrenzende Bereich ebenfalls darstellbar sein.

Marker	Sequenz	Markie- rung	Fragmentgröße (resistent/anfällig)
GF09-46 (Forward)	GAGAGATTTGAGGGA TTGTTGG	TAMRA	416 hn / 425 hn
GF09-46 (Reverse)	ATCCACGTTTGTAGCC TTTTGT	-	410 op7 425 op
GF09-47 (Forward)	CCACATTCTTCCTGCA CATAAA	6-FAM	200 hn / 206 hn
GF09-47 (Reverse)	CTGTTGTAAGGGCTCC CAATTA	-	— 299 бр7 296 бр
GF09-65 (Forward)	ATCCAAAGTGATTGG CTCAAGT	HEX	312 hn /
GF09-65 (Reverse)	F09-65 (Reverse) ATTCGTCCATATCCAC - AACCTC -	-	512 op / -

Tabelle 5: Zur Auswahl der BAC-Klone verwendete SSR-Marker (Schwander 2011)

Für die SSR-Marker GF09-46 und GF09-47 wurde ein Kapillarsequenziergerät zur Längenbestimmung der PCR-Fragmente verwendet, da der Größenunterschied zwischen resistentem und anfälligem Allel mit diesen Markern nur wenige Basen beträgt und über klassische Agarose-Gelelektrophorese nicht zweifelsfrei unterscheidbar ist. Die PCR wurde in einer Multiplexreaktion durchgeführt, d. h. beide SSR-Marker wurden zusammen in einen Ansatz gegeben. Durch die unterschiedliche Fluoreszenzmarkierung am 5'-Ende des Forward-Oligonukleotides der Marker (siehe Tabelle 5) ist die Auswertung mit einem Kapillarsequenziergerät möglich. Wichtig dabei ist, dass sich Marker im gleichen Ansatz entweder durch den gewählten Fluoreszenzfarbstoff oder die erwartete Fragmentlänge der Amplikons unterscheiden, da ansonsten keine eindeutige Zuordnung der PCR-Produkte möglich wäre. Die Reaktion sah je zu testendem BAC-Klon wie folgt aus:

Komponente	Volumen pro Reaktion
KAPA2G [™] Fast Multiplex ReadyMix (2x)	5 µl
GF09-46_For (10 μM) mit TAMRA-Markierung	0,1 µl
GF09-46_Rev (10 μM)	0,1 µl
GF09-47_For (10 μM) mit 6-FAM-Markierung	0,1 µl
GF09-47_Rev (10 μM)	0,1 µl
BAC-DNA (unverdünnt)	1 µl
ddH ₂ O	3,6 µl
Gesamtvolumen	10 µl

Tabelle 6: Ansatz der Multiplex-PCR zur Überprüfung der BAC-Klone

Als Programm wurde am Thermocycler das folgende eingestellt:

Temperatur	Zeit	Zyklen
95 °C	3 min.	-
95 °C	15 s	
60 °C	30 s	30x
72 °C	30 s	
72 °C	7 min.	-
10 °C	00	-

Tabelle 7: Thermocycler-Programm der Multiplex-PCR

Nach Ende des PCR-Laufs wurden die Proben 1:5 mit ddH₂O verdünnt und jeweils 1 μ l der Probe zu 12 μ l ddH₂O sowie 1 μ l LIZ®-Fluoreszenz-markiertem Größenstandard gegeben. Danach wurden die Proben 5 min. bei 95 °C denaturiert, auf 4 °C abgekühlt, 1 min. zur Entfernung etwaiger Luftblasen zentrifugiert und in das Kapillarsequenziergerät gestellt. Nach dem Lauf wurden die Ergebnisse mit dem Programm "GeneMapper[®] Software v5" ausgewertet. Jeweils zwei BAC-Klone mit dem Resistenz-tragenden bzw. Nicht-Resistenz-tragenden Allel des *Rpv10*-Locus von 'Solaris' wurden für die Sequenzierung ausgewählt. Die insgesamt vier BAC-Klone wurden auf frischen LB-Platten mit Chloramphenicol (12,5 μ g/ml) ausgestrichen, über Nacht bei 37 °C inkubiert und an einen externen Sequenzierdienstleister geschickt.

Dort wurde zuerst deren DNA präpariert, eine Shotgun library pro Klon durch mechanische Scherung der DNA erstellt und über MiSeq V3 (2x 300 bp "paired-end reads")

Abbildung 16: Schema der Konstruktion des verwendeten BAC-Vektors pCUGIBAC1 aus pIndigoBAC536 und pGEM-4Z (Quelle: Luo *et al.* 2001)

sequenziert. Die Rohdaten wurden am Institut für Rebenzüchtung Geilweilerhof mit der CLC Genomics Workbench 6.5.1 von CLC bio weiterverarbeitet. Nach dem Import in das Programm wurden die Daten zunächst nach Qualitätsparamatern getrimmt (Funktion "Trim Sequences" im Ordner "NGS Core Tools"), d. h. reads mit schlechten Qualitätseigenschaften aussortiert (Quality score: 0,05; Ambiguous nucleotides: 2). Danach wurden noch eventuell vorhandene Reste des verwendeten BAC-Vektors pCUGIBAC1, der aus den beiden Vektoren pIndigoBAC536 und pGEM-4Z hervorgegangen ist (siehe Abbildung 16), von den reads entfernt. Das korrekte Ligationsprodukt pCUGIBAC1 wurde durch Blaufärbung der Kolonien auf LB-Platten mit X-Gal-IPTG selektioniert. Eines der Ausgangsplasmide (pIndigoBAC536) trägt das *lacZ*-Gen, das für das Enzym β-Galactosidase codiert. IPTG (Isopropyl-β-D-thiogalactopyranosid) induziert das *lacZ*-Operon und die β-Galactosidase spaltet X-Gal (BCIG; 5-Brom-4-chlor-3-indoxyl-β-Dgalactopyranosid) zu Galactose und 5-Brom-4-chlor-indoxyl, welches durch den Luftsauerstoff zu dem blauen Farbstoff 5,5'-Dibrom-4,4'-dichlor-indigo oxidiert wird (Ullmann *et al.* 1967). Nach Bereinigung der Sequenzdaten von Vektorrestsequenzen erfolgte schließlich die De Novo-Assemblierung jeweils aller reads eines BAC-Klons zu größeren Contigs.

2.2.6. RNA-Extraktion und fluorimetrische Vermessung

Im Vergleich zu DNA ist der Umgang mit RNA wesentlich schwieriger, da sie durch die ubiquitär vorkommenden RNasen ohne besondere Maßnahmen sehr schnell abgebaut werden würde. RNA darf daher bei Verwendung nur auf Eis aufbewahrt und sollte ansonsten bei -70 °C gelagert werden. Alle Gerätschaften und Reagenzien, die zur Extraktion von RNA verwendet werden, müssen frei von RNasen sein. Dies kann durch Verwendung frischer Pipettenspitzen und Reaktionsgefäße sichergestellt werden. Generell müssen während dem gesamten Umgang mit RNA Handschuhe getragen und regelmäßig gewechselt werden. Doppelt destilliertes Wasser wurde durch Behandlung mit DEPC (0,1 % DEPC, Diethylpyrocarbonat zugeben, über Nacht rühren lassen und danach autoklavieren) RNase-frei gemacht. Wie bei der Extraktion von DNA auch, ist zunächst die Homogenisierung des in flüssigem Stickstoff schockgefrorenen Blattmaterials mit der Schwingmühle (QIAGEN GmbH) notwendig. In jedes 2 ml-Reaktionsgefäß wurden zwei Stahlkügelchen und eine Spatelspitze PVPP (Polyvinylpolypyrrolidon) zur Bindung in den Proben vorkommender Phenole gegeben. Die Stahlkügelchen wurden zuvor durch 6 Std. trockene Hitze bei 250 °C von RNasen befreit. Die Arbeitsfläche wurde mit RNaseZap[®] gereinigt.

Danach erfolgte die Extraktion mit dem Spectrum[™] Plant Total RNA Kit von Sigma-Aldrich[®] entsprechend des beiliegenden Handbuchs. Alle Zentrifugationsschritte wurden mit 16.000 x g durchgeführt. Das Binden der RNA an die Säule erfolgte laut Protokoll B des Handbuchs auf Seite 7. Im Anschluss daran wurde die Säule mit 300 µl Waschlösung 1 gewaschen und dann die DNase I-Behandlung auf der Säule durchgeführt (RNase-Free DNase Set von QIAGEN). Pro Probe wurden 87,5 µl RNase-freies ddH₂O, 10 µl RDD-Puffer (Eigenname des Herstellers) und 2,5 µl DNase I angesetzt, auf die Säule pipettiert und 10 min. bei Raumtemperatur inkubiert. Anschließend wurde die Extraktion gemäß des Protokolls mit dem ersten Waschschritt fortgeführt. Von jeder Probe wurde am Ende zur Sicherheit noch eine zweite Elution in ein weiteres Reaktionsgefäß durchgeführt.

Im Anschluss an die Extraktion wurde die RNA-Konzentration der Proben fluorimetrisch mit dem Fluoreszenzfarbstoff Quant-iT[™] RiboGreen[®] RNA Reagent von Life Technologies und dem Mikroplatten-Reader CLARIOstar (BMG Labtech GmbH) vermessen. Mit dieser Technik werden spezifisch Nukleinsäuren mit einer hohen Genauigkeit detektiert. Dies ist gerade im Bezug auf Genexpressionsstudien notwendig, da die Proben während der Amplifikation quantitativ erfasst werden und somit überall die gleiche Menge an Template zu Beginn eingesetzt werden muss. Bevor die eigenen Proben vermessen werden konnten, musste eine Eichkurve entsprechend des mitgelieferten Handbuchs aufgenommen werden. Danach wurden die RNA-Proben wie im Handbuch des Farbstoffes beschrieben vermessen. Im Anschluss daran wurde von allen Proben ein Aliquot für die später folgende cDNA-Synthese erstellt und die Konzentration auf 10 ng/µl eingestellt.

2.2.7. cDNA-Synthese und quantitative Real-Time-PCR (qRT-PCR)

Für die nachfolgenden Untersuchungen musste die RNA mittels cDNA-Synthese in die dazu komplementäre cDNA umgewandelt werden. Dazu wurde das High Capacity cDNA Reverse Transcription Kit von Applied Biosystems[™] verwendet. Die verwendeteten "Random Primer" waren sechs Nukleotide lang. Der Reaktionsansatz sah wie folgt aus:

Komponente	Volumen pro Reaktion
10x RT Puffer	5 µl
25x dNTP Mix (100 mM)	2µl
10x RT Random Primer	5 μl
MultiScribe [™] Reverse Transkriptase	2,5 µl
RNA (10 ng/µl)	12,5 µl
Nuklease-freies Wasser (DEPC-Wasser)	23 µl
Gesamtvolumen	50 µl

Tabelle 8: Ansatz cDNA-Synthese

Nach dem Ansetzen wurden die Reaktionskomponenten durch kurzes Vortexen des Reaktionsgefäßes vermischt und anschließend kurz abzentrifugiert. Danach wurde die cDNA-Synthese in einem Thermocycler mit folgendem Programm gestartet:

Tabelle 9: Thermocycler-Programm der cDNA-Synthese

	Schritt 1	Schritt 2	Schritt 3	Schritt 4
Temperatur	25 °C	37 °C	85 °C	4 °C
Zeit	10 min.	120 min.	5 min.	8

Nach Abschluss der Synthese musste geprüft werden, ob die cDNA-Synthese erfolgreich war bzw. bei allen Reaktionsansätzen die gleiche Menge RNA eingesetzt wurde. Nur wenn die cDNA-Menge überall identisch ist, kann später eine aussagekräftige Analyse der Genexpression erfolgen. Dazu wurde mit allen zu testenden cDNA-Proben eine quantitative Echtzeit-PCR (qRT-PCR, quantitative Real-Time-PCR) mit dem Power SYBR® Green PCR Master Mix auf dem 7500 Fast Real-Time PCR System von Applied Biosystems™ durchgeführt. Mit dieser Technik wird die Amplifikation der cDNA in Echtzeit mittels eines Fluoreszenzfarbstoffs quantifiziert. Je mehr cDNA zu Beginn vorhanden ist, umso schneller steigt das Signal des detektierten Farbstoffs an. Anhand dieses Verlaufs kann ein Rückschluss auf die eingesetzte cDNA-Menge gezogen werden. Als Test-Gen wurde das "Housekeeping"-Gen GAPDH (Glycerinaldehyd-3phosphat-<u>Dehydrogenase</u>) verwendet. GAPDH ist an der Glykolyse beteiligt und katalysiert dort die Umsetzung von Glycerinaldehyd-3-phosphat zu 1,3-Bisphosphoglycerat. Daher weist es zu jedem Zeitpunkt in allen Gewebeteilen der Weinrebe und unabhängig von den Umweltbedingungen bzw. sonstiger äußerer Einflüsse die gleiche Expression auf. Neben GAPDH wurden auch ACT1, SAND und UBQ (siehe Tabelle 10) auf deren Eignung als "Housekeeping"-Gen getestet (Monteiro et al. 2013, Selim et al. 2012).

Gen	Sequenz	Fragmentgröße	
C A ND	CAACATCCTTTACCCATTGACAGA	76 hn	
SAND	CTTATCTGCAAGTGGATCAAATGC	- /6 bp	
	GCCTGATGGGCAAGTCAT	211 hr	
ACTT (Actin)	GCT GGG AGC AAG AGC AGT	- 244 op	
GAPDH	TCAAGGTCAAGGACTCTAACACC	— 226 bp	
	CCAACAACGAACATAGGAGCA		
UBQ (Ubiquitin C)	GAGGGTCGTCAGGATTTGGA	75 ha	
	CTTAAAGATGGTAAGTGCAGGGC	- / 5 UP	

Tabelle 10: Getestete "Housekeeping"-Gene (Selim et al. 2012)

GAPDH erwies sich dabei als das am besten geeignete Haushaltsgen für dieses Experiment und die verwendeten Genotypen. Der Ansatz der qRT-PCR sah daher für alle Proben wie folgt aus:

Tabelle 11: Ansatz qRT-PCR

Komponente	Volumen pro Reaktion
Power SYBR Green PCR Master Mix (2x)	10 µl
GAPDH_for (5 µM)	1 µl
GAPDH_rev (5 µM)	1 µ1
Template cDNA	2 µ1
ddH ₂ O	6 μ1
Gesamtvolumen	20 µl

Nach dem Ansetzen der qRT-PCR wurden alle cDNA-Proben bis zur weiteren Verwendung bei -20 °C gelagert. Die Reaktionskomponenten in der Mikrotiterplatte wurden nach dem Verschließen der Platte mit einer speziellen Fluoreszenzfolie durch kurzes Vortexen miteinander vermischt. Da Teile des Reaktionsansatzes nach oben an die Folie geschleudert worden waren, musste die Platte kurz zentrifugiert werden, sodass sich alle Proben wieder vollständig am Boden der Wells befanden. Danach wurde die Platte in den Real-Time-Cycler eingesetzt und das folgende Programm gestartet:

Tabelle 12: Thermocycler-Programm der qRT-PCR

Temperatur	Zeit	Zyklen
95 °C	10 min.	-
95 °C	15 s	- 40x
60 °C	1 min.	40X

Alle cDNA-Proben mussten den gleichen Amplifikationsverlauf aufweisen, damit sie für die weiteren Genexpressionsanalysen verwendet werden konnten. Die wenigen cDNA-Proben, die ein abweichendes Amplifikationsmuster zeigten, wurden verworfen und die cDNA-Synthese wiederholt bis der Verlauf der Test-Amplifikation übereinstimmte.

2.2.8. RNA-Seq-Analyse

Unter dem Begriff "RNA-Seq" versteht man die Sequenzierung des gesamten Transkriptoms eines Organismus. Dies ist eine relativ neue Technik, mit deren Hilfe Transkripte quantifiziert sowie deren Exon-Intron-Struktur vorhergesagt werden können. Dabei können auch neue bisher unbekannte Gene identifiziert werden, da bei dieser Technik keine bereits bekannte Genomsequenz als Referenz unbedingt benötigt wird. Weiterhin können damit Sequenzvariationen, wie z. B. SNPs, dargestellt werden (Wang *et al.* 2009b). Als Ein großer Nachteil sind momentan allerdings noch die relativ hohen Kosten dieser Technik sowie die große Menge an benötigter Ausgangs-RNA. Daher konnte auch nur eine begrenzte Anzahl von Genotypen und Zeitpunkten nach der Inokulation mit dem Pathogen im Rahmen dieser Arbeit untersucht werden. Zudem ist die bioinformatische Auswertung der Daten relativ komplex und umfangreich.

Nicht alle Arten von RNA sind bei der RNA-Sequenzierung allerdings von Interesse, sondern in der Regel nur die mRNA, da von dieser die Struktur der Proteine während der späteren Proteinbiosynthese abgelesen wird. Da der Großteil der RNA innerhalb der Zelle aus der ribosomalen RNA (rRNA) besteht, muss nach der Extraktion der Gesamt-RNA aus dem Gewebe zunächst die codierende mRNA über deren poly(A)+-Ende von den nichtcodierenden Bestandteilen getrennt werden. Dieser Schritt sowie die nachfolgenden erfolgten außer Haus durch einen Sequenzierdienstleister. Nach der Isolierung der mRNA wurde diese fragmentiert und danach eine "Random-geprimte" cDNA-Synthese durchgeführt. Sequenziert wurden die Proben nach der Adapter-Ligation in insgesamt drei "Pools" mit jeweils sechs "Libraries" über HiSeq 2500 (2x 100 bp "paired-end reads").

Die Verarbeitung und Auswertung der gelieferten Rohdaten erfolgte mit der am Institut vorhandenen CLC Genomics Workbench 6.5.1 von CLC bio. Nach dem Import in das Programm wurden die Daten zunächst nach Qualitätsparametern getrimmt (Funktion "Trim Sequences" im Ordner "NGS Core Tools"), d. h. reads mit schlechten Qualitätseigenschaften aussortiert (Quality score: 0,05; Ambiguous nucleotides: 2). Danach wurden noch eventuell vorhandene Sequenzieradapter, die für die Illumina-Sequenzierung notwendig gewesen waren, von den reads entfernt. Anhand einer Liste möglicher Illumina-Sequenzieradapter wurden alle Datensätze abgeglichen und entsprechend getrimmt. Mit dem darauf folgenden Mapping der reads (Funktion "Map Reads to Reference"; Parameter: Mismatch cost: 2; Insertion cost: 2; Deletion cost: 3; Length fraction: 0,5; Similarity fraction: 0,95) gegen die Sequenzen der beiden bereits durchsequenzierten Oomyceten *Hyaloperonospora arabidopsidis* (Erreger des Falschen Mehltaus bei der Acker-Schmalwand *Arabidopsis thaliana*) und *Phytophthora infestans* (Erreger der Kraut- und Knollenfäule bei der Kartoffel bzw. Kraut- und Braunfäule bei der Tomate), welche nah mit *Plasmopara viticola* verwandt sind, konnten nicht von der

Weinrebe stammende Sequenzdaten, die aufgrund der Inokulation mit dem Falschen Mehltau der Weinrebe ebenfalls mit sequenziert worden waren, entfernt werden. Sequenzdaten von *Plasmopara viticola* waren zu diesem Zeitpunkt noch nicht öffentlich zugänglich, weshalb die beiden am nächsten mit *Plasmopara viticola* verwandten Oomyceten verwendet wurden (Jiang & Tyler 2012). Die Sequenzdaten wurden aus der Datenbank "Ensembl Genomes" (www.ensemblgenomes.org) entnommen.

Mit den bereinigten Daten wurde danach in der CLC Genomics Workbench 6.5.1 die RNA-Seq-Analyse durchgeführt (Ordner "Transcriptomics Analysis" in der Toolbox). Dazu wurde eine Sequenz des Referenzgenoms PN40024 (12X) von Vitis vinifera (Jaillon et al. 2007) mit Annotationen als Referenz (GenBank-Format aus Gramene; Stand Juni 2015) gewählt, gegen die der RNA-Seq-Datensatz "gemappt" wurde (Minimum length fraction: 0,9; Minimum similarity fraction: 0,95; Maximum number of hits for a read: 10; Minimum distance: 80; Maximum distance: 150). Als Organismustyp wurde "Eukaryot" ausgewählt und bei "Exon discovery" ein Haken gesetzt (Required relative expression level: 0,2; Minimum number of reads: 10; Minimum length: 50). Als zu berechnender Wert der Expression wurde RPKM ausgewählt. Der RPKM-Wert ist definiert als die Anzahl der <u>R</u>eads pro <u>K</u>ilobase Exonsequenz pro <u>M</u>illion kartierter Reads und stellt somit bereits eine Normalisierung der Expression dar (Mortazavi et al. 2008). Obwohl für "paired-end reads" FPKM (Fragmente pro Kilobase Exonsequenz pro Million kartierter Reads, Trapnell et al. 2010) die korrekte Angabe der Expression darstellt, wurde dennoch RPKM verwendet, um auch einzelne reads von beispielsweise "Broken pairs" bei der Auswertung miteinzubeziehen.

Für die weitere statistische Auswertung der RPKM-Werte und Identifizierung von DEG (Differentiell exprimierten Genen) mussten die Probensätze der verschiedenen Zeitpunkte und biologischen Replikate in je ein Experiment pro Genotyp zugeordnet werden (Funktion "Set Up Experiment"). Im Programm wurde dementsprechend als Option "Two-group comparison" und "Paired" ausgewählt. Als Expressionswert wurden die bestehenden Werte der Proben gewählt. Im nächsten Schritt folgte die eindeutige Benennung der Gruppen (Zeitpunkte 0 hpi und 6 hpi) und danach die paarweise Verknüpfung der biologischen Replikate (Replikat I zum Zeitpunkt 0 hpi mit Replikat I zum Zeitpunkt 6 hpi, etc.). Nach der Gruppierung der Datensätze wurde die Funktion "On Proportions" im Unterordner "Statistical Analysis" verwendet, welcher speziell für RNA-Seq-Analysen geeignet ist. Bei dieser Funktion gibt es zwei mögliche Tests. Kal

et al.'s test (Kal *et al.* 1999) ist nur sinnvoll, wenn jede Gruppe des Experiments nur eine Probe umfasst. Baggerly et al.'s test (Baggerly *et al.* 2003) ist bei mehr als zwei Proben pro Gruppe bzw. wenn Replikate in den Gruppen vorhanden sind anzuwenden und wurde somit auch für dieses Experiment genutzt. Je größer die Anzahl der betrachteten Proben wird, umso höher fällt auch die Anzahl falsch positiver Ergebnisse aus. Es kommt zu der sogenannten Alphafehler-Kumulierung. Zur Bereinigung dieses statistischen Problems existieren in der CLC Genomics Workbench zwei unterschiedliche Möglichkeiten: Die Bonferroni-Korrektur und die FDR-Korrektur (<u>False D</u>iscovery <u>R</u>ate-Korrektur).

Die Bonferroni-Korrektur behebt das Problem nur sehr unbefriedigend, da hier das Signifikanzniveau auf dem gleichen Level bleibt und nicht dynamisch an die Probenanzahl angepasst wird. Die bessere Lösung stellt die Berücksichtigung der "False Discovery Rate" (FDR) dar. Damit lässt sich die Anzahl der falsch positiven unter den positiven Ergebnissen ermitteln. Ein FDR-korrigierter p-Wert von beispielsweise 0,05 besagt, dass 5 % aller positiven Ergebnisse falsch positiv sind. Unterschiedliche statistische Methoden bedienen sich der FDR. Innerhalb der CLC Genomics Workbench wird die Methode von Benjamini und Hochberg genutzt (Benjamini & Hochberg 1995). Anschließend wurde durch Selektion mit den folgenden drei Kriterien in der Suchleiste über Ergebnistabelle die Gesamtzahl der DEG für jedes der drei Experimente (2008-059-020 0 hpi vs. 2008-059-020 6 hpi; 2008-059-121 0 hpi vs. 2008-059-121 6 hpi; 2011-003-013 0 hpi vs. 2011-003-013 6 hpi) bestimmt: 1. FDR p-value correction < 0,05; 2. Experiment – Difference (original values) abs value > 20; 3. Experiment – Fold change (original values) abs value > 2.

Zur besseren Übersichtlichkeit der folgenden grafischen Darstellungen des Expressionsverlaufs der DEG wurden alle Expressionswerte log10-transformiert (Funktion "Transform" im Unterordner "Transformation and Normalization"). Mit der Funktion "Hierarchical Clustering of Features" im Unterordner "Feature Clustering" (Parameter: "Euclidean distance"; "Average linkage"; "Transformed expression values") wurden danach sogenannte "Heatmaps" erstellt, die den Verlauf der Expression innerhalb eines Experiments mit den einzelnen biologischen Replikaten entlang der x-Achse anhand eines Farbcodes wiedergeben. Auf der y-Achse wird in jeder Zeile ein anderes Gen mit der jeweils spezifischen VIT-Nummer dargestellt. Ergänzend zu den "Heatmaps" wurde die Veränderung der Expression der DEG in Form des sogenannten "K-means Clustering" mithilfe der Funktion "K-means/medoids clustering" im Unterordner "Feature Clustering" visualisiert. Hierbei wird versucht, die Expressionsänderung der ausgewählten Gene mithilfe des K-Means-Algorithmus in eine vorgegebene Anzahl von Klassen einzuordnen. Dabei werden Klassen mit möglichst geringer Varianz und ähnlicher Größe erstellt. In diesem Fall wurden fünf "Cluster" zur Einteilung vorgegeben. Weiterhin wurde zu jedem "Cluster" die Verteilung der GO-Klassen (Gene Ontology) der enthaltenen Gene (VIT-Annotationen) angegeben. Unter der Bezeichnung "Gene Ontology" versteht man eine internationale biologische Klassifikation, in der alle bekannten Gen-Annotationen unterschiedlichster Organismen in verschiedene Klassen aus dem Stoffwechsel eingeteilt sind. Drei grundlegende Bereiche unterscheidet man innerhalb dieser Datenbank: "Zelluläre Komponente", "Biologischer Prozess" und "Molekulare Funktion" (Ashburner *et al.* 2000, Drapkin *et al.* 2015). Zur Ermittlung der Verteilung der GO-Klassen innerhalb der "Cluster" wurde das Online-Tool "PANTHER" (Protein <u>An</u>alysis <u>Th</u>rough <u>E</u>volutionary <u>R</u>elationships) verwendet (Mi *et al.* 2005, Thomas *et al.* 2003).

Für die Identifizierung der zentralen Soffwechselfunktionen, die bei der Abwehrreaktion nach Inokulation mit *P. viticola* innerhalb der Wirtspflanze transkriptionell verändert werden, wurden die DEG in die jeweilige GO-Klasse eingeordnet. Die Zuordnung der für den jeweiligen Genotyp spezifischen VIT-Annotationen in die jeweiligen GO-Klassen erfolgte mithilfe einer Liste, die aus Gramene entnommen wurde. Nach Sortierung der GO-Klassen anhand der Menge zugeordneter DEG wurden aus den GO-Klassen mit mindestens fünf Annotationen diejenigen ausgewählt, die aufgrund ihrer Charakteristiken potentiell eine besondere Rolle bei der Resistenzantwort gegen *P. viticola* einnehmen könnten. Schließlich wurden die DEG dem jeweiligen Genotypen zugeordnet, bei welchem die differentielle Expression spezifisch war. Allgemein bei allen drei Genotypen differentiell exprimierte DEG wurden ebenso übersichtlich zusammengefasst.

Die durch die RNA-Sequenzierung erhaltenen Sequenzen wurden zusätzlich zur Quantifizierung der Genexpression auch zur Vervollständigung eines putativen Aquaporin-Gens im Bereich von *Rpv10* genutzt (siehe Abschnitt 3.2 Identifikation von Kandidatengenen im *Rpv10-Locus*). Allerdings muss bei der Verwendung dieser Daten beachtet werden, dass es sich hierbei nur um die Exons der Gene handelt und die Sequenzinformation für solche Zwecke unter Umständen nicht immer hilfreich ist.
2.2.9. Genexpressionsanalyse über qRT-PCR

Mit der CLC Main Workbench 7.6.4 wurden schließlich spezifische Oligonukleotidpaare für alle DEG der insgesamt vier Gruppen ("Spezifisch für 2011-003-013", "Spezifisch für 2008-059-020", "Spezifisch für 2008-059-121" und "Gemeinsam in allen Genotypen") aus der RNA-Seq-Analyse zur Verwendung bei der nachfolgenden Genexpressionsanalyse entwickelt. Zunächst wurde als erster Schritt die Sequenz der DEG anhand ihrer VIT-Annotation in der Datenbank von Gramene gesucht. Danach wurde die Genstrukturvorhersage (Exons/Introns) mittels der Funktion "FGENESH" von Softberry, Inc. (www.softberry.com) durchgeführt (Solovyev et al. 2006). Nach dem Eintragen der Intron-Exon-Struktur in die Sequenzen der DEG wurden alle vorhergesagten Introns entfernt und mit der Entwicklung der Oligonukleotidpaare begonnen. Diese wurden so positioniert, dass das Amplikon möglichst über ein Intron hinweg eine erwartete Größe von 50 bis 150 bp hatte. Bei Genen ohne vorhergesagte Introns erfolgte das Oligonukleotid-Design in einem Exon. Als weitere Parameter bei der Erstellung der Oligonukleotidpaare wurde eine Länge von 18 bis 22 bp, ein GC-Gehalt von 30 bis 80 %, eine Schmelztemperatur von 58 bis 60 °C sowie innerhalb der letzten fünf Nukleotide am 3'-Ende nicht mehr als zwei Guanin-Nukleotide bzw. Cytosin-Nukleotide vorgegeben. Die Oligonukleotidpaare wurden danach mithilfe von BLAST bei Gramene auf ihre Position und Spezifität im Genom kontrolliert, sodass keine weiteren als die erwar-

Abbildung 17: Biomark™ HD zur Genexpressionsanalyse im Hochdurchsatz

teten Bindestellen vorhanden waren. Insofern dies gewährleistet war, wurde die Synthese der insgesamt 119 Oligonukleotidpaare bei einem externen Dienstleister in Auftrag gegeben. Darin enthalten war auch das "Housekeeping"-Gen GAPDH als interne Referenz.

Nach Extraktion der RNA aus den Versuchspflanzen wurde die Konzentration der Proben fluorimetrisch bestimmt und mit RNase-freiem DEPC-Wasser auf 10 ng/µl eingestellt, sodass anschließend jeweils 50 ng RNA für die cDNA-Synthese eingesetzt werden konnten. Mit dem "Housekeeping"-Gen GAPDH als Detektor wurden alle cDNA-Proben mittels einer klassischen qRT-PCR auf ihre Funktionalität getestet und dabei ebenso sicher gestellt, dass überall die gleiche Ausgangsmenge an Template-cDNA enthalten war (Wong & Medrano 2005). Dabei abweichende Proben wurden erneut präpariert und die cDNA-Synthese wiederholt. Die synthetisierten Oligonukleotide der aus der RNA-Seq-Analyse stammenden differentiell exprimierten Gene wurden zunächst nach PCR mittels Agaro-

se-Gelelektrophorese auf ihre Funktionalität, Amplikongröße sowie Spezifität hin untersucht. Eine nachfolgende qRT-PCR diente dazu, die Spezifität des Amplifikats bei nicht eindeutigen Proben durch Schmelzkurvenanalyse final zu überprüfen.

Dabei wird das entstandene PCR-Produkt langsam erhitzt bis der

Abbildung 18: 96.96 Dynamic Array™ Chip für insgesamt 9.216 Einzelreaktionen

Doppelstrang bei einer für das Amplifikat spezifischen Schmelztemperatur zu zwei Einzelsträngen dissoziiert. Auf diese Weise konnte die Zusammensetzung des PCR-Amplifikats kontrolliert werden, da eine eventuelle Mischung unterschiedlicher Produkte keine eindeutige Schmelzkurve liefern würde. Oligonukleotidpaare, die die geforderten Kriterien nicht erfüllten, wurden aussortiert und gegebenenfalls durch ein zweites Paar Oligonukleotide des entsprechenden Gens ersetzt und ebenso auf ihre Funktion und Eignung für die Genexpressionsanalyse getestet. Schließlich konnten nach den Voruntersuchungen 95 Oligonukleotidpaare mit einer Wasserkontrolle für die Untersuchung der Genexpression verwendet werden (siehe Anhang Seite XLV).

Die Durchführung der Genexpressionsanalyse erfolgte mit dem Biomark[™] HD von Fluidigm[®] im Hochdurchsatz (Abbildung 17, Spurgeon *et al.* 2008). Das heißt, dass insgesamt 9.216 einzelne Real-Time-Polymerasekettenreaktionen in einem Lauf abgebildet werden können. Die Reaktionen laufen dabei auf Chips mit unterschiedlichen Kapazitäten ab. Im Rahmen dieser Arbeit wurde der 96.96 Dynamic Array[™] Chip genutzt (Abbildung 18). Mit diesem können 96 Gene in Kombination mit 96 cDNA-Templates auf einmal untersucht werden.

Zunächst war eine Anpassung der Konzentration aller zu untersuchenden cDNA-Proben notwendig (STA-PCR). Die zugehörigen Forward- und Reverse-Oligonukleotide der

DEG wurden als erstes in einem Reaktionsgefäß zusammengeführt. Danach wurde ein Primerpool aus allen 95 Oligonukleotidpaaren (je 1 µl) in einem neuen Reaktionsgefäß angesetzt und das Volumen mit DNA Suspension Buffer auf 200 µl aufgefüllt. Der Ansatz der STA-PCR setzte sich wie folgt zusammen:

Komponente	Volumen für 1 Reaktion	Volumen für 96 Reaktionen (in 8er-Reihe angesetzt)
TaqMan PreAmp Master Mix (2x)	2,5 µl	32,5 µl je Well
Primerpool (500 nM)	0,5 µl	6,5 μl je Well
PCR Certified Water	0,75 µl	9,75 μl je Well
cDNA	1,25 µl	-
Gesamtvolumen	5 µl	

Tabelle 13: Ansatz STA-PCR

In einer 96-Well-Mikrotiterplatte wurden dann in jedes Well 3,75 µl des Ansatzes (ohne cDNA) mit der 8-Kanal-Pipette verteilt und danach jeweils 1,25 µl der insgesamt 84 cDNA-Proben hinzu gegeben. Die restlichen zwölf Wells wurden mit je 1,25 µl DEPC-Wasser befüllt. Nachdem die Proben in einen Thermocycler eingesetzt waren wurde das folgende Programm gestartet:

Tabelle 14: Thermocycler-Programm der STA-PCR

Temperatur	Zeit	Zyklen
95 °C	10 min.	-
95 °C	15 s	- 1 <i>4</i> w
60 °C	4 min.	- 14X
4 °C	00	-

Mit Exonuclease I erfolgte nach Ablauf der Reaktion die Aufreinigung der Proben, wodurch noch vorhandene Reste der Oligonukleotide entfernt wurden. Der Ansatz war der folgende:

Tabelle 15: Ansatz Aufreinigung mit Exonuclease I

Komponente	Volumen für 1 Reaktion	Volumen für 96 Reaktionen (in 8er- Reihe angesetzt)
Exonuclease Ι (20 U/μl)	0,4 µl	5,2 µl je Well
Exonuclease I Puffer	0,2 µl	2,6 μl je Well
PCR Certified Water	1,4 µl	18,2 µl je Well
Gesamtvolumen	2 µl	

Je 2 µl des Exonuclease I-Ansatzes wurden zu den 5 µl der STA-PCR mit der 8-Kanal-Pipette gegeben. Die Aufreinigung erfolgte in einem Thermocycler nach dem folgenden Programm:

Tabelle 16: Inkubation zur Aufreinigung mit Exonuclease I

Temperatur	Zeit
37 °C	30 min.
80 °C	15 min.
4 °C	∞

Die aufgereinigten Proben der STA-PCR mussten zunächst noch verdünnt werden, bevor sie für den Chip vorbereitet werden konnten. Als Verdünnung wurde pauschal für alle Proben der Faktor 5-fach gewählt. Falls der Ct-Wert nach dem ersten Lauf kleiner als sechs war, musste der Verdünnungsfaktor auf 10- bzw. 20-fach erhöht werden. Der Ct-Wert gibt die Zykluszahl während der PCR an, bei der die Fluoreszenz des Amplifikats die Hintergrundfluoreszenz übersteigt. Je niedriger dieser Wert ist, umso mehr cDNA-Template ist in der Reaktion vorhanden. Für die 5-fach-Verdünnung mussten je 18 µl DNA Suspension Buffer zu den 7 µl der aufgereinigten STA-Probe gegeben werden. Danach wurden die Proben sofort für den 96.96 Dynamic Array[™] Chip weiterverarbeitet oder aber zunächst bei -20 °C bis zur Benutzung gelagert. Der nachfolgende Schritt war die Zugabe des Farbstoffes und des DNA Binding Dye Sample Loading Reagent:

Komponente	Volumen für 1 Reak- tion	Volumen für 1 Reaktion mit Überschuss	Volumen für 96 Re- aktionen inkl. 10 % Überschuss
SsoFast [™] EvaGreen® Supermix with Low ROX (2x)	2,5 µl	3,0 µl	330 µl
DNA Binding Dye Sam- ple Loading Reagent (20x)	0,25 µl	0,3 µl	33 µl
Verdünnte STA-Probe nach Exonuclease I- Behandlung	2,25 µl	2,7 µl	-
Gesamtvolumen	5 µl	6 µl	363 µl

Tabelle 17: Ansatz aufgereinigte STA-PCR mit EvaGreen®

330 µl EvaGreen wurden mit 33 µl DNA Binding Dye Sample Loading Reagent vermischt und je 3,3 µl davon mit der 8-Kanal-Pipette auf eine frische 96-WellMikrotiterplatte verteilt. Im Anschluss wurden dann jeweils 2,7 µl der verdünnten STA-Probe dazu gegeben. Da dabei sehr leicht Luftblasen in die Proben beim Pipettieren gelangen konnten, musste sehr vorsichtig und nicht über den ersten Druckpunkt der Pipette hinaus gearbeitet werden. Bis der Primerpool soweit vorbereitet war, wurden die STA-Proben kurzfristig bei 4 °C aufbewahrt.

Die aus Forward- und Reverse-Oligonukleotiden bestehenden Primerpaare (100 μ M) mussten für die Analyse auf 5 μ M verdünnt und gleichzeitig eine Stock-Lösung für bis zu fünf Chip-Läufe angesetzt werden. Statt 1x TE-Puffer wurde DNA Suspension Buffer von Teknova verwendet, da dieser nur 0,1 mM EDTA enthält (1 mM in 1x TE-Puffer). Der Ansatz sah für jedes Primerpaar wie folgt aus:

Komponente	Volumen für 1 Reaktion	Volumen für 1 Re- aktion mit Über- schuss	Volumen für 30 μl Stock mit Überschuss (für 5 Läufe)	
Assay Loading Reagent (2x)	2,5 µl	3,0 µl	15 µl	
DNA Suspension Buffer	2,25 µl	2,7 µl	13,5 µl	
Primerpaar (100 μM)	0,25 µl	0,3 µl	1,5 µl	
Gesamtvolumen	5 µl	6 µl	30 µl	

Tabelle 18: Ansatz Stock-Lösung je Primerpaar

Abbildung 19: IFC Controller HX zur Vorbereitung des 96.96 Dynamic Array™ Chip

Nach dem gründlichen Mischen und Abzentrifugieren wurden die Proben ebenfalls bei 4 °C gelagert bis das "Primen" des Chips erledigt war. Hierzu wurden mithilfe der Injektionsspritze die beiden Kammern mit jeweils 150 µl Control Line Fluid befüllt. Damit wird verhindert, dass zu Beginn Proben und Primer unkontrolliert zusammen fließen können. Danach wurde die blaue Schutzfolie von der Unterseite des Chips entfernt, in den IFC Controller HX (Abbildung 19) eingesetzt und das Programm "Prime (136x)" gestartet. Dabei wurden die Kontrolllinien im Chip befüllt und unter Druck gesetzt, wodurch beim nachfolgenden Beladen des

Chips mit den Assays (Primermix) und Samples (Proben) keine Vermischung stattfin-

den konnte. Jeweils 5 µl Primermix und Probe wurden in die entsprechende Position auf dem Chip pipettiert (Samples rechts auf Chip, Assays links auf Chip). Die Verteilung erfolgte versetzt in jede zweite Vertiefung auf dem Chip (siehe Abbildung 20). Das richtige Pipettierschema musste entsprechend später bei der Auswertung angegeben werden, sodass die Zuordnung der Proben korrekt erfolgen konnte. Auch bei diesem Schritt durfte nicht über den ersten Druckpunkt der Pipette hinausgegangen werden, da sonst Luftblasen eingebracht worden wären.

Abbildung 20: Pipettierschema Beladung des 96.96 Dynamic Array[™] Chip

Nach dem Beladen wurde der 96.96 Dynamic Array[™] Chip ein zweites Mal in den IFC Controller HX eingesetzt und mit der Funktion "Load Mix (136x)" geladen. Direkt danach wurde er in den Biomark[™] HD eingesetzt und die Genexpressionsanalyse über das Programm BioMark[™] Data Collection gestartet. In den Optionen des neuen Laufs wurde "Gene Expression" als Applikationstyp, "ROX" als passive Referenz, "Single Probe" als Probe, "EvaGreen" als Probentyp, "GE Fast 96x96 PCR+Melt v2.pcl" als Thermocycler-Programm ausgewählt und bei "Auto Exposure" das Häkchen gesetzt. Das verwendete Programm sah wie folgt aus:

Zy	vklus	Temperatur [°C]	Zeit [s]	BioMark™ HD Ramp Rate [°C/s]
1	Thornal Mix	70	2400	5,5
1	I nermai Mix	60	30	5,5
2	Hot Start	95	60	5,5
2	PCR (30	96	5	5,5
3	Zyklen)	60	20	5,5
4	Malting Curva	60	3	1
	Menning Curve	60 - 96	-	1 °C/3 s

Tabelle 19: Gewähltes Programm BioMark[™] HD

Die Auswertung der Genexpression erfolgte mit der Fluidigm[®] Real-Time PCR Analysis Software (Version 4.1.3) als relative Quantifizierung mit der $\Delta\Delta$ Ct-Methode (Livak & Schmittgen 2001). Dafür wird zuerst Δ Ct1 zwischen dem zu untersuchenden Gen (z. B. Zielgen Genotyp A 24 hpi) und der entsprechenden endogenen Kontrolle (z. B. GAPDH Genotyp A 24 hpi) berechnet:

Ct (Zielgen Genotyp A 24 hpi) = 20 Ct (GAPDH Genotyp A 24 hpi) = 11 $\Delta Ct1 = Ct$ (Zielgen Genotyp A 24 hpi) - Ct (GAPDH Genotyp A 24 hpi) $\Delta Ct1 = 20 - 11 = 9$

Im Anschluss muss Δ Ct2 zwischen der Referenz (z. B. Zielgen Genotyp A 0 hpi) und der entsprechenden endogenen Kontrolle (z. B. GAPDH Genotyp A 0 hpi) gebildet werden:

Ct (Zielgen Genotyp A 0 hpi) = 25 Ct (GAPDH Genotyp A 0 hpi) = 10 $\Delta Ct2 = Ct$ (Zielgen Genotyp A 0 hpi) – Ct (GAPDH Genotyp A 0 hpi) $\Delta Ct2 = 25 - 10 = 15$

Aus den Werten Δ Ct1 und Δ Ct2 lässt sich nachfolgend der $\Delta\Delta$ Ct-Wert berechnen:

 $\Delta\Delta Ct = \Delta Ct1 - \Delta Ct2 = 9 - 15 = -6$

Mit der Voraussetzung, dass sich in jedem Zyklus der PCR die amplifizierte Produktmenge verdoppelt, kann daraus die relative Expressionsänderung abgeleitet werden:

 $2^{(-\Delta\Delta Ct)} = 2^6 = 64$

Somit hätte in diesem Beispiel das untersuchte Zielgen 24 Stunden nach der Behandlung im Vergleich mit der Kontrolle eine 64-fach höhere Expression als vor Behandlungsbeginn.

Nach dem Importieren der Daten des BiomarkTM HD in die Software wurde als erstes die Benennung der Samples (unter "Sample Setup") und Assays (unter "Detector Setup") vorgenommen. Als nächstes wurde GAPDH als "Reference" und das Wasser als "NRC" ("No Reagent Control") in der Assays-Übersicht festgelegt. Danach wurden alle anderen Oligonukleotidpaare als "Test" mit GAPDH als Referenz definiert. In der Samples-Übersicht wurden alle Positionen mit DEPC-Wasser darin als "NTC" ("No Template Control", Negativkontrolle) markiert. Mindestens eine bis maximal drei Proben wurde dann als Referenz des jeweiligen Probensatzes definiert, welcher gerade analysiert werden sollte. Nach Festlegen der Referenzen im Sample- und Assay-Setup wurde über die Schaltfläche "Analyze" im Unterordner "Analysis View" die Berechnung der Δ Ct-Werte und $\Delta\Delta$ Ct-Werte gestartet. In der Ergebnistabelle wurden diese dann für jede der 9.216 Kombinationen aus Sample sowie Assay angezeigt und konnten zur Erstellung von Verlaufsgrafiken der Expressionsänderung über die Dauer der Inokulation weiterverwendet werden.

3. Ergebnisse

3.1. Sequenzierung des Rpv10-Locus

3.1.1. Darstellung über Amplikon-Sequenzierung

Die genetische Kartierung des Rpv10-Locus für Resistenz gegenüber dem Falschen Mehltau in der Rebsorte 'Solaris' lässt aufgrund der Arbeiten von Schwander et al. 2012 eine Größe von etwa 80 bis 100 kb erwarten. Seine Darstellung könnte über PCR-Amplifikation der genomischen Region möglich sein. Daher wurde ein Set aus insgesamt 19 Oligonukleotidpaaren als Primer auf Basis des Referenzgenoms PN40024 (12X) entwickelt. Die Oligonukleotidpaare wurden so platziert, dass eine gegenseitige Überlappung zwischen 60 und 1.500 bp für die spätere Assemblierung der Einzelsequenzen zu einem längeren Seqzenzabschnitt möglich war. Die erwarteten Amplikongrößen lagen zwischen rund 4.000 und 7.700 bp. Als PCR-Template wurde genomische DNA eines Selbstungsnachkommen von 'Solaris' eingesetzt, dessen Rpv10-Locus homozygot vorliegt. Die Homozygotie in diesem Bereich wurde durch Fragmentlängenanalyse der SSR-Marker GF09-46, GF09-47 und GF09-65 mithilfe eines Kapillarsequenziergerätes bestimmt. Diese Marker korrelieren mit dem Rpv10-Locus von 'Solaris'. Aufgrund der sehr hohen Heterozygotie der Weinrebe fand Schwander an Sequenzen aus 'Solaris' eine Überlagerung beider elterlichen Allele und zweideutige Ergebnisse.

Nach der ersten PCR mit diesen Oligonukleotidpaaren stellte sich heraus, dass einige Paare (Amplifikate LR-Rpv10_06 und LR-Rpv10_08) keinerlei Produkt lieferten. Dies lag vermutlich an den Unterschieden zwischen dem Referenzgenom PN40024 (12X) der Sorte 'Pinot noir' und dem zur PCR genutzten Selbstungsnachkommen von 'Solaris'. Aus diesem Grund wurden für die ausgefallenen Amplikons auf Basis der flankierenden Sequenzen neue Oligonukleotide entwickelt (Tabelle 39).

Nach der Sequenzierung aller klonierten PCR-Amplikons ergab die nachfolgende Assemblierung, dass zwischen den Amplifikaten LR-Rpv10_01 und LR-Rpv10_02 noch weitere Sequenzinformation liegen muss, da eine Überlappung nicht identifiziert werden konnte. Daher wurde diese Lücke mit einer weiteren PCR mithilfe des neu entwickelten Oligonukleotidpaares LR-Rpv10_01-02a geschlossen (Tabelle 40). Eine erfolgreiche Assemblierung mit angrenzenden Sequenzen war mit den Sequenzen LR-Rpv10 06, LR-Rpv10 10, LR-Rpv10 17 und LR-Rpv10 19 ebenso nicht möglich. Für diese Sequenzbereiche wurden jeweils mehrere neue Oligonukleotidpaare entwickelt. Als Grundlage wurden die bereits generierten Sequenzen der angrenzenden PCR-Amplifikate verwendet (Tabelle 40).

Die Sequenzierung aller Amplifikate aus dem Bereich von Rpv10 ergab 16 Sequenzen, die sich im Anschluss mit DNASTAR SeqMan Pro[™] zu größeren Sequenzabschnitten zusammensetzen ließen. Nach umfangreichen Versuchen mit unterschiedlichen PCR-Kits wie z. B. "Mid Range"- oder "Long Range"-PCR-Kits und anderen DNA-Polymerasen konnten keine brauchbaren Sequenzen mit den Oligonukleotidpaaren LR-Rpv10_06, LR-Rpv10_07, LR-Rpv10_08 und LR-Rpv10_10 generiert werden. Tabelle 20 zeigt eine Übersicht der 16 Sequenzen, die im nächsten Schritt miteinander assembliert wurden. Die Sequenzen wurden mithilfe des sogenannten "Primer walking" generiert. Dabei wird ein Insert schrittweise durch Sanger-Sequenzierung dargestellt. Nach jedem Sequenzier-Lauf werden basierend auf den erhaltenen Sequenzen neue Oligonukleotide als Startpunkt des nächsten Laufs ausgewählt.

Amplifikat	Oligonukleotide	Erwartete Fragment- länge [bp]	Fragmentlänge nach Sequen- zierung [bp]	
LR-Rnv10 01 reverse	LR-Rpv10-for01	- 4.800	4.680	
	LR-Rpv10-rev01			
	LR-Rpv10seq-for01-			
LR-	02a	1 254	1 160	
Rpv10_01_02a_reverse	LR-Rpv10seq-rev01-	1.2.34	1.109	
	02a			
I. D. D	LR-Rpv10-for02	4 800	4 205	
LK-Kpv10_02	LR-Rpv10-rev02	- 4.899	4.303	
I. D. D. m. 10, 02	LR-Rpv10-for03	5 661	2 572	
LK-Kpv10_05	LR-Rpv10-rev03	- 5.001	5.572	
	LR-Rpv10-for04	5.060	5 (57	
LK-Rpv10_04_reverse	LR-Rpv10-rev04	- 3.900	5.657	
	LR-Rpv10-for05	5 709	5 412	
LK-Kpv10_05	LR-Rpv10-rev05	- 5.708	5.413	
L D Dry 10, 00, warrange	LR-Rpv10-for09	4 216	4.017	
LK-Rpv10_09_reverse	LR-Rpv10-rev09	- 4.210	4.21/	
LD D10 11	LR-Rpv10-for11	5 7(2	5 924	
LK-Kpv10_11	LR-Rpv10-rev11	- 5./63	5.834	
L D D10 12	LR-Rpv10-for12	4 0.9 4	5.042	
LK-Rpv10_12	LR-Rpv10-rev12	- 4.984	5.043	
L D D10 12	LR-Rpv10-for13	5 270	5 202	
<u> LK-Круто_13</u>	LR-Rpv10-rev13	- 3.3/9	3.392	

Tabelle 20: Übersicht der sequenzierten Amplifikate aus dem Bereich von Rpv10

LR-Rpv10-for14	- 6.006	6 3 3 0	
LR-Rpv10-rev14	0.090	0.339	
LR-Rpv10-for15	5 120	5 102	
LR-Rpv10-rev15	- 5.159	5.102	
LR-Rpv10-for16	- 1 511	4 005	
LR-Rpv10-rev16	- 4.314	4.903	
LR-Rpv10seq-for17h	- 5 246	4.056	
LR-Rpv10seq-rev17h	- 5.540	4.730	
LR-Rpv10-for18	- 4.025	4 028	
LR-Rpv10-rev18	- 4.023	4.028	
LR-Rpv10seq-for19b	- 6 552	6.216	
LR-Rpv10seq-rev19b	- 0.332	0.210	
	LR-Rpv10-for14 LR-Rpv10-rev14 LR-Rpv10-for15 LR-Rpv10-rev15 LR-Rpv10-for16 LR-Rpv10-rev16 LR-Rpv10seq-for17h LR-Rpv10seq-rev17h LR-Rpv10-for18 LR-Rpv10-rev18 LR-Rpv10seq-for19b		

Die Verrechnung aller sequenzierten Amplikons mit mindestens 90 % Sequenzhomologie ergab zwei größere Contigs. Da die Orientierung der PCR-Amplifikate während der Klonierung nicht gerichtet erfolgte, musste von einigen Sequenzen zunächst die komplementäre reverse Sequenz gebildet werden. Erst danach war eine Assemblierung möglich. LR-Rpv10_01_reverse, LR-Rpv10_01-02a_reverse, LR-Rpv10_02, LR-Rpv10_03, LR-Rpv10_04_reverse und LR-Rpv10_05 bilden Contig A (Abbildung 21 oben); LR-Rpv10_11, LR-Rpv10_12, LR-Rpv10_13, LR-Rpv10_14_reverse, LR-

Abbildung 21: Übersicht der aus den Einzelamplikons assemblierten Contigs. Oben: Contig A (21.357 bp), unten: Contig B (44.433 bp). In Rot sind Bereiche dargestellt, die nur durch eine Sequenz gebildet werden. Blaue Bereiche kennzeichnen eine Überlappung zweier Sequenzen.

Rpv10_15_reverse, LR-Rpv10_16_reverse, LR-Rpv10_17h, LR-Rpv10_18_reverse und LR-Rpv10_19b_reverse Contig B (Abbildung 21 unten).

Das Mapping gegen das Referenzgenom PN40024 (12X) mit mindestens 70 % Sequenzhomologie veranschaulicht die noch existierenden Lücken innerhalb des *Rpv10*-Locus nach Sequenzierung der PCR-Amplikons (Abbildung 22 oben). Die Stringenz musste auf 70 % gesenkt werden, da ansonsten aufgrund der Unterschiede zwischen dem Referenzgenom PN40024 (12X) und dem Selbstungsnachkommen von 'Solaris' nicht alle Amplikons zugeordnet worden wären (Abbildung 22 unten). Das Amplikon LR-Rpv10_09_reverse bildet die Mitte innerhalb der fehlenden Sequenzinformation. Zur Vervollständigung dieser wurden mithilfe der SSR-Marker GF09-65, GF09-46 und GF09-47 vier Klone aus einer BAC-Bank der Rebsorte 'Solaris' identifiziert und sequenziert.

Abbildung 22: Oben: Mapping der sequenzierten PCR-Amplikons gegen den *Rpv10*-homologen Bereich im Referenzgenom PN40024 (12X) mit mindestens 70 % Sequenzhomologie, die orangenen Rechtecke kennzeichnen die beiden Lücken; Unten: Mapping der sequenzierten PCR-Amplikons gegen den Bereich von *Rpv10* im Referenzgenom PN40024 (12X) mit mindestens 90 % Sequenzhomologie; die schwarzen Pfeile markieren die Lage der SSR-Marker GF09-65, GF09-46 und GF09-47, mit denen positive BAC-Klone aus der BAC-Bank von 'Solaris' identifiziert wurden. Der Marker GF09-65 liegt nicht innerhalb sondern knapp vor dem 1. Amplikon des *Rpv10*-Locus. Blaue Bereiche kennzeichnen eine Überlappung zweier Sequenzen.

3.1.2. Lückenschluss durch Sequenzierung von BAC-Klonen

Die noch ausstehenden Lücken innerhalb des *Rpv10*-Locus wurden mithilfe von BAC-Klonen geschlossen, deren Insertionen aus Sequenzen des korrespondierenden Bereiches aus dem resistenten Allel von 'Solaris' bestanden. Durch Bestimmung der Fragmentlängen der mit den SSR-Markern GF09-65, GF09-46 und GF09-47 durchgeführten PCR wurden je zwei Klone mit resistentem und anfälligem Allel des *Rpv10*-Locus identifiziert (Tabelle 21). Die "Coverage" beschreibt die Abdeckung des Bereiches durch die NGS-Sequenzierung (MiSeq 2x 300 bp "paired-end reads"). Je höher dieser Wert ist, umso gesicherter sind die Sequenzinformationen.

Tabelle 21: Übersicht der vier sequenzierten BAC-Klone. Je zwei tragen das resistente bzw. das anfällige Allel des *Rpv10*-Locus aus 'Solaris'.

Bezeichnung	Allel	Coverage der Sequenzierung	Länge [bp]
BAC_11G10	Anfällig	306,69	128.573
BAC_40B07	Anfällig	684,03	102.735
BAC_17M19	Resistent	485,36	106.371
BAC_19A23	Resistent	909,43	106.531

Die Assemblierung der beiden Klone mit dem resistentem Allel ergab, dass die Sequenzen wie erwartet identisch sind (Abbildung 23 oben). Bei der Verrechnung der Klone mit dem anfälligen Allel zeigte sich, dass die Sequenz von BAC_40B07 vollständig in BAC_11G10 enthalten ist (Abbildung 23 unten). Ein Mapping der beiden Allele gegeneinander bei einer Stringenz von mindestens 90 % Sequenzhomologie war aufgrund der ausgeprägten genetischen Unterschiede nicht möglich.

Abbildung 23: Assemblierung der jeweils zwei BAC-Klone mit resistentem (oben) und anfälligem (unten) Allel von *Rpv10* aus 'Solaris'. Blaue Bereiche kennzeichnen eine Überlappung zweier Sequenzen.

Abbildung 24: Assemblierung von Contig A und Contig B sowie dem Amplikon LR-Rpv10_09_reverse mit dem resistenten Allel (gebildet aus den BAC-Klonen 17M19 und 19A23) von *Rpv10* aus 'Solaris'. Blaue Bereiche kennzeichnen eine Überlappung zweier Sequenzen.

Die Assemblierung über die Überlappungen der beiden Contigs A und B aus der Amplikon-Sequenzierung, des Amplikons LR-Rpv10_09_reverse sowie der beiden BAC-Klone mit dem resistenten Allel von *Rpv10* aus 'Solaris' bildete schließlich das resistente Allel des *Rpv10*-Locus (Abbildung 24) ab. Durch die Verrechnung mit Contig B konnte der durch die BAC-Sequenzen dargestellte Bereich noch ein Stück über das Amplikon LR-Rpv10_19b_reverse hinaus erweitert werden.

Bereits der nicht erfolgreiche Versuch, die beiden Allele von *Rpv10* aus 'Solaris' miteinander zu assemblieren verdeutlichte die klaren Unterschiede in den beiden allelischen Sequenzen zueinander. Ein Alignment von anfälligem und resistentem Allel mit der CLC Genomics Workbench veranschaulichte die Abschnitte, in denen sowohl genetische Unterschiede als auch Homologien vorliegen (Abbildung 25). Die Sequenzen der beiden Allele umfassten nicht den gleichen Bereich auf Chromosom 9, da durch die Markerdichte keine genauere Lokalisation der BAC-Inserts vor der Sequenzierung möglich war. Daher mussten die Sequenzen zunächst angeglichen und auf den Bereich von *Rpv10* eingegrenzt werden. Dazu wurde jeweils das Amplikon LR-Rpv10_01_reverse als Anfang und das Amplikon LR-Rpv10_19b_reverse als Ende gewählt. Der Rest der Sequenz davor und dahinter wurde entfernt, sodass der eingegrenzte Bereich des resistenten Allels (83.656 bp) ca. 2.100 bp größer ist als der des anfälligen Allels (81.508 bp) (Tabelle 22).

Tabelle 22: Vergleich der Sequenzlänge der beiden aus BAC-Klonen und PCR-Amplikons gebildeten Allele mit der eingegrenzten Region von *Rpv10*. Die eingegrenzte Region entspricht dem Bereich von Amplikon LR-Rpv10_01_reverse bis zu Amplikon LR-Rpv10_19b_reverse.

Allel	Länge [bp]
<i>Rpv10</i> _resistent (gebildet aus Contig A, Contig B, Amplikon LR- Rpv10_09_reverse, BAC_17M19 und BAC_19A23)	109.042
<i>Rpv10</i> _anfällig (gebildet aus BAC_11G10 und BAC_40B07)	128.573
<i>Rpv10_</i> resistent_eingegrenzt	83.656
<i>Rpv10_</i> anfällig_eingegrenzt	81.508

Abbildung 25: Alignment des eingegrenzten resistenten (untere Sequenz) und eingegrenzten anfälligen Allels (obere Sequenz) von *Rpv10* aus 'Solaris'. Rote Bereiche kennzeichnen Unterschiede zwischen den Allelen. Die Lage der SSR-Marker GF09-46 und GF09-47 ist vermerkt (Grau).

3.2. Identifikation von Kandidatengenen im Rpv10-Locus

Nach vollständiger Darstellung des Resistenzallels von Rpv10 aus der Rebsorte 'Solaris' wurde die Sequenz von 83,6 kb auf potenzielle Resistenz-korrelierende Kandidatengene untersucht. Hierzu wurde das Online-Tool FGENESH verwendet, das mögliche Gene mit ihrer Intron-Exon-Struktur vorhersagt. Mit den Exonsequenzen der putativen Gene wurde danach ein Abgleich mit der Blastx-Datenbank des NCBI (National Center for Biotechnology Information) durchgeführt, um die zu den Kandidatengenen aus dem Rpv10-Locus ähnlichsten bekannten Gene zu ermitteln. Vitis vinifera wurde dabei als Organismus ausgeschlossen, um die Auflistung homologer Sequenzen ohne bekannte Funktion zu vermeiden. Mit der Funktion Blastx werden ähnliche Proteine anhand der Translation der eingegebenen Nukleotidsequenz in allen sechs möglichen Leserastern gesucht. Tabelle 23 fasst die Ergebnisse dieses Abgleichs der Gene aus dem eingegrenzten Bereich von Rpv10 des anfälligen und resistenten Allels zusammen. Mithilfe des Vergleichs könnten etwaige Unterschiede zwischen den Allelen auf Resistenzvermittelnde Gene hindeuten. Das Protein Nr. 9 lag innerhalb der eingegrenzten Rpv10-Region nicht vollständig vor. Im anfälligen Allel konnte die vollständige Sequenz mittels der BAC-Sequenz dargestellt werden. Im resistenten Allel wurde es anhand der später erarbeiteten RNA-Seq-Daten (siehe Abschnitt 3.4 Vergleichende RNA-Seq-Analyse) komplettiert, sodass das Protein laut Genvorhersage durch FGENESH vollständig vorlag. Die angegebene Position in Tabelle 23 stimmt allerdings nicht mit der tatsächlichen Lage überein. Die eingegrenzte Region von Rpv10 endet innerhalb des Proteins Nr. 9.

Tabelle 23: Vergleich der im anfälligen und resistenten Allel des eingegrenzten *Rpv10*-Locus liegenden Gene nach Blastx-Abgleich. Die Exonzahl sowie die Gesamt-Länge der Exons stammt aus der Untersuchung mit FGENESH. * = Sequenz des Proteins war nicht vollständig im eingegrenzten Bereich von *Rpv10*. Die Vervollständigung erfolgte mit Sequenzinformation aus den BAC-Klonen (anfälliges Allel) sowie aus der RNA-Sequenzierung (resistentes Allel) (siehe Abschnitt 3.4 Vergleichende RNA-Seq-Analyse).

Annotiertes Protein (Blastx)		Position i <i>Rpv10-</i> Lo	innerhalb d ocus [bp]	les	Exons / bp]		
	Anfälliges Resistentes Allel Allel		Anfälli- ges Al- lel	Resisten- tes Allel	Strang	Anfäl- liges Allel	Resis- tentes Allel
1	PREDICTED: repeat-contain At3g12360-like euphratica)	Ankyrin ing protein e (<i>Populus</i>	2.071 – 4.875	2.113 – 4.964	_	4 / 2.361	5 / 2.370
2	PREDICTED: repeat-contain	Ankyrin ing protein	9.782 – 12.029	9.907 – 12.175	_	4 / 1.953	4 / 1.974

	At3g12360-like (<i>a euphratica</i>)	Populus					
3	PREDICTED: R large subunit-bin tein subunit beta plastic (<i>Nelumbo</i>	uBisCO nding pro- , chloro- <i>nucifera</i>)	15.032 – 19.671	15.526 – 20.155	+	14 / 1.8	881
4	PREDICTED: E responsive transo factor TINY-like raimendii)	thylene- cription (<i>Gossypium</i>	33.191 – 33.898	34.394 – 35.083	_	1 / 708	1 / 690
5	PREDIC-TED: Uncha-racterizedproteinLOC102624356 isoformX1 (Citrussinensis)	Hypotheti- cal protein CICLE v10025016m g (<i>Citrus</i> clementina)	38.649 – 54.156	42.979 – 55.794	+	23 / 3.324	25 / 3.591
6	Disease resistanc RPS5-like protei <i>labrusca</i>)	e protein n 3 (<i>Vitis</i>	56.865 – 59.513	58.673 – 61.330	+	1 / 2.649	1 / 2.658
7	PREDICTED: U terized protein LOC103702534 (dactylifera)	ncharac- <i>Phoenix</i>	62.752 – 75.813	64.529 – 77.991	_	17 / 5.1	24
8	NDH- dependent cyc- lic electron flow 1 isoform 1 (<i>Theobroma</i> <i>cacao</i>)	PREDIC- TED: Photosyn- thetic NDH sub- unit of subcom- plex B 3, cloroplas- tic isof- orm X3 (<i>Jatropha</i> <i>curcas</i>)	77.610 – 79.075	79.880 – 81.351	+	5 / 543	4 / 480
9 *	Putative aquapor (<i>Vitis cinerea</i> var <i>Vitis rupestris</i>)	rin TIP1 . <i>helleri</i> s x	80.940 – 81.311*	83.217 – 83.588*	_	3 / 750	

Abbildung 26: Alignment des eingegrenzten resistenten (untere Sequenz) und eingegrenzten anfälligen Allels (obere Sequenz) von *Rpv10* aus 'Solaris'. Rote Bereiche kennzeichnen Unterschiede zwischen den Allelen. In Blau sind die durch FGENESH vorhergesagten Kandidatengene eingezeichnet. Die Lage der SSR-Marker GF09-46 und GF09-47 ist ebenfalls vermerkt (Grau).

Abbildung 26 zeigt die Lage der neun Kandidatengene innerhalb des *Rpv10*-Locus im Alignment der beiden Allele. Auffällig ist, dass in nahezu allen Genen mehr oder weni-74 ger große Unterschiede zwischen den beiden Allelen bestehen. Lediglich Gen Nr. 6, was dem Resistenzprotein RPS5 ähnelt, scheint zwischen resistentem und anfälligem Allel identisch zu sein. Das gleiche gilt für das putative Aquaporin (Gen Nr. 9) am Ende des Bereiches.

Die Blastx-Suche ergab größtenteils identische Proteine für das anfällige und das resistente Allel von *Rpv10*. Lediglich bei den Proteinen Nr. 5 und 8 zeigten verschiedene Proteine die höchste Übereinstimmung gegenüber der eingegebenen Sequenz aus dem *Rpv10*-Locus. Unterschiede in der Exonzahl und –länge ergaben sich bei allen Proteinen außer Nr. 3, 7 und 9. Eventuell könnte dies durch unterschiedliches Splicing erfolgt sein.

Annotiertes Protein (Blastx)		Proteindomäne	Funktion der Domäne
1	PREDICTED: Anky- rin repeat-containing protein At3g12360-	ANK (<u>Ank</u> yrin repeats)	Vermittelt Protein-Protein- Interaktionen (Mosavi <i>et al.</i> 2004)
	like (<i>Populus euph-</i> <i>ratica</i>)	PGG	Noch unbekannt
2	PREDICTED: Anky- rin repeat-containing protein At3g12360-	ANK (<u>Ank</u> yrin repeats)	Vermittelt Protein-Protein- Interaktionen (Mosavi <i>et al.</i> 2004)
	like (<i>Populus euph-</i> <i>ratica</i>)	PGG	Noch unbekannt
3	PREDICTED: Ru- BisCO large subunit- binding protein sub- unit beta, chloroplas- tic (<i>Nelumbo nucife-</i> <i>ra</i>)	Chaperonine (GroEL, Hsp60)	Proteinfaltung, Proteinstabili- sierung bei Stress, Interaktion mit anderen durch Stress indu- zierte Komponenten (Wang <i>et</i> <i>al.</i> 2004)
4	PREDICTED: Ethyl- ene-responsive transcription factor TINY-like (<i>Gossypi-</i> <i>um raimendii</i>)	AP2 (<u>AP</u> ETALA <u>2</u>)	Regulation der Transkription (Magnani <i>et al.</i> 2004)
5	PREDICTED: Uncharacterized pro- tein LOC102624356 isoform X1 (<i>Citrus</i> <i>sinensis</i>) / Hypotheti- cal protein CICLE v10025016mg (<i>Citrus</i> <i>clementina</i>)	LETM1 (<u>L</u> eucine zipper <u>E</u> F hand-containing <u>t</u> rans <u>m</u> embrane protein <u>1</u>)	Ca ²⁺ /H ⁺ -Antiport an innerer Mitochondrienmembran (Tsai <i>et al.</i> 2014)
6	Disease resistance	NB-ARC (Nucleotide-	Signaltransduktion durch Nuk-

Tabelle 24: Übersicht über die Proteindomänen der vorhergesagten Gene im *Rpv10*-Locus und deren Funktion (soweit bereits bekannt) (Quelle: NCBI Conserved Domain Search)

	protein RPS5-like protein 3 (<i>Vitis</i> <i>labrusca</i>)	<u>b</u> inding <u>A</u> PAF-1, <u>R</u> proteins and <u>C</u> ED4), andere Bezeichnung für NBS (<u>N</u> ucleotide <u>b</u> in- ding <u>s</u> ite) (McHale <i>et al.</i> 2006, Van der Biezen & Jones 1998)	leotidbindung, ATP-Bindung und –Hydrolyse (Tameling <i>et al.</i> 2002, Tameling <i>et al.</i> 2006); Detektieren Effektorproteine eines Pathogens und vermitteln Effektor-getriggerte Immunan- twort (ETI) (Chisholm <i>et al.</i> 2006)
		LRR (Leucine-rich repeats)	Spezifische Erkennung der Ef- fektoren von Pathogenen, Inter- aktion zwischen Proteinen und/oder Kohlenhydraten sowie Peptid und Ligand (Dangl & Jones 2001, Jones 2001)
7	PREDICTED: Uncharacterized pro- tein LOC103702534 (Phoenix dactylifera)	ElaC (codiert für Zink- Phosphodiesterase) (Vogel <i>et al.</i> 2002)	Prozessierung von tRNA
8	NDH-dependent cyc- lic electron flow 1 isoform 1 (<i>Theobroma</i> <i>cacao</i>) / PREDIC- TED: Photosynthetic NDH subunit of sub- complex B 3, cloro- plastic isoform X3 (<i>Jatropha curcas</i>)	-	-
9	Putative aquaporin TIP1 (<i>Vitis cinerea</i> var. <i>helleris x Vitis</i> <i>rupestris</i>)	TIP (<u>T</u> onoplast <u>I</u> ntrinsic <u>P</u> rotein) als Vertreter der MIP Family- Proteine (<u>M</u> ajor <u>I</u> ntrinsic <u>P</u> rotein) (Reizer <i>et al.</i> 1993)	Transport von Wasser und Wasserstoffperoxid durch Zellmembran (Jang <i>et al.</i> 2012, Leitao <i>et al.</i> 2014)

Auf den ersten Blick besonders aussichtsreich als Resistenz-vermittelnde Kandidaten erschienen die beiden Ankyrin-Proteine (Nr. 1 und 2), der ERF (Ethylene-responsive transcription factor, Nr. 4), das Resistenzprotein mit Ähnlichkeit zu RPS5 (<u>Resistenz gegen *Pseudomonas syringae*</u>, Nr. 6) sowie das putative Aquaporin (Nr. 9) aufgrund ihrer bereits bekannten Funktion im Zusammenhang mit der direkten bzw. indirekten Pathogenantwort. Obwohl das Protein Nr. 3 durch die Homologie zu einem Bindeprotein der großen RuBisCO-Untereinheit aus der Indischen Lotusblume aufgrund der zentralen Rolle in der Kohlenstoffdioxid-Assimilation zunächst nicht im Zusammenhang mit Resistenz steht, wurde es dennoch näher mihilfe von Genexpressionsuntersuchungen betrachtet, da die enthaltenen Proteindomänen (Chaperonine) auch bei der Stressantwort beteiligt sein können. Die Ergebnisse der Genexpressionsanalyse durch

qRT-PCR bestätigten diese Vermutung (siehe Abschnitt 3.5 Validierende Genexpressionsanalyse Resistenz-korrelierender Kandidatengene über qRT-PCR). Der Zusatz "Chloroplastic" des Blastx-Abgleiches deutet nur auf die Ähnlichkeit hin. Es kann sich hierbei nicht um ein Gen aus den Chloroplasten handeln, da Organellen eigene Genome besitzen und der Bereich von *Rpv10* aus Chromosom 9 des Kern-Genoms stammt.

Spezifische Oligonukleotide wurden schließlich für die Kandidatengene "PREDICTED: RuBisCO large subunit-binding pro-tein subunit beta", "PREDICTED: Ethyleneresponsive transcription factor TINY-like", "Disease resistance protein RPS5-like protein 3" und "Putative aquaporin TIP1" entwickelt (Tabelle 25 unten und Tabelle 41 im Anhang auf Seite XLV). Für die beiden Kandidatengene Nr. 1 und 2 (PREDICTED: Ankyrin repeat-containing protein At3g12360-like) konnten keine spezifischen Oligonukleotidpaare erstellt werden, da ein BLAST-Abgleich mehrere Bindestellen innerhalb des Genoms ergab.

Tabelle 25: Oligonukleotidpaare zur Genexpressionsanalyse der interessanten Kandidatengene aus dem *Rpv10*-Locus

K	andidatengen	Bez leo	zeichnung Oligonuk- tidpaar
3	PREDICTED: RuBisCO large subunit-binding pro- tein subunit beta, chloroplastic (<i>Nelumbo nucifera</i>)	6	Chap_Intron5
4	PREDICTED: Ethylene-responsive transcription factor TINY-like (<i>Gossypium raimendii</i>)	2	ERF
6	Disease resistance protein RPS5-like protein 3 (<i>Vitis labrusca</i>)	3	RPS5-like_RT-I
9	Putative aquaporin TIP1 (<i>Vitis cinerea</i> var. <i>helleris</i> x <i>Vitis rupestris</i>)	4	Aqua_RT-I

3.3. Darstellung von Kandidatengenen aus dem Rpv3-Locus

Drei Kandidatengene aus dem *Rpv3*-Locus auf Chromosom 18 wurden im Rahmen einer parallel erarbeiteten Masterarbeit näher charakterisiert. Dazu wurden zuerst <u>Next-Generation-Sequencing-Daten (NGS)</u> der Rebsorte 'Villard blanc' mithilfe der *Rpv3*-korrelierenden molekularen Marker GF18-06 und GF18-08 auf Übereinstimmungen durchsucht. Dabei konnten 75 Contigs (min. 2.000 bp Länge) mit Sequenzhomologien zu den molekularen Markern aus den NGS-Daten gefiltert werden. Diese wurden danach anhand der Blastx-Datenbank des NCBI auf konservierte Proteindomänen sowie Ähnlichkeiten zu bereits annotierten Proteinen untersucht. Der überwiegende Teil der Contigs besaß allerdings keine oder nur Bruckstücke von Proteindomänen, zu welchen

keinerlei Funktion zugeordnet werden konnte oder welche nicht direkt Resistenzkorrelierend erschienen (Werner 2015).

Durch Ergänzung der 'Villard blanc'-Sequenzdaten mit 'Regent'-NGS-Daten konnte für das Kandidatengen auf Contig 38 neben der LRR-Domäne auch eine NB-ARC-Domäne dargestellt werden (Tabelle 26). Die Intron-Exon-Struktur der auf den assemblierten Contigs 18, 38 und 67 liegenden erweiterten Kandidatengenen wurde mit FGENESH bioinformatisch vorhergesagt, sodass im Anschluss daran Oligonukleotidpaare zur Genexpressionsanalyse entwickelt werden konnten. Dies gelang nur für das Contig 18 bzw. dessen darauf lokalisiertem Gen, da für die Gene der beiden anderen Contigs keine geeigneten und vor allem spezifischen Oligonukleotide abgeleitet werden konnten (Tabelle 27). Im Anhang auf Seite XLV ist die Sequenz sowie die erwartete Amplikon-länge des Oligonukleotidpaars Nr. 5 aufgeführt.

Tabelle 26: Vergleich des Blastx-Abgleichs der Kandidatengene im *Rpv3*-Locus nach Erweiterung der Contigs aus 'Villard blanc' mit NGS-Daten von 'Regent'. Die Exonzahl sowie die Länge der Exons in Summe stammt aus der Untersuchung mit FGENESH.

Contig	Annotiertes Protein (Blastx)	Proteindomäne	Anzahl Exons / Länge [bp]
18	TIR-NB-LRR type resistance protein RPV1 (<i>Vitis rotundifo- lia</i>)	NB-ARC (<u>N</u> ucleotide- <u>b</u> inding <u>A</u> PAF- 1, <u>R</u> proteins and <u>C</u> ED4), andere Be- zeichnung für NBS (<u>N</u> ucleotide <u>b</u> in- ding <u>site</u>) (McHale <i>et al.</i> 2006, Van der Biezen & Jones 1998)	3/3.117
		LRR (Leucine-rich repeats)	
38 TIR-NB-LRR type resistance protein RGA1 (<i>Vitis rotundifo- lia</i>)		NB-ARC (<u>N</u> ucleotide- <u>b</u> inding <u>A</u> PAF- 1, <u>R</u> proteins and <u>C</u> ED4), andere Be- zeichnung für NBS (<u>N</u> ucleotide <u>b</u> in- ding <u>s</u> ite) (McHale <i>et al.</i> 2006, Van der Biezen & Jones 1998)	5 / 3.090
	PREDICTED: Racan-	Pkinase (Protein kinase domain)	
67	tor-like protein kinase HAIKU2-like (<i>Citrus</i> <i>sinensis</i>)	LRR (Leucine-rich repeats)	2 / 2.904

Tabelle 27: Oligonukleotidpaar zur Genexpressionsanalyse des Kandidatengens 18 aus dem Rpv3-Locus

Contig	Kandidatengen	Beze	eichnung Oligonukleotidpaar
18	TIR-NB-LRR type resistance protein RPV1 (<i>Vitis rotundifolia</i>)	5	LRRII_RT

3.4. Vergleichende RNA-Seq-Analyse

Durch Sequenzierung der mRNA können Transkriptome in ihrer Gesamtheit erfasst sowie diese dann zwischen verschiedenen Genotypen und/oder Zeitpunkten nach beispielsweise Pathogenbefall verglichen werden. Transkripte können quantifiziert sowie deren Exon-Intron-Struktur vorhergesagt werden. Das Grundprinzip dieser Technik beruht auf der Zuordnung einzelner Sequenzierläufe (sog. "reads") an die entsprechende Position eines Referenzgenoms aufgrund von Sequenzähnlichkeiten. Anhand der Anzahl "gemappter" reads lässt sich danach die Expression des dort lokalisierten Gens quantifizieren.

Die RNA-Sequenzierung von 18 Proben (3 Genotypen, 2 Zeitpunkte, je 3 biologische Replikate) lieferte insgesamt rund 870 Mio. "paired-end reads". Für das Experiment wurden je drei biologische Replikate von drei Genotypen mit unterschiedlichen Kombinationen von Resistenzloci gegen *Plasmopara viticola* (2011-003-013 mit *Rpv10* homozygot, 2008-059-121 mit *Rpv3* und *Rpv10* und 2008-059-020 ohne Resistenzloci) genutzt. Unmittelbar vor (0 hpi) und sechs Stunden nach der Inokulation mit *P. viticola* (6 hpi) wurden die Proben genommen. Nach dem Adapter- und Qualitätstrimming wurden 99,5 % der Gesamtreads zunächst für das Mapping gegen die beiden Oomyceten *Hyaloperonospora arabidopsidis* und *Phytophthora infestans* verwendet. Da das Genom von *P. viticola* noch nicht verfügbar war, wurden die nächstverwandten Oomyceten genutzt (Jiang & Tyler 2012). Knapp 14 % der Gesamtreads wurden mit den beiden Pathogenen assembliert, sodass 85 % bzw. ca. 741 Mio. reads für die RNA-Seq-Analyse des Rebgenoms genutzt werden konnten. Davon konnten rund 57 % oder 496 Mio. reads gegen die Referenz PN40024 (12X) "gemappt" und für die Berechnung der relativen Expression berücksichtigt werden (Tabelle 28).

Schritt	Reads	
Gesamt	870.653.574	100 %
Nach Adapter- und Qualitätstrimming	866.141.848	99,48 %
Nach Mapping gegen Oomycetengenomsequenz	741.462.874	85,16 %
Für RNA-Seq-Analyse genutzt (Mapping gegen Refe- renzgenomsequenz der Rebe)	495.663.097	56,93 %

Tabelle 28: Statistik der bei der RNA-Sequenzierung generierten "paired-end reads"

Nach Sequenzierung der mRNA der verschiedenen Genotypen zu zwei unterschiedlichen Zeitpunkten kurz vor und nach der Inokulation mit dem Falschen Mehltau der Weinrebe (*Plasmopara viticola*) ist es möglich, DEG (<u>d</u>ifferentiell <u>exprimierte Gene</u>) zu identifizieren. Zunächst musste dazu der RPKM-Wert (<u>R</u>eads pro <u>K</u>ilobase Exonsequenz pro <u>M</u>illion kartierter Reads) der Proben berechnet und die zueinander gehörigen biologischen Replikate der infizierten bzw. nicht-infizierten Genotypen in Gruppen zusammengefasst werden. Nach Festlegen der Parameter (p-value-Korrektur < 0,05; absoluter Unterschied der Werte > 20; Fold change > 2) ergaben sich die DEG der drei Genotypen. Dabei kann eine differentielle Expression sowohl die Induktion als auch die Repression der Gene umfassen.

Im Vergleich der Gesamtzahl an DEG der drei Genotypen fällt auf, dass der Genotyp mit den beiden Resistenzloci *Rpv3* und *Rpv10* (2008-059-121) die höchste Zahl an DEG aufweist. 2008-059-020 ohne Resistenzloci besitzt die wenigsten DEG. Der Selbstungsnachkomme von 'Solaris' mit homozygotem *Rpv10*-Locus liegt zwischen den beiden erstgenannten Genotypen (Tabelle 29).

Tabelle 29: Vergleich der DEG der drei Genotypen

Genotyp	2011-003-013 (<i>Rpv10 / Rpv10</i>)	2008-059-020 (<i>Rpv</i> - / <i>Rpv</i> -)	2008-059-121 (<i>Rpv3 / Rpv10</i>)
Gesamtzahl	1.325	910	1.642
Herabreguliert	575	368	746
Hochreguliert	750	542	896

Eine genaue Übersicht über die Anzahl der für einen Genotyp spezifischen DEG liefert das Venn-Diagramm (Oliveros 2007-2015) in Abbildung 27. Darin lässt sich auch die Anzahl der zwischen zwei oder allen drei Genotypen gemeinsam differentiell exprimierten Genen unterscheiden. 449 Gene werden gemeinsam in den resistenten Genotypen hoch- oder herabreguliert. In Summe 952 Gene werden differentiell exprimiert in den beiden resistenten Genotypen 2008-059-121 (Rpv3 / Rpv10) und 2011-003-013 (Rpv10 / Rpv10). Um die "falsch positiven" Gene, die vermutlich nicht im Zusammenhang mit der Resistenz gegen den Falschen Mehltau der Weinrebe stehen, zu entfernen, sollten die mit dem anfälligen Genotyp 2008-059-020 (Rpv - / Rpv -) gemeinsam regulierten 411 Gene nicht weiter berücksicht werden. Gemeinsam mit dem anfälligen Genotyp differentiell exprimiert werden 155 Gene in 2008-059-121 (Rpv3 / Rpv10) sowie 140 in 2011-003-013 (Rpv10 / Rpv10), was in Summe 295 Gene macht. Nach Abzug dieser Zahl von den 952 differentiell in den resistenten Genotypen exprimierten Genen bleiben 657 Gene übrig, die möglicherweise an der Resistenzantwort beteiligt sein können. Mithilfe weiterer Untersuchungen (siehe Abschnitt 3.4.3 Darstellung der Expressi-

80

onsänderung in GO-Klassen) wurde diese Schnittmenge weiter reduziert, um am Ende die auf den ersten Blick vielversprechendsten Kandidaten innerhalb eines neuen Inokulationsversuchs mit *Plasmopara viticola* durch <u>q</u>uantitative <u>R</u>eal-<u>T</u>ime-<u>PCR</u> (qRT-PCR) näher zu charakterisieren.

Abbildung 27: Gesamtzahl an DEG der drei Genotypen im Vergleich 0 hpi zu 6 hpi (Fold change > 2; p-value < 0,05), Blau: 2008-059-020 (*Rpv* - / *Rpv* -), Gelb: 2008-059-121 (*Rpv3* / *Rpv10*), Grün: 2011-003-013 (*Rpv10* / *Rpv10*)

Die Venn-Diagramme in Abbildung 28 illustrieren die Anzahl der hoch- bzw. herabregulierten differentiell exprimierten Gene im Vergleich der drei Genotypen zueinander. Bei allen Genotypen fällt unabhängig von der Gesamtzahl an DEG auf, dass der größere Anteil auf hochregulierte DEG entfällt. Im Genotyp 2011-003-013 (*Rpv10 / Rpv10*) ist der Anteil hochregulierter DEG mit rund 68 % am größten. Die anderen beiden Genotypen weisen mit 57 % und 58 % ein vergleichbares Induktions-Verhältnis auf (Tabelle 30).

Genotyp	Anteil hochregulierter DEG	Anteil herabregulierter DEG
2011-003-013 (<i>Rpv10 / Rpv10</i>)	68 %	32 %
2008-059-121 (<i>Rpv3 / Rpv10</i>)	57 %	43 %
2008-059-020 (<i>Rpv</i> - / <i>Rpv</i> -)	58 %	42 %

Tabelle 30: Anteil der hoch- bzw. herabregulierten DEG an der Gesamtzahl DEG des jeweiligen Genotyps

Abbildung 28: Anzahl hochregulierter (links) und herabregulierter (rechts) DEG der drei Genotypen im Vergleich 0 hpi zu 6 hpi (Fold change > 2; p-value < 0,05), Blau: 2008-059-020 (*Rpv - / Rpv -*), Gelb: 2008-059-121 (*Rpv3 / Rpv10*), Grün: 2011-003-013 (*Rpv10 / Rpv10*)

3.4.1. Darstellung der Expressionsänderung in "Heatmaps"

Um einen ersten allgemeinen Eindruck über die Expressionsänderung der DEG im Zeitraum von 0 hpi bis zu 6 hpi zu bekommen, wurden sog. "Heatmaps" der drei biologischen Replikate eines Genotyps im Vergleich zueinander errechnet. Dabei lässt sich die Änderung der Expression ("fold change") anhand einer Farbskala ablesen. Ein Farbverlauf von z. B. Blau zu Rot spiegelt die Hochregulierung eines Gens wieder, wohingegen eine Herabregulierung an der Farbveränderung Rot zu Blau zu erkennen ist. Je intensiver der Farbton, umso deutlicher erfolgt die Expressionsänderung. Abbildung 29 und Abbildung 30 illustrieren die Veränderung der Expression der DEG der drei Genotypen. Auf der x-Achse sind jeweils die biologischen Replikate aufgetragen. Jede Zeile der y-Achse entspricht einem anderen DEG. Aufgrund der großen Genzahl und des Maßstabes ist keine Beschriftung der einzelnen Gene möglich. Die Werte wurden vor Erstellung der "Heatmaps" zur besseren Darstellung der Unterschiede log10-transformiert. Anhand der Baumstruktur rechts werden ähnliche Expressionsverläufe gruppiert. Diese Ähnlichkeiten oder Unterschiede im Verlauf der Expression werden deutlicher, wenn man sie in unterschiedlichen "Clustern" zusammenfasst (siehe Abschnitt 3.4.2 Darstellung der Expressionsänderung in "Clustern").

Im Vergleich der "Heatmaps" der drei Genotypen stellt man fest, dass keine wirklich extremen Unterschiede zwischen den Zeitpunkten 0 hpi und 6 hpi vorhanden sind. Die Farbübergänge erfolgen nur bei einem kleinen Teil der Gene von Dunkelblau zu Dunkelrot. Dies liegt vor allem an der log10-Transformation der Expressionswerte. Dennoch liegen die Expressionswerte beim Großteil der DEG nur so weit auseinander, dass sich der Farbverlauf von z. B. Rot zu einem helleren Rot oder von Blau in Richtung Violett bewegt. Beim Vergleich der auf der Farbskala aufgetragenen Werte ist auffallend, dass die beiden resistenten Genotypen ungefähr den gleichen log10-transformierten Expressionsbereich besitzen (2008-059-121: -3,222 bis 16,69; 2011-003-013: -3,483 bis 14,211). Der Bereich des anfälligen Genotyps erstreckt sich von -0,717 bis 4,373. Die Expressionsunterschiede fallen hier wesentlich geringer aus (Abbildung 30).

Abbildung 29: Heatmap der Expressionsänderung der DEG des Genotyps 2011-003-013 (*Rpv10* / *Rpv10*) im Vergleich 0 hpi zu 6 hpi, Fold change > 2; p-value < 0,05. Die log10-transformierten Expressionswerte reichen von -3,483 (Blau) bis 14,211 (Rot).

Abbildung 30: Heatmaps der Expressionsänderung der DEG der Genotypen 2008-059-020 (Rpv - / Rpv -) (oben) und 2008-059-121 (Rpv3 / Rpv10) (unten) im Vergleich 0 hpi zu 6 hpi, Fold change > 2; p-value < 0,05. Die log10-transformierten Expressionswerte reichen für 2008-059-020 von -0,717 (Blau) bis 4,373 (Rot) und von -3,222 (Blau) bis 16,69 (Rot) für 2008-059-121.

3.4.2. Darstellung der Expressionsänderung in "Clustern"

Eine bessere Möglichkeit, die Veränderung der Expression über die Zeit zu verfolgen, bietet die Darstellung in "Clustern". Das Expressionsprofil der DEG der verschiedenen Genotypen wurde über Clusteranalyse in jeweils fünf Gruppen eingeteilt. Hierbei wird der K-Means-Algorithmus verwendet, um die DEG in eine vorgegebene Anzahl von Klassen einzuordnen. Dabei werden Klassen mit möglichst geringer Varianz und ähnlicher Größe erstellt. Nicht alle Gene konnten in ein "Cluster" eingeordnet werden. Je Gruppe wurden die enthaltenen Gene (VIT-Annotationen) in ihre zugehörige GO-Klasse ("Gene Ontology") eingeordnet, sodass eine Übersicht der meist präsenten GO-Klassen möglich war. Die GO ist eine biomedizinische Ontologie und wird dazu verwendet, um eine Vereinheitlichung und übersichtlichere Darstellung der komplexen Stoffwechselwege zu ermöglichen (Ashburner *et al.* 2000, Drapkin *et al.* 2015). Ähnlich wirkende Gene werden dazu in die gleiche GO-Klasse eingeordnet. Dabei werden die drei Bereiche "Zelluläre Komponente", "Biologischer Prozess" und "Molekulare Funk-

Abbildung 31: Durch Clusteranalyse mit der CLC Genomics Workbench erstelltes Verlaufsdiagramm der Expressionsänderung. Auf der y-Achse sind die transformierten Expressionswerte und auf der x-Achse jeweils die drei biologischen Replikate des Genotyps ohne *Rpv*-Locus zum Zeitpunkt 0 hpi (links) und 6 hpi (rechts) aufgetragen.

tion" unterschieden. Ein Gen wird in mehrere Klassen eingeordnet, wenn dessen Funktion in unterschiedlichen GO-Klassen einzustufen ist. Die in den "Clustern" vorkommenden GO-Klassen sind in Tabelle 31 rechts neben dem Verlaufsdiagramm in Form eines Histogramms der prozentualen Häufigkeit nach sortiert dargestellt. Neben allgemeinen Stoffwechselprozessen wurden auch GO-Klassen dargestellt, die vermutlich bei der Resistenzantwort gegen Pathogene beteiligt sind. Dadurch sollten mögliche Zusammenhänge zwischen resistenten Genotypen und der Art der differentiell exprimierten Gene aufgezeigt werden. Die zu den Histogrammen gehörende Legende ist am Ende der Tabelle 31 dargestellt. Nur GO-Klassen des Bereichs "Biologischer Prozess" sind aufgeführt. Nicht klassifizierte Gene wurden bei der Zusammenstellung nicht beachtet. Auf der x-Achse des Verlaufsdiagramms sind jeweils links die drei biologischen Replikate des betrachteten Genotyps zum Zeitpunkt 0 hpi und rechts daneben die drei biologischen Replikate des betrachteten Genotyps zum Zeitpunkt 6 hpi aufgetragen. Auf der y-Achse sind die transformierten Expressionswerte dargestellt. Abbildung 31 zeigt beispielhaft ein Verlaufsdiagramm in vergrößerter Ansicht, da die nebeneinander angeordneten Verlaufsdiagramme und GO-Histogramme nur sehr klein darstellbar waren.

Tabelle 31: Cluster der Expressionsverläufe der DEG. Je Genotyp wurden fünf Cluster errechnet. Der auf der y-Achse aufgetragene Bereich der log10-transformierten Expressionsänderung ist über dem jeweiligen Cluster angegeben. Anhand des Histogramms rechts daneben lässt sich die prozentuale Verteilung der GO-Klassen auf die Gene des Clusters ablesen. Die GO-Klassen wurden aufgrund der möglichen Beteiligung an der Resistenzantwort gegen Pathogene ausgewählt.

Im Vergleich der drei Genotypen kann festgestellt werden, dass die DEG des gegenüber *P. viticola* anfälligen Genotyps 2008-059-020 (Rpv - / Rpv -) relativ schwache Expressionsänderungen mit maximalen Werten von -1,8 bis 1,2 aufweist. Beide resistenten Genotypen zeigen höhere Werte. Dabei liegt der für Rpv10 homozygote Selbstungsnachkomme von 'Solaris' (2011-003-013) mit -6,0 bis 4,5 leicht über 2008-059-121 (Rpv3 / Rpv10) (-6,0 bis 4,0).

Betrachtet man die einzelnen GO-Klassen, fällt als erstes auf, dass bei allen Genotypen und deren fünf "Clustern" der Großteil der DEG auf die Klassen "Metabolic process" (ca. 40 – 60 %) entfallen. Derartige Prozesse des Stoffwechsels, der DNA-Replikation oder der Proteinbiosynthese sind auf den ersten Blick unabhängig von der Resistenzantwort und für einen Organismus essentiell. Allerdings kann ein Zusammenhang zwischen Stoffwechselprozessen und der Resistenzantwort nicht ausgeschlossen werden. Durchschnittlich 10 - 25 % sind Gene der Klasse "Biosynthetic process" und verantwortlich für die Bildung von beispielsweise ATP oder NADH. Auch hier kann kein Zusammenhang mit Resistenzantwort festgestellt werden. Die GO-Klassen "Response to abiotic stimulus", "Response to stress" und "Transport" zeigen ebenfalls keine größeren Unterschiede zwischen den verschiedenen Genotypen. Alle drei kommen in rund 10 % der Gene der drei Genotypen vor. Lediglich bei dem anfälligen Genotyp 2008-059-020 ohne Resistenzloci wird mit rund 17 % in "Cluster" 3 der höchste Wert für die Gruppe "Response to stress" erreicht. Gleichzeitig liegt der Wert für "Transport" auch bei diesem Genotyp am höchsten (ca. 17 %). Dies kann damit erklärt werden, dass dieser Genotyp aufgrund fehlender Resistenzmechanismen dem meisten Stress durch das Pathogen ausgesetzt ist.

Die drei GO-Klassen "Gene expression", "Signal transduction" und "Defense response" stehen miteinander in Verbindung. Hier konnten deutliche Zusammenhänge zwischen Anfälligkeit und Resistenz gegen *Plasmopara viticola* festgestellt werden. Durchschnittlich liegt der Anteil der GO-Klasse "Defense response" in allen Genotypen nur bei rund 2 - 3 %. Bei den resistenten Genotypen liegt der maximale Wert bei ungefähr 5 – 7 % in "Clustern", die eine relativ hohe Geninduktion von -5,0 auf 4,5 bei 2011-003-013 (*Rpv10 / Rpv10*) und von -6,0 auf 4,0 bei 2008-059-121 (*Rpv3 / Rpv10*) aufweisen. Gleichzeitig liegt auch der Wert für "Signal transduction" dort höher. Im anfälligen Genotyp nur bei maximal 5 % liegend, steigt er in den resistenten Genotypen bei gleichzeitig gesteigertem Anteil der "Defense response" auf ca. 8 % an. Noch auffälliger gestei-

gert fällt der Anteil der GO-Klasse "Gene expression" auf bis zu rund 13 % bei 2011-003-013 (*Rpv10 / Rpv10*) und auf rund 20 % bei 2008-059-121 (*Rpv3 / Rpv10*) aus. Beim anfälligen Genotyp liegt dieser Anteil bei maximal 10 %. Zusammenfassend kann man sagen, dass in den resistenten Genotypen ein höherer Anteil der GO-Klasse "Defense response" eine Erhöhung der Signaltransduktion und Genexpression bewirkt. Im anfälligen Genotyp kommt es zwar auch einmal zu einer Erhöhung des Anteils der GO-Klasse "Defense response" auf rund 10 %, allerdings werden dadurch die Gene aus der Signaltransduktion und der Genexpression nicht in dem Maße wie bei den resistenten Genotypen gesteigert.

3.4.3. Darstellung der Expressionsänderung in GO-Klassen

Zur Identifikation möglicher Resistenz-korrelierender Kandidatengene aus der Gesamtheit der DEG erfolgte eine genauere Einteilung in GO-Klassen. Im Gegensatz zum vorherigen Kapitel wurden die DEG nun distinker unterschieden. Zusätzlich zum Bereich "Biologischer Prozess" wurde hierbei auch zwischen den Bereichen "Zelluläre Komponente" und "Molekulare Funktion" unterschieden. Die zugehörigen GO-Klassen einer VIT-Annotation wurden aufsummiert, sodass sich ein Überblick über die am meisten vorkommenden GO-Klassen ergab. Um eine Aussage treffen zu können, welche Prozesse innerhalb der Weinrebe an der Resistenzantwort gegen Plasmopara viticola beteiligt sind, wurde die GO-Klassifikation für jeden der drei Genotypen getrennt durchgeführt. Zunächst wurde bestimmt, welche Gene nicht bei allen sondern spezifisch nur bei einem Genotyp differentiell exprimiert werden. Zusätzlich wurde zwischen hoch- und herabregulierten DEG differenziert (Abbildung 32, Abbildung 33, Abbildung 34 und Abbildung 35). Bei der Darstellung wurden nur GO-Klassen berücksichtigt, zu denen mindestens fünf VIT-Annotationen zugeordnet wurden. Im Falle der gemeinsam in den beiden resistenten Genotypen differentiell exprimierten Gene wurden nur GO-Klassen berücksichtigt, zu denen mindestens drei VIT-Annotationen zugeordnet wurden.

Abbildung 32: Übersicht der GO-Klassen mit den meisten enthaltenen DEG, die spezifisch für den Genotyp 2008-059-020 (*Rpv* - / *Rpv* -) sind. Dargestellt sind nur GO-Klassen mit mindestens fünf VIT-Annotationen.

Abbildung 33: Übersicht der GO-Klassen mit den meisten DEG, die spezifisch für den Genotyp 2008-059-121 (*Rpv3 / Rpv10*) sind. Dargestellt sind nur GO-Klassen mit mindestens fünf VIT-Annotationen.

Abbildung 34: Übersicht der GO-Klassen mit den meisten DEG, die spezifisch für den Genotyp 2011-003-013 (*Rpv10* / *Rpv10*) sind. Dargestellt sind nur GO-Klassen mit mindestens fünf VIT-Annotationen.

Abbildung 35: Übersicht der GO-Klassen mit den meisten DEG, die gemeinsam in den beiden resistentenGenotypen 2011-003-013 (*Rpv10 / Rpv10*) und 2008-059-121 (*Rpv3 / Rpv10*) differentiell exprimiert wurden.Dargestellt sind nur GO-Klassen mit mindestens drei VIT-Annotationen.96

Der Großteil aller hochregulierten Gene befindet sich bei allen drei Genotypen im Cytosol und an der Plasmamembran. Betrachtet man die molekulare Funktion der meist vorkommenden GO-Klassen, lässt sich feststellen, dass Ionen- und DNA-Bindefunktionen besonders häufig vorkommen. "Protein phosphorylation" sowie "Defense response" enthält die meisten DEG im übergeordneten Bereich "Biologischer Prozess". Auffallend ist, dass die beiden resistenten Genotypen relativ viele DEG besitzen, die auf die GO-Klasse "Response to water deprivation" entfallen. Dies verwundert zunächst, da vor und während des Inokulationsversuchs kein offensichtlicher Wassermangel der Pflanzen vorlag. Allerdings gibt es Überlappungen zwischen der abiotischen und biotischen Stressantwort, sodass dies hierdurch erklärt werden kann.

In den beiden resistenten Genotypen 2011-003-013 (Rpv10 / Rpv10) und 2008-059-121 (Rpv3 / Rpv10) befinden sich die meisten hochregulierten Gene auch im Cytosol und an Plasmamembran. Als molekulare Funktion werden besonders DNAder Bindefunktionen und Sequenz-spezifische DNA-Binde-Transkriptionsfaktoren hochreguliert. In dem übergeordneten Bereich "Biologischer Prozess" sind die GO-Klassen "Negative regulation of defense response", "Protein phosphorylation", "Regulation of plant-type hypersensitive response", "Transmembrane transport", "Oxidation-reduction process" und "Response to stimulus" hochreguliert. Daraus kann die in der Pflanze ablaufende Abwehrreaktion gegen das Pathogen abgeleitet werden. Demgegenüber werden viele Prozesse des Primärstoffwechsels nach Pathogenbefall herabreguliert. Diese umfassen beispielsweise den Pentosephosphatweg oder die Lichtreaktion der Photosynthese. Die Herabregulation dieser Stoffwechselreaktionen könnte auch mit den Inokulationsbedingungen während des Experimentes zusammenhängen. Aufgrund der zur Infektion notwendigen Dunkelheit kann keine Lichtreaktion mehr stattfinden. Daher werden vermutlich auch andere Prozesse, die damit in Verbindung stehen, herabreguliert. Tabelle 32 zeigt eine Übersicht der gemeinsam in den beiden resistenten Genotypen hochregulierten DEG. Angegeben sind zudem die annotierten Proteine mit der größten Ähnlichkeit nach Blastx-Abgleich.

Tabelle 32: Übersicht aller gemeinsam in den resistenten Genotypen 2008-059-121 (*Rpv3 / Rpv10*) und 2011-003-013 (*Rpv10 / Rpv10*) hochregulierten DEG. Zusätzlich ist jeweils das annotierte Protein (Blastx) mit der größten Ähnlichkeit angegeben.

Gemeinsam in 2008-059-121 (<i>Rpv3 / Rpv10</i>) und 2011-003-013 (<i>Rpv10 / Rpv10</i>)				
GO-Klasse	VIT-Annotation	Annotiertes Protein (Blastx)		
		Cysteine-rich RLK (RECEPTOR-		
	VIT_11s0052g01840	like protein kinase) 8 (Theobroma		
		cacao)		
		PREDICTED: Probable disease		
	VIT_18s0001g11250	resistance protein At4g33300-like		
VIT 11s0052g01840 (Ne-		(Citrus sinensis)		
gative regulation of de-		PREDICTED: Zinc finger protein		
fense response)	VIT_04s0008g07340	CONSTANS-LIKE 4 (Jatropha		
iense response)		curcas)		
	VIT 08s0040g01730	Ethylene insensitive 2 (Carica		
		papaya)		
		Hypothetical protein		
	VIT_17s0000g03370	POPTR_0015s03860g (<i>Populus</i>		
		trichocarpa)		
		PREDICTED: Calcium-		
	VIT_04s0023g03420	dependent protein kinase isoform		
GO:0006468 (Protein		XI (Solanum lycopersicum)		
phosphorylation)	VIT 06s0004g04580	Receptor protein kinase, putative		
P	_ 0	(Ricinus communis)		
	VIT 15s0046g02480	Receptor protein kinase, putative		
	_ 0	(Ricinus communis)		
	VIT 02-0025-01720	PREDICIED: LOW QUALITY		
	v11_02s0023g01720	hus domestica)		
CO.00102(2)(D		Lis domestica)		
GO:0010303 (Regulation	WIT 12:0055:001160	PE ppo016762mg (Pmunus pousi		
of plant-type hypersensi-	v11_1280055g01100	rE_ppa010702111g (<i>Frunus persi-</i>		
tive response)		PREDICTED: Glucan endo 1.3		
	VIT 06s0080a00420	beta-glucosidase 14 (Nelumbo		
	11_0050000500120	nucifera)		
		PREDICTED: Mechanosensitive		
		ion channel protein 2, chloroplas-		
	VIT_18s0001g07500	tic-like isoform X3 (Jatropha		
		curcas)		
GO:0055085 (Trans-		PREDICTED: Putative ABC		
membrane transport)	VIT 01s0010g02440	transporter C family member 15		
	_ 0	(Solanum pennellii)		
	VIT 04-0044-01990	Auxin:hydrogen symporter, puta-		
	v11_0480044g01880	tive isoform 1 (Theobroma cacao)		
		PREDICTED: Ethylene-		
	VIT 13c0019c03550	responsive transcription factor		
GO:0055114 (Oxidation-	v11_1580017g05550	RAP2-7-like isoform X3 (Populus		
reduction process)		euphratica)		
• /	VIT 18s0122o00380	Squamosa promoter binding pro-		
	····_·································	tein-like 14 (Theobroma cacao)		

	VIT_01s0011g05650	PREDICTED: 1- aminocyclopropane-1-carboxylate oxidase homolog 1-like (<i>Nelumbo</i> <i>nucifera</i>)
	VIT_16s0050g01780	PREDICTED: Probable membra- ne-associated kinase regulator 5 (<i>Jatropha curcas</i>)
GO:0050896 (Response to stimulus)	VIT_03s0063g00880	Hypothetical protein PRU- PE_ppa006697mg (<i>Prunus persi-</i> <i>ca</i>)
	VIT_07s0031g01980	PREDICTED: Ethylene- responsive transcription factor ABR1-like isoform X3 (<i>Populus</i> <i>euphratica</i>)

Abbildung 36: Gesamtzahl an unterschiedlichen GO-Klassen der DEG der drei Genotypen im Vergleich 0 hpi zu 6 hpi (Fold change > 2; p-value < 0,05), Blau: 2008-059-020 (*Rpv - / Rpv -*), Gelb: 2008-059-121 (*Rpv3 / Rpv10*), Grün: 2011-003-013 (*Rpv10 / Rpv10*)

Vergleicht man alle GO-Klassen der DEG aller drei Genotypen miteinander, so fällt zunächst auf, dass genau wie beim Vergleich der VIT-Annotationen der Genotyp 2008-059-121 (Rpv3 / Rpv10) die größte Anzahl an unterschiedlichen GO-Klassen aufwies. Die wenigsten GO-Klassen waren bei Genotyp 2008-059-020 (Rpv - / Rpv -) differentiell exprimiert. Darüber hinaus kann festgestellt werden, dass bei beiden resistenten Ge-

notypen 2008-059-121 (*Rpv3 / Rpv10*) und 2011-003-013 (*Rpv10 / Rpv10*) mit 122 GO-Klassen verhältnismäßig viele gemeinsam differentiell exprimiert wurden (Abbildung 36).

Zur nachfolgenden Genexpressionsanalyse wurden aus allen differentiell exprimierten GO-Klassen zwölf ausgewählt, die wie aus der Literatur bekannt an der Resistenzantwort gegen Pathogene beteiligt sind. Für jeden Genotyp wurden die in den GO-Klassen zusammengefassten Gene getrennt aufgelistet. Die Sequenz der Gene aus dem Referenzgenom PN40024 (12X) wurde danach zur Vorhersage der Intron-Exon-Struktur im Online-Tool FGENESH genutzt. Schließlich wurden für insgesamt 113 Gene Oligonukleotidpaare für die nachfolgende quantitative Real-Time-PCR (qRT-PCR) entwickelt sowie ein Abgleich mit der Blastx-Datenbank durchgeführt, um einen ersten Eindruck über die Genfunktion zu erhalten. Mithilfe einer qRT-PCR sollte die Genexpression der DEG in einem neuen unabhängigen Ansatz zu insgesamt sechs Zeitpunkten nach Inokluation mit dem Pathogen überprüft werden. Neben den für jeden Genotyp charakteristischen Genen, wurden zusätzlich noch Oligonukleotidpaare für die gemeinsam bei allen drei Genotypen differentiell exprimierten Gene zusammengestellt (Tabelle 33). Die Sequenzen und erwarteten Amplikonlängen der Oligonukleotidpaare sind im Anhang auf Seite XLV aufgeführt. Die Angaben "Chloroplastic" (Oligonukleotidpaare Nr. 21, 89 und 116) sowie "Mitochondrial" (Oligonukleotidpaar Nr. 80) bei dem jeweils annotierten Protein aus Blastx bedeuten nicht, dass die zugehörigen Gene aus den Chloroplasten bzw. Mitochondrien stammen. Dadurch wird nur die Ähnlichkeit mit einem annotierten Protein aus den Organellen beschrieben. Die Organellen besitzen ein eigenes Genom. Im Rahmen dieser Untersuchungen wurde das Kern-Genom der Weinrebe untersucht. Bei Oligonukleotidpaar Nr. 30 bedeutet "Mitochondrial precursor", dass dieses Protein durch Rezeptoren an der Oberfläche der Mitochondrien erkannt und vom Cytosol in das Mitochondrium importiert wird (Bolender et al. 2008). Gleiches gilt für das annotierte Protein des Oligonukleotidpaares Nr. 22 ("Chloroplast precursor"), welches nach Erkennung durch den Chloroplasten in diesen transportiert wird.

Tabelle 33: Zusammenstellung aller DEG, für die Oligonukleotidpaare zur Genexpressionsanalyse entwickelt wurden. Zusätzlich zu den für die Genotypen spezifischen Genen, wurden auch für die gemeinsam in allen Genotypen exprimierten Gene Oligonukleotidpaare erstellt.

Spezifisch für 2011-	-003-013 (<i>Rpv10 / Rpv1</i>)	Ø)	
GO-Klasse	VIT-Annotation	Annotiertes Protein (Blastx)	Oligonukle- otidpaar Nr.
	VIT_03s0038g03800	Putative serine/threonine- protein kinase Cx32 (<i>Morus notabilis</i>)	7
GO:0006468 (Pro- tein phosphoryla- tion)	VIT_07s0151g00350	PREDICTED: Seri- ne/threonine-protein kinase MHK-like isof- orm X4 (<i>Gossypium rai-</i> <i>mondii</i>)	8
	VIT_11s0016g03830	Pentatricopeptide repeat- containing protein, puta- tive (<i>Ricinus communis</i>)	9
	VIT_05s0077g01860	PREDICTED: Ethylene- responsive transcription factor RAP2-3 (<i>Gossypi-</i> <i>um raimondii</i>)	10
CO.0002700 (Sa	VIT_07s0005g00820	PREDICTED: Ethylene- responsive transcription factor ERF071-like (<i>Ma-</i> <i>lus domestica</i>)	11
GO:0003700 (Se- quence-specific DNA binding	VIT_10s0003g00140	Putative ethylene respon- se factor ERF3a (<i>Vitis</i> <i>aestivalis</i>)	12
transcription fac- tor activity)	VIT_14s0108g01070	PREDICTED: NAC do- main-containing protein 100-like (<i>Nelumbo nuci-</i> <i>fera</i>)	13
	VIT_15s0046g01140	Putative WRKY transcription factor 30 (<i>Vitis aestivalis</i>)	14
	VIT_16s0013g00990	ERF1 transcription factor (<i>Vitis pseudoreticulata</i>)	15
GO:0031348 (Ne- gative regulation of defense respon- se)	VIT_04s0008g07340	PREDICTED: Zinc fin- ger protein CONSTANS- LIKE 4 (<i>Jatropha cur-</i> <i>cas</i>)	16
GO:0003677 (DNA binding)	VIT_08s0007g03530	PREDICTED: Zinc fin- ger A20 and AN1 do- main-containing stress- associated protein 4-like (<i>Nelumbo nucifera</i>)	17
GO:0006952 (De- fense response)	VIT_01s0011g05090	MLP-like protein 34, putative (<i>Theobroma</i> <i>cacao</i>)	18
	VIT 06s0009g01070	PREDICTED: Uncharac-	19

		terized protein	
		LOC105801837 isoform	
		X2 (Gossypium raimon-	
		dii)	
		TMV resistance protein	
	VIT_{1}^{0}	N like motoin 4 (Vitia	20
	v11_18s011/g00060	N-like protein 4 (<i>viiis</i>	20
		labrusca)	
		PREDICTED: Protein	
	VIT_01s0026g01880	kinase 2B, chloroplastic	21
		(Jatropha curcas)	
		Protein kinase APK1B.	
GO:0004715		chloroplast precursor	
(Non-membrane	VIT_08s0056g00140	putative (<i>Ricinus com</i>	22
spanning protein		putative (Aternus com-	
tyrosine kinase		munis)	
activity)		PREDICTED: Probable	
.,		LRR receptor-like seri-	
	VIT_10s0092g00710	ne/threonine-protein	23
		kinase At1g56140-like	
		(Citrus sinensis)	
GO: 0010363 (Re-		· · · · · · ·	
gulation of nlant-		Inositol phosphorylcera-	
type hypersonsiti	VIT_08s0007g01510	mide synthase 1 (Theo-	24
type nypersensiti-		broma cacao)	
ve respone)		WDKW11 the second station	
		WRKYIII transcription	25
	VII_04s0069g00920	factor (Vitis pseudoreti-	25
		culata)	
		Hypothetical protein	
	VIT_09s0002g00910	PRUPE_ppa002868mg	26
		(Prunus persica)	
GO: 0006355 (Re-		PREDICTED: Probable	
gulation of		WRKV transcription	
transcription,	VIT_11s0052g00450	factor 17 (Nalumbo nuci	27
DNA-dependent)		fana)	
		DEDICTED, T	
		PREDICTED: Two-	
		component response re-	• •
	VIT_15s0048g02540	gulator-like PRR95-like	28
		isoform X7 (<i>Citrus si-</i>	
		nensis)	
GO:0009627 (Sys-		Hypothetical protein	
temic acquired	VIT 14s0068g01370	B456 012G083000	29
resistance)	_ 0	(Gossvpium raimondii)	
Spezifisch für 2008	-059-020 <u>(Rpv - / Rpv -</u>)		
		Annotiertes Protein	Oligonukle-
GO-Klasse	VIT-Annotation	(Blasty)	otidnaar Nr
			onupaar m.
		Protein AR('L'mito	
		Protein ABC1, mito-	
GO:0006468 (Pro-	VIT 04s0008g02560	Protein ABC1, mito- chondrial precursor, pu-	30
GO:0006468 (Pro- tein phosphoryla-	VIT_04s0008g02560	Protein ABC1, mito- chondrial precursor, pu- tative (<i>Ricinus commu</i> -	30
GO:0006468 (Pro- tein phosphoryla- tion)	VIT_04s0008g02560	Protein ABC1, mito- chondrial precursor, pu- tative (<i>Ricinus commu-</i> <i>nis</i>)	30
GO:0006468 (Pro- tein phosphoryla- tion)	VIT_04s0008g02560	Protein ABC1, mito- chondrial precursor, pu- tative (<i>Ricinus commu-</i> <i>nis</i>) U-box domain-	30

		family protein, putative isoform 1 (<i>Theobroma</i> <i>cacao</i>)	
GO:0003700 (Se- quence-specific DNA binding transcription fac- tor activity)	VIT_04s0023g01660	Chitin-inducible gib- berellin-responsive pro- tein, putative isoform 1 (<i>Theobroma cacao</i>)	32
GO:0003677 (DNA binding)	VIT_11s0016g00840	TPA: Hypothetical pro- tein ZE- AMMB73_873649 (<i>Zea</i> <i>mays</i>)	33
GO:0006952 (De- fense response)	VIT_10s0042g01070	SBP family protein, puta- tive isoform 1 (<i>Theo-</i> <i>broma cacao</i>)	34
GO:0004715 (Non-membrane spanning protein tyrosine kinase activity)	VIT_09s0002g02980	PREDICTED: Putative leucine-rich repeat recep- tor-like protein kinase At2g19210-like isoform X1 (<i>Citrus sinensis</i>)	35
GO:0035556 (In- tracellular signal	VIT_06s0004g03650	Pseudo-response regula- tor 7, putative isoform 2 (<i>Theobroma cacao</i>)	36
tracellular signal transduction)	VIT_14s0036g01450	Vacuolar protein sorting- associated protein 62	37
		(Theobroma cacao)	
Spezifisch für 2008	-059-121 (Rpv3 / Rpv10)	(Theobroma cacao)	Oligonuldo
Spezifisch für 2008 GO-Klasse	-059-121 (<i>Rpv3 / Rpv10</i>) VIT-Annotation	(Theobroma cacao) Annotiertes Protein (Blastx)	Oligonukle- otidpaar Nr.
Spezifisch für 2008 GO-Klasse	-059-121 (<i>Rpv3 / Rpv10</i>) VIT-Annotation VIT_01s0011g01490	(Theobroma cacao) Annotiertes Protein (Blastx) Kinase superfamily pro- tein with octicosapepti- de/Phox/Bem1p domain, putative isoform 1 (The- obroma cacao)	Oligonukle- otidpaar Nr. 38
Spezifisch für 2008 GO-Klasse GO:0006468 (Pro-	-059-121 (<i>Rpv3 / Rpv10</i>) VIT-Annotation VIT_01s0011g01490 VIT_01s0011g06080	(Theobroma cacao) Annotiertes Protein (Blastx) Kinase superfamily pro- tein with octicosapepti- de/Phox/Bem1p domain, putative isoform 1 (<i>The- obroma cacao</i>) PREDICTED: Putative receptor protein kinase ZmPK1 (<i>Populus euph- ratica</i>)	Oligonukle- otidpaar Nr. 38 39
Spezifisch für 2008 GO-Klasse GO:0006468 (Pro- tein phosphoryla- tion)	-059-121 (<i>Rpv3 / Rpv10</i>) VIT-Annotation VIT_01s0011g01490 VIT_01s0011g06080 VIT_06s0004g01090	(Theobroma cacao) Annotiertes Protein (Blastx) Kinase superfamily pro- tein with octicosapepti- de/Phox/Bem1p domain, putative isoform 1 (<i>The- obroma cacao</i>) PREDICTED: Putative receptor protein kinase ZmPK1 (<i>Populus euph- ratica</i>) Casein kinase I protein isoform 1 (<i>Theobroma cacao</i>)	Oligonukle- otidpaar Nr. 38 39 40
Spezifisch für 2008 GO-Klasse GO:0006468 (Pro- tein phosphoryla- tion)	-059-121 (<i>Rpv3 / Rpv10</i>) VIT-Annotation VIT_01s0011g01490 VIT_01s0011g06080 VIT_06s0004g01090 VIT_06s0004g02630	(Theobroma cacao) Annotiertes Protein (Blastx) Kinase superfamily pro- tein with octicosapepti- de/Phox/Bem1p domain, putative isoform 1 (<i>The- obroma cacao</i>) PREDICTED: Putative receptor protein kinase ZmPK1 (<i>Populus euph- ratica</i>) Casein kinase I protein isoform 1 (<i>Theobroma cacao</i>) Zinc finger family pro- tein (<i>Theobroma cacao</i>)	Oligonukle- otidpaar Nr. 38 39 40 41
Spezifisch für 2008 GO-Klasse GO:0006468 (Pro- tein phosphoryla- tion)	-059-121 (<i>Rpv3 / Rpv10</i>) VIT-Annotation VIT_01s0011g01490 VIT_01s0011g06080 VIT_06s0004g01090 VIT_06s0004g02630 VIT_09s0002g03680	(Theobroma cacao) Annotiertes Protein (Blastx) Kinase superfamily pro- tein with octicosapepti- de/Phox/Bem1p domain, putative isoform 1 (<i>The- obroma cacao</i>) PREDICTED: Putative receptor protein kinase ZmPK1 (<i>Populus euph- ratica</i>) Casein kinase I protein isoform 1 (<i>Theobroma cacao</i>) Zinc finger family pro- tein (<i>Theobroma cacao</i>) PREDICTED: Uncharac- terized protein LOC103441148 (<i>Malus domestica</i>)	Oligonukle- otidpaar Nr. 38 39 40 41 42

transcription fac-		broma cacao)	
tor activity)		WRKY DNA-binding	
	VIT 06s0004g07500	protein 33 isoform 1	44
		(Theobroma cacao)	
		PREDICTED: Probable	
	VIT 07~0005~02570	WRKY transcription	45
	v11_0/\$0003g02370	factor 47-like isoform X1	43
		(Glycine max)	
		PREDICTED: BEL1-like	
	VIT_08s0105g00230	homeodomain protein 1	46
		(Populus euphratica)	
		PREDICTED: Light-	
	VIT 14c0020c02200	inducible protein CPRF2	17
	v11_1480030g02200	(Nicotiana tomentosifor-	4/
		mis)	
		PREDICTED: Trihelix	
	VIT_18s0072g00670	transcription factor GT-	48
		2-like (Citrus sinensis)	
		PREDICTED: NAD-	
	VIT 07s0031g02510	dependent protein	49
	V11_0750051g02510	deacetylase SRT2	77
		(Phoenix dactylifera)	
		PREDICTED: Cy-	
	VIT_12s0057g00420	tochrome b561 and	
GO:0031348 (Ne-		DOMON domain-	50
gative regulation		containing protein	20
of defense respon-		At5g47530 (Populus	
se)		euphratica)	
		NADPH:quinone oxido-	- 1
	VII_13s0084g00850	reductase (Arabidopsis	51
		thaliana)	
	$VIT_{17} = 0.000 = 0.5500$	Calcium-dependent pro-	50
	v11_1/s0000g05520	tein kinase 30 (<i>Vitis</i>	52
		amurensis)	
		PREDICTED: Pulative	
	VIT 01-0011-00880	containing protoin	52
	v11_0180011g00880	At1g69350 mitochond	55
		rial (Prunus mume)	
		Hypothetical protein	
	VIT 03s0063c01060	PRUPE ppa006812mg	54
CO.0003677	v11_0530005g01000	(Prunus persica)	54
(DNA hinding)		Myb-like protein G	
(DIA binding)	VIT_04s0079g00410	(Morus notabilis)	55
		Transcription factor, pu-	
	VIT 08s0007g07580	tative (<i>Ricinus commu</i> -	56
	.11_000007507500	nis)	
		Myb transcription factor	
	v11_10s0116g00500	(Medicago truncatula)	57
	VIT 11s0016g02070	PREDICTED: Putative	58
	_ 8		

		transcription factor bHLH041 (Sesamum	
		indicum)	
	VIT_13s0019g04010	Myb family transcription factor family protein (<i>Populus trichocarpa</i>)	59
	VIT_17s0000g02660	Transcription factor R2R3-MYB2 (<i>Camellia</i> <i>sinensis</i>)	60
	VIT_06s0009g01180	PREDICTED: UBP1- associated protein 2B- like (<i>Jatropha curcas</i>)	61
	VIT_08s0056g00690	PREDICTED: UBP1- associated protein 2A- like (Jatropha curcas)	62
GO:0006952 (De- fense response)	VIT_09s0002g01080	Lipoxygenase family protein (<i>Populus tricho-</i> <i>carpa</i>)	63
	VIT_16s0022g01330	PREDICTED: Putative disease resistance protein At1g50180 (<i>Nelumbo</i> <i>nucifera</i>)	64
	VIT_16s0100g00810	Stilbene synthase (<i>Vitis pseudoreticulata</i>)	65
GO:0004715 (Non-membrane	VIT_12s0028g01350	Leucine-rich repeat transmembrane protein kinase isoform 3 (<i>Theo-</i> <i>broma cacao</i>)	66
spanning protein tyrosine kinase activity)	VIT_14s0068g00110	Malectin/receptor-like protein kinase family protein, putative (<i>Theo-</i> <i>broma cacao</i>)	67
GO:0010363 (Re-	VIT_09s0018g01190	Hydroxycinnamoyl CoA shikimate/quinate hydro- xycinnamoyl transferase (<i>Platycodon</i> grandiflorus)	68
gulation of plant- type hypersensiti- ve response)	VIT_15s0046g01190	UDP-Glycosyltransferase superfamily protein (<i>Theobroma cacao</i>)	69
	VIT_15s0046g01210	PREDICTED: Hydro- quinone glucosyltrans- ferase-like (<i>Populus</i> <i>euphratica</i>)	70
GO:0006355 (Re- gulation of	VIT_01s0026g02550	Hypothetical protein PRUPE_ppa006561mg (Prunus persica)	71
transcription, DNA-dependent)	VIT_02s0025g01740	PREDICTED: LOW QUALITY PROTEIN: Auxin response factor 9-	72

		like (<i>Populus euphratica</i>)	
		BEL1-like homeodomain	
	VIT 04s0023g01020	protein 2 isoform 1 (The-	73
	_ 0	obroma cacao)	
		PREDICTED: Cyclin-	
		T1-4-like isoform X2	
	VIT_05s0020g03060	(Fragaria vesca subsp.	74
		vesca)	
		PREDICTED: Ethylene-	
		responsive transcription	
	VIT_0/s0005g03220	factor ERF098-like	/5
		(Cucumis melo)	
		PREDICTED: Ethylene-	
		responsive transcription	- <i>c</i>
	VIT_12s0059g01460	factor 3-like (<i>Nelumbo</i>	/6
		nucifera)	
		PREDICTED: Transcrip-	
	VIT 15s0021g02690	tion factor UNE10	77
	_ 0	(Jatropha curcas)	
		Transcription factor. pu-	
	VIT 18s0001g08090	tative isoform 1 (<i>Theo</i> -	78
	_ 0	broma cacao)	
GO:0035556 (In-		Two-component respon-	
tracellular signal	VIT 16s0098g00900	se regulator-like protein	79
transduction)	_ 0	(Morus notabilis)	
		PREDICTED: Pyruvate	
GO:0046777 (Pro-		dehydrogenase (acetyl-	
tein autophospho-	VIT_05s0020g00760	transferring) kinase, mi-	80
rylation)	0	tochondrial (Sesamum	
		indicum)	
	VIT $0.8 \le 0.007 \le 0.0710$	Chaperone DnaJ (Gossy-	81
	VII_0030007g00710	pium arboreum)	01
		PREDICTED: Uncharac-	
	VIT 16s0013g00290	terized protein	82
	11_1050015500290	LOC105166943 (Sesa-	02
GO:0031072 (He-		mum indicum)	
at shock protein		Homeodomain-like su-	
binding)	VIT 16s0013g00350	perfamily protein isof-	83
8/	8	orm 1 (Theobroma	
		PREDICTED: Uncharac-	
	VIT 17s0000g04520	terized protein	84
	_ ~	ria wagaa suban wagaa	
<u> </u>		Humothatical metain CI	
	VIT 14-0082-01010	$CIE_{v10012610ma}(C)$	85
GO:0009627 (Sys-	v11_1480003g01010	trus clomonting)	00
temic acquired		DREDICTED. DONI	
resistance)	VIT 15c0048c02070	associated protein 2-like	86
	v11_1J800+0g02070	(Nicotiana sylvestris)	00
		(Inconuna sylvesinis)	

Gemeinsam in allen Genotypen				
GO-Klasse	VIT-Annotation	Annotiertes Protein (Blastx)	Oligonukle- otidpaar Nr.	
	VIT_00s0231g00040	RPM1-interacting protein 4 (<i>Populus trichocarpa</i>)	87	
	VIT_01s0011g03010	PREDICTED: Seri- ne/threonine-protein kinase STN7, chloroplas- tic isoform X1 (<i>Eucalyp-</i> <i>tus grandis</i>)	88	
	VIT_05s0136g00140	PREDICTED: Uncharac- terized aarF domain- containing protein kinase At1g79600, chloroplastic (Sesamum indicum)	89	
	VIT_07s0031g03210	PREDICTED: Seri- ne/threonine-protein kinase SRK2A isoform X1 (<i>Nelumbo nucifera</i>)	90	
GO:0006468 (Pro-	VIT_08s0058g01450	Serine/threonine-protein kinase SAPK3 (<i>Triticum</i> <i>urartu</i>)	91	
tein phosphoryla- tion)	VIT_13s0067g03210	Kinase superfamily pro- tein isoform 1 (<i>Theo-</i> <i>broma cacao</i>)	92	
	VIT_17s0000g06610	PREDICTED: LOW QUALITY PROTEIN: LON peptidase N- terminal domain and RING finger protein 1 (<i>Erythranthe guttatus</i>)	93	
	VIT_17s0000g07520	PREDICTED: Seri- ne/threonine-protein kinase AtPK2/AtPK19- like (Gossypium raimon- dii)	94	
	VIT_18s0001g07690	Tetratricopeptide repeat- like superfamily protein (<i>Theobroma cacao</i>)	95	
	VIT_18s0001g12520	LRR receptor protein kinase, putative (<i>Ricinus</i> <i>communis</i>)	96	
GO:0003700 (Se-	VIT_01s0011g05970	Heat shock factor protein 5 (<i>Populus trichocarpa</i>)	97	
DNA binding transcription fac- tor activity)	VIT_11s0016g02210	PREDICTED: Putative GATA transcription fac- tor 22 (<i>Nelumbo nucife-</i> <i>ra</i>)	98	
GO:0031348 (Ne- gative regulation	VIT_17s0000g06860	PREDICTED: SNAP25 homologous protein	99	

of defense respon-		SNAP33 (Sesamum indi-	
se)		cum)	
	VIT_19s0090g00410	Calcium-dependent pro- tein kinase 1e (<i>Vitis amu-</i> <i>rensis</i>)	100
	VIT_05s0049g01020	Myb-related transcription factor (<i>Vitis amurensis</i>)	101
	VIT_11s0016g00760	PREDICTED: Ubiquino- ne biosynthesis protein COQ9, mitochondrial- like (<i>Citrus sinensis</i>)	102
CO:0003677	VIT_11s0016g01300	Myb transcription factor (<i>Medicago truncatula</i>)	103
(DNA binding)	VIT_14s0081g00620	Cysteine-rich RLK (RE- CEPTOR-like protein kinase) 8 (<i>Theobroma</i> <i>cacao</i>)	104
	VIT_15s0046g02930	DNA binding protein, putative (<i>Ricinus com-</i> <i>munis</i>)	105
	VIT_15s0048g02410	Late elongated hypocotyl (<i>Castanea sativa</i>)	106
GO:0006952 (De-	VIT_07s0005g03260	PREDICTED: Ethylene- responsive transcription factor 1B-like (<i>Nelumbo</i> <i>nucifera</i>)	107
Tense Tesponse)	VIT_17s0000g08720	Cysteine-rich receptor- like protein kinase 42 (<i>Morus notabilis</i>)	108
GO:0004715	VIT_09s0002g03440	PREDICTED: LysM domain receptor-like kinase 3 (<i>Jatropha cur- cas</i>)	109
(Non-membrane spanning protein tyrosine kinase activity)	VIT_18s0166g00290	PREDICTED: Seri- ne/threonine-protein kinase HT1-like isoform X3 (<i>Malus domestica</i>)	110
	VIT_19s0085g00550	Serine/threonine protein kinase, putative (<i>Ricinus</i> <i>communis</i>)	111
GO:0010363 (Re- gulation of plant- type hypersensiti- ve response)	VIT_10s0003g04540	PREDICTED: Cationic amino acid transporter 1- like isoform X3 (<i>Sesa-</i> <i>mum indicum</i>)	112
GO:0006355 (Re- gulation of transcription,	VIT_13s0064g00860	Nuclear transcription factor Y subunit A-1, putative isoform 1 (<i>The-</i> <i>obroma cacao</i>)	113
DNA-dependent)	VIT_18s0001g11800	PREDICTED: BEL1-like homeodomain protein 4	114

		(Nelumbo nucifera)	
	VIT_18s0001g12120	PREDICTED: G-box- binding factor 1-like iso- form X1 (<i>Nelumbo nuci-</i> <i>fera</i>)	115
GO:0035556 (In- tracellular signal	VIT_08s0007g08050	PREDICTED: Carboxyl- terminal-processing pep- tidase 3, chloroplastic isoform X2 (<i>Nelumbo</i> <i>nucifera</i>)	116
transduction)	VIT_08s0105g00300	PREDICTED: Phosphoi- nositide phospholipase C 2 isoform X1 (<i>Nelumbo</i> <i>nucifera</i>)	117
GO:0046777 (Pro- tein autophospho- rylation)	VIT_13s0175g00080	Calcium-dependent pro- tein kinase 2 (<i>Vitis amu-</i> <i>rensis</i>)	118
GO:0009627 (Sys- temic acquired resistance)	VIT_02s0154g00320	PREDICTED: 14 kDa proline-rich protein DC2.15-like (<i>Sesamum</i> <i>indicum</i>)	119

3.5. Validierende Genexpressionsanalyse Resistenz-korrelierender Kandidatengene über qRT-PCR

Zur Überprüfung und Bestätigung der Ergebnisse der RNA-Seq-Analyse und der dabei identifizierten differentiell exprimierten Gene (DEG) nach Inokulation mit *Plasmopara viticola* wurde ein zweiter, vom ersten unabhängigen Inokulationsversuch mit dem Pathogen durchgeführt. Zu insgesamt sechs Zeitpunkten wurden Proben genommen (0, 3, 6, 12, 24 und 72 hpi). Als Negativkontrolle wurden Pflanzen nur mit Wasser inokuliert. Leider waren nicht von allen Genotypen drei biologische Replikate als Negativkontrolle verfügbar, da es bei der Vermehrung Probleme gab und viele Individuen abstarben. Vom Genotyp 2011-003-013 (*Rpv10 / Rpv10*) waren die Replikate I und III, vom Genotyp 2008-059-020 (*Rpv - / Rpv -*) nur Replikat I und vom Genotyp 2008-059-121 (*Rpv3 / Rpv10*) die Replikate I und II vorhanden. In der Summe ergaben sich somit 84 RNA-Proben (siehe Tabelle 34).

Tabelle 34: Proben des Inokulationsversuchs für die Genexpressionsanalyse der DEG

Inokulation	Genotyp	Zeitpunkt	Biologische Replikate
Wasser	2011 002 012	0 hpi	
2011-003-013 (<i>Rpv10 / Rpv10</i>)	3 hpi	I und III	
	6 hpi		

		12 hpi	_
		24 hpi	_
		72 hpi	-
		0 hpi	
		3 hpi	-
	2008-059-020	6 hpi	- T
	(<i>Rpv</i> - / <i>Rpv</i> -)	12 hpi	- 1
		24 hpi	-
		72 hpi	-
		0 hpi	
		3 hpi	-
	2008-059-121	6 hpi	-
	(Rpv3 / Rpv10)	12 hpi	l und ll
		24 hpi	
		72 hpi	-
Plasmopara viticola		0 hpi	
1	2011-003-013 (<i>Rpv10 / Rpv10</i>)	3 hpi	– – I, II und III –
		6 hpi	
		12 hpi	
		24 hpi	
		72 hpi	
		0 hpi	
	2008-059-020 (<i>Rpv - / Rpv-</i>)	3 hpi	- I, II und III -
		6 hpi	
		12 hpi	
		24 hpi	
		72 hpi	
	2008-059-121 (<i>Rpv3 / Rpv10</i>)	0 hpi	- - - I, II und III -
		3 hpi	
		6 hpi	
		12 hpi	
		24 hpi	
		72 hpi	

Nach dem Testen der Oligonukleotidpaare mit dem 7500 Fast Real-Time PCR System von Applied Biosystems[™] zeigte sich, dass von den 118 entwickelten Paaren (aus *Rpv10*-Locus, *Rpv3*-Locus und DEG der RNA-Seq-Analyse) nur 94 für die Genexpressionsanalyse über qRT-PCR geeignet waren. 24 zeigten entweder kein Ergebnis oder mehr als ein PCR-Produkt, sodass die Oligonukleotidpaare 23, 25, 33, 40, 41, 48, 52, 53, 57, 58, 59, 60, 70, 72, 75, 76, 82, 87, 96, 101, 102, 104, 110 und 115 nicht zur Genexpressionsanalyse in der qRT-PCR mit dem Biomark[™] HD verwendet wurden. Bei der Auswertung der Daten stellte sich weiterhin heraus, dass neun Oligonukleotidpaare (13, 14, 18, 20, 43, 64, 65, 83 und 84) teilweise ausfielen. Daher wurden diese nicht

weiter berücksicht. Somit wurde der Verlauf der Genexpression von insgesamt 86 Genen über die fünf Zeitpunkte nach Inokulation mit dem Pathogen dargestellt.

Neben den vier Kandidatengenen aus dem *Rpv10*-Locus und einem Kandidatengen aus dem *Rpv3*-Locus werden an dieser Stelle die Genexpressionsergebnisse aus der qRT-PCR von sechs weiteren vielversprechenden Kandidatengenen aus der RNA-Seq-Analyse dargestellt (Tabelle 35). Alle restlichen untersuchten Gene sind in Tabelle 46 im Anhang aufgeführt.

Auf der x-Achse der Balkendiagramme sind die fünf Zeitpunkte (3 hpi, 6 hpi, 12 hpi, 24 hpi, 72 hpi) nach Inokulation mit dem Pathogen aufgetragen. Die Expressionsänderung in Prozent im Vergleich zu 0 hpi ist auf der y-Achse dargestellt. 100 % entspricht dabei keiner Expressionsänderung, darüber liegt eine Geninduktion vor. 200 % bedeutet demnach eine Steigerung der Expression um das Zweifache. Werte zwischen 0 und 100 % entsprechen einer Repression des Gens. 10 % Expressionsänderung bedeutet somit eine um 90 % reduzierte Genexpression. Generell fiel die Standardabweichung innerhalb der biologischen Replikate, die mithilfe der Fehlerbalken dargestellt ist, verhältnismäßig hoch aus. Neben der Nummer und Bezeichnung des Oligonukleotidpaares ist das nach Blastx-Abgleich ähnlichste annotierte Protein über dem Diagramm angegeben. Tabelle 35: Ergebnisse der validierenden Genexpressionsanalyse durch qRT-PCR der Kandidatengene aus dem *Rpv10*-Locus. 100 % bildet den Nullpunkt und bedeutet keine Expressionsänderung. Die aufgetragenen Werte ergaben sich aus der Differenz zwischen den Expressionswerten der *P. viticola*-Inokulation und der Behandlung mit Wasser als Kontrolle. Die Legende befindet sich am Anfang der Tabelle. 2008-059-121 trägt *Rpv3* und *Rpv10*. 2011-003-013 trägt *Rpv10* homozygot. 2008-059-020 besitzt keinen der beiden Loci.

Nach Auswertung der Ergebnisse der Genexpressionsanalyse der vier Kandidatengene aus dem *Rpv10*-Locus zeigte sich, dass das auf den ersten Blick verheißungsvollste Gen mit Ähnlichkeit zum "Disease resistance protein RPS5-like protein 3" aus *Vitis labrusca* keine Geninduktion nach Inokulation mit *P. viticola* aufweist. Es tritt sogar eine Genrepression um rund die Hälfte zum Zeitpunkt 12 hpi auf. Der "Ethylene-responsive transcription factor TINY-like" zeigt nur eine eher leichte Induktion bei 2008-059-121 (*Rpv3 / Rpv10*) nach 6 hpi. Die stärkere Induktion nach 72 hpi im anfälligen Genotyp ist nicht Resistenz-korreliert. Im Falle des putativen Aquaporins könnte von einer spezifischen Resistenzantwort ausgegangen werden, da schon sehr früh nach Inokulation eine Induktion um das Zweifache auftritt. Allerdings ist dies in diesem Maße nur bei Genotyp 2008-059-121 (*Rpv3 / Rpv10*) der Fall. Für den homozygoten Selbstungsnachkommen kann aufgrund der Fehlerbalken keine korrekte Aussage über Geninduktion oder – repression gemacht werden. Interessant erscheint das Ergebnis für das vorhergesagte Gen für ein Bindeprotein der großen Untereinheit von RuBisCO, da nach 3 hpi eine leicht und nach 6 hpi eine fast um das Dreifache gesteigerte Genexpression bei Genotyp 2011-003-013 (*Rpv10* / *Rpv10*) vorzuliegen scheint. Allerdings ist auch hier das Ergebnis aufgrund der Standardabweichung eher fraglich.

Tabelle 36: Ergebnisse der validierenden Genexpressionsanalyse durch qRT-PCR des Kandidatengens aus dem *Rpv3*-Locus. 100 % bildet den Nullpunkt und bedeutet keine Expressionsänderung. Die aufgetragenen Werte ergaben sich aus der Differenz zwischen den Expressionswerten der *P. viticola*-Inokulation und der Behandlung mit Wasser als Kontrolle. Die Legende befindet sich am Anfang der Tabelle. 2008-059-121 trägt *Rpv3* und *Rpv10*. 2011-003-013 trägt *Rpv10* homozygot. 2008-059-020 besitzt keinen der beiden Loci.

Sehr früh nach 3 hpi zeigte sich eine Induktion um rund das Zweifache für das Gen mit Ähnlichkeit zu dem "TIR-NB-LRR type resistance protein RPV1" aus *Vitis rotundifolia*. Allerdings zeigte sich dies bei Genotyp 2011-003-013 (*Rpv10 / Rpv10*), der kein Träger von *Rpv3* ist. Im Fall des anderen Genotyps sowie zu den anderen Zeitpunkten ist aufgrund der Standardabweichungen keine sichere Aussage möglich, ob bzw. in welchem Maße eine Geninduktion auftritt. Tabelle 37: Ergebnisse der validierenden Genexpressionsanalyse durch qRT-PCR von DEG aus der RNA-Seq-Analyse. 100 % bildet den Nullpunkt und bedeutet keine Expressionsänderung. Die aufgetragenen Werte ergaben sich aus der Differenz zwischen den Expressionswerten der *P. viticola*-Inokulation und der Behandlung mit Wasser als Kontrolle. Die Legende befindet sich am Anfang der Tabelle. 2008-059-121 trägt *Rpv3* und *Rpv10*. 2011-003-013 trägt *Rpv10* homozygot. 2008-059-020 besitzt keinen der beiden Loci.

Aus RNA-Seq-Analyse 29 - VIT14s0068g01370 a Hypothetical protein B456_012G083000 (Gossypium raimondii) 2008-059-121 (Rpv3 / Rpv10) 2008-059-020 (Rpv - / Rpv -) 2011-003-013 (Rpv10 / Rpv10) 500 450 400 350 Expressionsänderung [%] 300 250 200 150 100 50 0 3 hpi 6 hpi 12 hpi 24 hpi 72 hpi

89 – VIT05s0136g00140_a PREDICTED: Uncharacterized aarF domain-containing protein kinase At1g79600, chloroplastic (*Sesamum indicum*)

Für die DEG aus der RNA-Seq-Analyse kann zusammenfassend gesagt werden, dass nach der Genexpressionsanalyse durch qRT-PCR einige vielversprechende Kandidaten für Resistenz-korrelierende Gene vorliegen könnten. Aber auch hier sind die Ergebnisse häufig aufgrund der Standardabweichungen nicht eindeutig. Zusätzlich zu den hier gezeigten sind die Resultate der restlichen untersuchten Gene im Anhang aufgelistet (Tabelle 46). Anhand des Zeitpunkts der Geninduktion kann zwischen früh und spät induzierten Genen unterschieden werden. Weitherhin sind Gene darunter, die entweder nur in einem der resistenten Genotypen oder auch in beiden induziert werden.

Spezifisch für *Rpv3* erscheinen die Gene Nr. 29 (Ähnlich dem Gen für "Hypothetical protein B456_012G083000" aus *Gossypium raimondii*) und Nr. 69 (Ähnlich dem Gen für "UDP-Glycosyltransferase superfamily protein" aus *Theobroma cacao*) zu sein, da in 2008-059-121 (*Rpv3 / Rpv10*) eine im Vergleich zu 2011-003-013 (*Rpv10 / Rpv10*) wesentlich stärkere Induktion erfolgt. UDP-Glykosyltransferasen sind Bestandteil des Primärstoffwechsels. Zwischen den beiden Genen für das "Hypothetical protein B456_012G083000" und das "UDP-Glycosyltransferase superfamily protein" bestehen zudem Unterschiede im zeitlichen Verlauf der Induktion. Gen Nr. 29 mit Ähnlichkeit zu

dem Gen für das "Hypothetical protein B456_012G083000" wird erst nach 12 hpi induziert, wohingegen Gen Nr. 69 für das "UDP-Glycosyltransferase superfamily protein" bereits nach 3 hpi um rund das Fünffache induziert wird. Nach 6 hpi steigt dieser Wert auf über Zehnfach an. Eine vergleichbar starke Induktion zeigt das Gen Nr. 45 mit Homologie zu dem "PREDICTED: Probable WRKY transcription factor 47-like isoform X1" auf den ersten Blick im gleichen Genotyp 2008-059-121 (*Rpv3 / Rpv10*). Allerdings fällt auch die Standardabweichung sehr groß aus. Dieses Gen wird auch im für *Rpv10* homozygoten Selbstungsnachkommen (2011-003-013) induziert. Mit nur rund dem Dreifachen an Induktion nach 6 hpi liegt die Induktion ein gutes Stück unter dem Maximum in 2008-059-121 (*Rpv3 / Rpv10*). WRKY-Transkriptionsfaktoren sind ein wichtiger Bestandteil der pflanzlichen Genregulation und dadurch auch an der Resistenzantwort gegen *Plasmopara viticola* beteiligt.

Besonders charakteristisch für Rpv10-Locus scheinen die Gene Nr. 68 (Ähnlich dem Gen für "Hydroxycinnamoyl CoA shikimate/quinate hydroxycinnamoyl transferase") und Nr. 91 (Ähnlich dem Gen für "Serine/threonine-protein kinase SAPK3") zu sein, da diese zu fast allen untersuchten Zeitpunkten am stärksten im Genotyp 2011-003-013 (Rpv10 / Rpv10) induziert werden. Das Maximum des Gens Nr. 91 codierend für die "Serine/threonine-protein kinase SAPK3" tritt dabei nach 6 hpi mit einer Expressionsänderung von ungefähr dem Vierfachen auf. Gen Nr. 68 codierend für die "Hydroxycinnamoyl CoA shikimate/quinate hydroxycinnamoyl transferase" ist in den ersten 24 Stunden nach Inokulation knapp vierfach induziert. Zum Zeitpunkt 12 und 72 hpi liegt die Induktion bei ungefähr dem Dreifachen. Serin/Threonin-Proteinkinasen sind als Bestandteil der Signaltransduktion auch an der Pathogenabwehr beteiligt. Ein in beiden Resistenzloci nahezu identisch exprimiertes Gen scheint Gen Nr. 89 mit Ähnlichkeit zu dem Gen der "Uncharacterized aarF domain-containing protein kinase At1g79600" zu sein. Es zeigt bereits nach 3 hpi eine ungefähr zweifache Induktion, die nach 6 hpi in 2011-003-013 (Rpv10 / Rpv10) rund 50 % höher liegt als in 2008-059-121 (Rpv3 / Rpv10). Nach 24 hpi steigt die Expression im anfälligen Genotyp ohne Resistenzloci (2008-059-020) auf ungefähr das Niveau der resistenten Genotypen an. Proteinkinasen sind in vielfachem Maße an der Signalweiterleitung innerhalb der Pflanze bei Pathogenbefall beteiligt.

4. Diskussion

4.1. Sequenzierung des *Rpv10*-Locus und Identifikation von Kandidatengenen

Die QTL-Analysen von Schwander et al. 2012 hatten ergeben, dass der Rpv10-Locus ungefähr 80 kb im Referenzgenom PN40024 (12X) von 'Pinot noir' entspricht. Zur Darstellung dieses relativ kleinen Bereiches wurde zunächst ein Ansatz über Amplikon-Sequenzierung der Sorte 'Solaris' gewählt. Aufgrund der Sequenzunterschiede zwischen 'Solaris' und PN40024 (12X) ergaben einige der auf Basis des Referenzgenoms erstellten Oligonukleotidpaare als Primer kein spezifisches PCR-Ergebnis. Daher wurden neue Oligonukleotide mithilfe der neu erarbeiteten partiellen Sequenzinformationen aus 'Solaris' entwickelt. Zwei Lücken, welche die Amplikons LR-Rpv10 06 bis LR-Rpv10 08 sowie LR-Rpv10 10 umfassten, ließen sich dennoch nicht schließen. Auch die Verwendung anderer DNA-Polymerasen oder geänderte Reaktionspuffer und -bedingungen führten nicht zum Ziel, sodass letztendlich durch Sequenzierung ausgewählter BAC-Klone aus einer BAC-Bank von 'Solaris' die Lücken geschlossen wurden. Dabei zeigte sich, dass die DNA im Bereich der beiden Lücken sehr reich an Wiederholungen von zum Beispiel 20 Thymin- oder Adenin-Nukleotiden nacheinander ist. Dadurch könnte es zur Bildung von Sekundärstrukturen gekommen sein, was wiederum dazu geführt haben könnte, dass die Polymerase an diesen Stellen das Template nicht korrekt ablesen konnte oder die PCR komplett abgebrochen ist.

Durch die ergänzende BAC-Sequenzierung konnte das resistente Allel von *Rpv10* komplett über einen Bereich von 83,6 kb erfolgreich dargestellt werden. Neben dem resistenten wurde auch das anfällige Allel von *Rpv10* aus 'Solaris' analysiert. Der direkte Vergleich zeigte größere Unterschiede zwischen den Allelen, sodass ein Alignment nur bei verhältnismäßig geringem Homologiegrad von 70 % möglich war. Das resistente Allel (83.656 bp) von *Rpv10* aus 'Solaris' ist rund 2.100 bp größer als das anfällige Allel (81.508 bp). In dem Bereich von *Rpv10* liegen neun vorhergesagte Gene, die zwischen den beiden Allelen unterschiedlich sind. Die Anzahl der Gene ist in beiden Allelen identisch. Da keine Gene im anfälligen Allel im Vergleich zum resistenten Allel fehlen, müssen sequenzielle Unterschiede vorliegen, um eine mögliche Resistenz-vermittelnde Funktion zu erklären. Ein Alignment der beiden Allele ergab in jedem der neun Gene Sequenzunterschiede, die vermutlich zum Verlust der Resistenz-vermittelnden Funktion im anfälligen Allel aufgrund der veränderten Aminosäuresequenz führen. Nach Abgleich in Datenbanken und Untersuchung ihrer Proteindomänen ergaben sich vier vielversprechende Kandidatengene mit Ähnlichkeit zu annotierten Proteinen aus anderen Pflanzen (*Gossypium raimendii* (Baumwollpflanze), *Nelumbo nucifera* (Indische Lotusblume), *Vitis labrusca, Vitis cinerea* var. *helleris x Vitis rupestris*), die an der durch *Rpv10* vermittelten Resistenzantwort gegenüber dem Falschen Mehltau der Weinrebe beteiligt sein könnten. Dazu zählen zwei Proteine mit Ankyrin-Repeats (ANK), ein Ethylen-responsiver Transkriptionsfaktor (ERF) und ein RPS5-ähnliches (<u>R</u>esistance to <u>Pseudomonas syringae 5</u>) Resistenzprotein vom Typ CC-NBS-LRR. Auf den ersten Blick zeigte der Vergleich der beiden *Rpv10*-Allele aus 'Solaris' keine Sequenzunterschiede im Bereich des CC-NBS-LRR-Resistenzgens. Eine genauere Betrachtung der durch FGENESH vorhergesagten Aminosäuresequenz ergab deutliche Unterschiede (siehe Abbildung 37). Aufgrund dieser Unterschiede liegt das CC-NBS-LRR-Resistenzgen im anfälligen Allel nicht funktionell vor und kann keine Resistenz gegen *P. viticola* vermitteln. Daher ist dieses Gen als Hauptkandidatengen für die durch *Rpv10* vermittelte Resistenz gegen den Falschen Mehltau der Weinrebe anzusehen.

Abbildung 37: Alignment des resistenten (untere Sequenz) und anfälligen Allels (obere Sequenz) des RPS5ähnlichen Resistenzproteins aus dem *Rpv10*-Locus von 'Solaris'. Rote Bereiche kennzeichnen Unterschiede zwischen den Allelen.

Ankyrin-Repeats vermitteln Protein-Protein-Interaktionen und konnten bereits in verschiedenen Resistenz-assoziierten Proteinen nachgewiesen werden. Dazu zählt unter anderem NPR1 (Non-expressor of pathogenesis-related gene 1) aus Arabidopsis thaliana, das Salicylsäure-sensitive PR-Gene (Pathogenesis-related) der SAR (Systemic acquired resistance) reguliert (Cao et al. 1997). Das Ankyrin-Protein ACD6 (Accelerated cell death 6) spielt in Arabidopsis thaliana eine wichtige Rolle beim Salicylsäureabhängigen Zelltod (Lu et al. 2003). Im Reis ist das Ankyrin-Protein OsPIANK1 an der durch Salicyl- und Jasmonsäure-vermittelten basalen Abwehr gegen Magnaporthe oryzae beteiligt (Mou et al. 2013). Leider konnte aufgrund der spezifischen Sequenzeigenschaften der beiden Gene kein geeignetes Primerpaar für die qRT-PCR der beiden Ankyrin-Proteine-Gene entwickelt werden, sodass keine Untersuchung im Rahmen dieser Methode der Genexpressionsanalyse möglich war. Auch durch die RNA-Seq-Analyse konnten keine Erkenntnisse über den Verlauf der Genexpression der beiden Ankyrin-Gene nach Pathogenbefall gewonnen werden, da sich RPKM-Werte von 0 ergaben. Dies bedeutet, dass keine reads auf diese Gene "gemappt" werden konnten. Vermutlich sind die Sequenzunterschiede an dieser Stelle zwischen dem Referenzgenom PN40024 (12X) der gegenüber dem Falschen Mehltau anfälligen Rebsorte 'Pinot noir' und dem 'Solaris'-Genom zu groß. Gerade dies könnte darauf hindeuten, dass die beiden Ankyrin-Gene an der durch Rpv10-vermittelten Resistenzantwort gegen P. viticola beteiligt sind. Unter Umständen könnten andere Primer-Spezifikationen helfen, um spezifische Oligonukleotidpaare für diese beiden Ankyrin-Gene zur Verwendung als Primer in qRT-PCR-Analysen zu erstellen. Alternativ könnte über beispielsweise cDNA-Microarray-Analysen versucht werden, die Genexpression der beiden Ankyrin-Gene nach Inokulation mit dem Pathogen darzustellen. Microarray-Chips besitzen sehr viele Probenfelder, an die jeweils nur eine definierte komplementäre cDNA-Sequenz binden kann. Durch Fluoreszenzfärbung kann die Menge der dort gebundenen cDNA quantifiziert werden.

Ein weiteres Kandidatengen zeigt Ähnlichkeit zu ERF-TF (<u>E</u>thylene-<u>r</u>esponsive element binding <u>factor-T</u>ranskriptions<u>faktoren</u>). ERF-Transkriptionsfaktoren können die Expression der PR-Gene direkt regulieren und sind damit aktiv an der Abwehrreaktion gegen Pathogene beteiligt. Alle Vertreter der Ethylen-responsiven Transkriptionsfaktoren besitzen eine AP2-Domäne (<u>APETALA2</u>) zur DNA-Bindung (Magnani *et al.* 2004, Okamuro *et al.* 1997). In der Weinrebe konnten 149 ERF-Gene nachgewiesen werden. Deren genaue Funktion ist allerdings noch unklar (Licausi *et al.* 2010). In anderen Or-

123

ganismen ist darüber mehr bekannt. ERF5 ist beispielsweise in *Arabidopsis* an der Chitin-induzierten Immunantwort gegen Pathogene beteiligt (Son *et al.* 2012). In der Weinrebe konnte gezeigt werden, dass ERF5 auch an der Resistenzantwort gegen *P. viticola* beteiligt ist (Moser 2014). Gezeigt werden konnte außerdem, dass Chitin auch Bestandteil der Zellwand von *P. viticola* ist (Kortekamp 2005, Werner *et al.* 2002). Demnach könnte das im *Rpv10*-Locus liegende Gen mit Ähnlichkeit zu einem ERF-TF auch in der Resistenzantwort gegen *P. viticola* involviert sein.

Ein Resistenzgen vom Typ NBS-LRR konnte ebenfalls im *Rpv10*-Locus als mögliches Kandidatengen identifiziert werden. NBS-LRR-Resistenzproteine sind in der Lage, Effektorproteine von Pathogenen zu detektieren und die Effektor-getriggerte Immunantwort (ETI) auszulösen (Chisholm *et al.* 2006). Aufgrund seiner Ähnlichkeit zu dem gegen *Pseudomonas syringae* wirkenden Resistenzprotein RPS5 aus *Vitis labrusca* zählt das im *Rpv10*-Locus liegende Resistenzprotein zum Typ CC-NBS-LRR (Qi *et al.* 2012). Der Vergleich des resistenten mit dem anfälligen Allel von 'Solaris' ergab deutliche Unterschiede in der Aminosäuresequenz durch Aminosäureaustausche und Aminosäuredeletionen (siehe Abbildung 37). An einigen Stellen kommt es im anfälligen Allel zu einem vorzeitigen Abbruch der Translation aufgrund eines Stopcodons (Abbildung 38). Vermutlich aus diesem Grund kann in dem anfälligen Genotyp ohne Resistenzloci keine Abwehrreaktion gegen *P. viticola* induziert werden, da die Resistenz-vermittelnde Proteinfunktion nicht mehr gegeben ist. Ähnliches konnte bereits für das Resistenzprotein RPS5 aus *Arabidopsis* gezeigt werden, das u. a. auch Resistenz gegen den Falschen Mehltau vermittelt (Warren *et al.* 1998).

Abbildung 38: Ausschnitt aus dem Alignment der DNA-Sequenzen des resistenten (untere Sequenz) und anfälligen Allels (obere Sequenz) des RPS5-ähnlichen Resistenzproteins aus dem *Rpv10*-Locus von 'Solaris'. Die roten Rechtecke kennzeichnen Stopcodons im anfälligen Allel von *Rpv10* aus 'Solaris'.

Zusätzlich zu den vier genannten potenziellen Resistenz-korrelierenden Kandidatengenen liegen noch zwei weitere vorhergesagte Gene (ein putatives Aquaporin TIP1-Gen und ein Gen für ein Bindeprotein der großen RuBisCO-Untereinheit) im Bereich von *Rpv10*, die allerdings auf den ersten Blick nicht mit Resistenz in Verbindung zu stehen scheinen. Aquaporin TIPs (Tonoplast Intrinsic Proteins) sind als membrangebundene Proteinkanäle am Transport von Wasser und anderen löslichen Stoffen beteiligt (Leitao et al. 2014, Leitao et al. 2012). Dadurch sind sie auch an der Regulierung des Wasserflusses in den Blättern der Weinrebe beteiligt (Pou et al. 2013). Darüber hinaus sind Aquaporine am Transport von H₂O₂ beteiligt, weshalb sie auch bei der Signalweiterleitung und Stressantwort eine wichtige Rolle einnehmen (Jang et al. 2012, Maurel 2007). Dies könnte eine mögliche Beteiligung an der Rpv10-vermittelten Abwehrreaktion gegen P. viticola erklären. Nach Plasmopara-Befall konnte ein Anstieg der Expression von TIP2;1 in der Weinrebe beobachtet werden (Wu et al. 2010). Allerdings könnte auch die veränderte Genexpression durch die Inokulationsbedingungen hervorgerufen worden sein, da die vollständige Benetzung mit Wasser auch in gewisser Weise Stress für die Pflanze bedeutet. Das Gen mit Ähnlickeit zu einem Bindeprotein-Gen der großen Unterheinheit von RuBisCO wurde in der Genexpressionsanalyse untersucht, da die im Protein vorkommende Chaperonin-Domäne u. a. an der Proteinfaltung, Proteinstabilisierung bei Stress sowie Interaktion mit anderen durch Stress-induzierten Komponenten beteiligt ist (Wang et al. 2004). Hierbei handelt es sich nicht um ein Gen aus dem Chloroplasten, sondern um ein Gen mit Ähnlichkeit dazu. Chloroplasten besitzen ein eigenes Genom.

4.2. Darstellung von Kandidatengenen aus dem Rpv3-Locus

Zum Vergleich der Resistenzmechanismen von *Rpv10* und *Rpv3* wurde versucht, mögliche Resistenz-korrelierenden Kandidatengene aus dem *Rpv3*-Locus darzustellen und mithilfe von Genexpressionsanalysen zu charakterisieren. Da der Bereich von *Rpv3* mit rund 974 kb (bezogen auf das Referenzgenom PN40024 (12X) zwischen den *Rpv3*korrelierenden SSR-Markern GF18-06 und GF18-08 sehr groß ist, wurden in einer parallelen Arbeit NGS-Daten der Sorten 'Regent' und 'Villard blanc' genutzt. Der Abgleich mit annotierten Proteinen der Blastx-Datenbank ergab drei mögliche Gene mit Ähnlichkeiten zu Resistenzproteinen. Zwei davon sind vom Typ TIR-NB-LRR aus *Vitis rotundifolia (Muscadinia rotundifolia)*, ein drittes ähnelt einer Rezeptor-Proteinkinase aus *Citrus sinensis*. Eines der beiden TIR-NB-LRR-Gene zeigt Ähnlichkeiten mit dem klonierten und funktionell charakterisierten Resistenzgen *MrRPV1 aus Muscadinia rotundifolia* (Feechan *et al.* 2013). Einzig für dieses Gen konnten geeignete Oligonukleotide für die qRT-PCR entwickelt werden. Für die beiden anderen Kandidatengene konnten aufgrund konservierter Sequenzbereiche keine spezifischen Oligonukleotidpaare als PCR-Primer erstellt werden. Ohne spezifisch bindende Oligonukleotidpaare ist keine Aussage über die Expression des betrachteten Gens möglich, da andere unspezifische qRT-PCR-Produkte störend wirken würden.

4.3. Vergleichende RNA-Seq-Analyse

Die Gesamtheit aller exprimierten Gene eines Organismus zu einem bestimmten Zeitpunkt kann in der mRNA nachgewiesen bzw. untersucht werden. Es existieren unterschiedliche Arten von RNA. Die mRNA dient bei der Translation in der Proteinbiosynthese als Informationsüberträger und stellt dadurch ein Abbild aller aktiven Gene in einem Organismus dar. Im Gegensatz dazu trägt die ribosomale rRNA keine Information, sondern ist u. a. am Aufbau der Ribosomen beteiligt. Die Transfer-RNA tRNA codiert ebenfalls für keinerlei genetische Information. Sie transportiert die einzelnen Aminosäuren aus dem Cytoplasma zu den Ribosomen. Von der Gesamt-RNA aus dem Gewebe wurde die codierende mRNA über deren poly(A)+-Ende von den nichtcodierenden Bestandteilen getrennt. Durch Sequenzierung der mRNA können Transkriptome in ihrer Gesamtheit erfasst sowie diese dann zwischen verschiedenen Genotypen und/oder Zeitpunkten nach beispielsweise Pathogenbefall verglichen werden.

Für die RNA-Seq-Analyse im Rahmen dieser Arbeit wurden die Proben zum Zeitpunkt 0 hpi und 6 hpi miteinander verglichen. Aus vorherigen Arbeiten war bekannt, dass die Resistenzantwort gegen Plasmopara viticola bereits nach 6 hpi induziert wird (Figueiredo et al. 2012). Ausgehend davon wurden in den Folgeuntersuchungen durch qRT-PCR die weiteren Zeitpunkte 3 hpi, 12 hpi, 24 hpi und 72 hpi gewählt, um sowohl einen noch früheren Zeitpunkt nach Inokulation als auch die sehr späten Zeitpunkte vergleichen zu können. Drei Pflanzen mit unterschiedlichen Kombinationen der Resistenzloci Rpv3 und Rpv10 wurden verwendet (2011-003-013 mit homozygotem Rpv10-Locus, 2008-059-121 mit *Rpv3* und *Rpv10* und 2008-059-020 ohne *Rpv3* oder *Rpv10*). Dadurch konnten Unterschiede in den DEG nach P. viticola-Inokulation aufgezeigt werden. Die Pflanzen wurden gemeinsam einige Wochen vor der Pathogeninokulation zum Schutz vor Umwelteinflüssen in eine Klimakammer gestellt, um eine physiologische Harmonisierung zu erreichen. Die Bedingungen (Temperatur, Luftfeuchtigkeit und Beleuchtungsstärke) waren in jedem Tag- und Nacht-Zyklus identisch. Es wurden nur solche Pflanzen für das Experiment verwendet, die äußerlich gesund aussahen und eine ausreichende Anzahl junger Blätter aufwiesen. Es wurde zusätzlich darauf geachtet,

dass der Wasserhaushalt der Pflanzen durch regelmäßiges Gießen möglichst optimal war.

Nur rund 57 % der Gesamtzahl an reads konnten für die RNA-Seq-Analyse genutzt werden. Knapp 14 % der reads zeigten Homologie zu den Oomyceten *Hyaloperonospora arabidopsidis* sowie *Phytophthora infestans* und wurden von der weiteren Analyse ausgeschlossen. Das Auffinden von *P. viticola*-Sequenzen weist auf den Erfolg der Infektion durch *P. viticola* hin. Durch Verwendung der einzig vollständig verfügbaren *Vitis*-Genomsequenz von einer homozygoten Linie der Rebsorte 'Pinot noir' (PN40024 12X) als Referenz zum Mapping der reads reduzierte sich die nutzbare Readanzahl auf rund 57 % der nach der Sequenzierung erhaltenen Readanzahl. 'Solaris' konnte nicht als Referenz genutzt werden, da diese Rebsorte noch nicht sequenziert wurde.

Der Vergleich der DEG aus der RNA-Seq-Analyse der drei Genotypen zeigt, dass in dem Genotyp mit *Rpv3* und *Rpv10* die meisten und in dem Genotyp ohne Resistenzloci die wenigsten Gene differentiell exprimiert wurden. Der für Rpv10 homozygote Genotyp 2011-003-013 (Rpv10 / Rpv10) liegt zwischen den beiden. Dies ist ein wichtiger Hinweis auf eine unterschiedliche Wirkungsweise der durch Rpv3- und Rpv10vermittelten Abwehrreaktion gegen den Falschen Mehltau der Weinrebe (Plasmopara viticola). Jeder der beiden Resistenzloci Rpv3 und Rpv10 besitzt charakteristische Gene, die nur durch den jeweiligen Resistenzmechanismus aktiviert werden. Aus diesem Grund liegt die Anzahl der DEG im Genotyp mit beiden Resistenzloci höher als im Genotyp, der lediglich Rpv10 homozygot trägt. Wäre die Anzahl an DEG in diesen beiden Genotypen gleich hoch, würde vermutlich der gleiche Resistenzmechanismus in Rpv3 und *Rpv10* vorliegen. Zwar existieren auch gemeinsam in beiden resistenten Genotypen hochregulierte Resistenzfaktoren (z. B. "PREDICTED: Probable disease resistance protein At4g33300-like" aus Citrus sinensis, "PREDICTED: Calcium-dependent protein kinase isoform X1" aus Solanum lycopersicum oder "PREDICTED: Ethyleneresponsive transcription factor RAP2-7-like isoform X3" aus Populus euphratica), aber dennoch scheint es spezifisch bei Rpv3 und Rpv10 wirkende Mechanismen zu geben. Dazu zählen insbesondere 30 Gene (z. B. "PREDICTED: Putative disease resistance protein At1g50180" aus Nelumbo nucifera und insgesamt 16 Stilbensynthasen aus V. pseudoreticulata, V. quinquangularis, V. riparia und V. amurensis) aus der GO-Klasse "Defense response" (GO:0006952), die nur in dem Genotyp 2008-059-121 mit Rpv3 und Rpv10 hochreguliert wurden. Auffällig ist die große Anzahl von Stilbensynthasen,

die durch die Pathogeninokulation hochreguliert wurden. Stilben gilt als Schlüsselelement der Resveratrolsynthese und reguliert dadurch die hypersensitive Reaktion (HR) (Chang *et al.* 2011). Allerdings ist keine finale Aussage darüber möglich, welche dieser Gene darunter tatsächlich charakteristisch für *Rpv3* sind. Dazu müsste ein Genotyp untersucht werden, der nur *Rpv3* trägt. Aufgrund der durch *Rpv3* und *Rpv10* vermutlich unterschiedlich vermittelten Abwehrreaktion ist die gezielte Zusammenführung verschiedener Resistenzmechanismen in neuen Rebsorten durch Pyramidisierung von entscheidender Bedeutung für die Dauerhaftigkeit der Resistenz. Wird einer dieser Mechanismen durch das Pathogen überwunden, würde der andere Mechanismus die Resistenz gegen den Falschen Mehltau der Weinrebe (*Plasmopara viticola*) weiterhin aufrechterhalten.

Der Anteil hochregulierter DEG liegt im Genotyp mit homozygotem Rpv10 und im Genotyp ohne Resistenzloci vergleichsweise höher als im Genotyp mit Rpv3 und Rpv10. Diese Tatsache verwundert zunächst, dass der anfällige Genotyp 2008-059-020 (Rpv - / Rpv -) in diesem Punkt leicht über dem Genotyp 2008-059-121 (Rpv3 / Rpv10) mit beiden Resistenzloci liegt. Allerdings muss dabei auch auf das Maß der Induktion geachtet werden. Generell konnte durch die Darstellung in "Heatmaps" und anhand der Clusteranalyse festgestellt werden, dass die Expressionsänderung in den resistenten Genotypen in stärkerem Maße ausfällt als im anfälligen Genotyp. Zudem muss ebenso beachtet werden, dass eine Pflanze ohne Abwehrmechanismen durch ein Pathogen einem viel größeren Stress ausgesetzt ist als eine Pflanze mit spezifischen Abwehrreaktionen gegen dasselbe Pathogen. Im resistenten Organismus ist aufgrund der Spezifität des Abwehrmechanismus eine viel geringere Anzahl von Genen nötig, um einer Ausbreitung des Schädlings in der Pflanze entgegenzuwirken. Im anfälligen Organismus werden vermutlich vor allem unspezifische Abwehrmechanismen aktiviert. Oftmals geschieht dies zu einem relativ späten Zeitpunkt nach Pathogenbefall, sodass die Abwehrreaktion zu spät erfolgt und eine effektive Bekämpfung des Schädlings nicht mehr möglich ist.

Der Großteil der DEG in den "Clustern" ist am Metabolismus der Pflanze beteiligt. Die differentielle Expression von Genen des Metabolismus nach Inokulation mit *P. viticola* wurde bereits beschrieben (Figueiredo *et al.* 2012). Bei *V. riparia* kommt es nach *P. viticola*-Inokulation zu einer dauerhaften Aktivierung des Lipid-Metabolismus (Polesani *et al.* 2010). An zweiter Stelle der DEG folgen Gene mit Beteiligung an biosynthetischen Prozessen. Dazu zählt beispielsweise die Bildung von ATP oder NADH, was
wiederum eine zentrale Rolle im Metabolismus spielt. Zwischen den GO-Klassen "Defense response", "Signal transduction" und "Gene expression" konnten eindeutige Zusammenhänge in den resistenten Genotypen nachgewiesen werden. Immer wenn der Anteil der DEG an der GO-Klasse "Defense response" angestiegen ist, wurde auch die Expression der GO-Klassen "Signal transduction" und "Regulation of gene expression" gesteigert. Daraus kann man den Ablauf einer typischen Abwehrreaktion gegen ein Pathogen am Beispiel der Effektor-getriggerten Immunantwort (ETI) ableiten. Vorhandene Effektorproteine eines Pathogens werden zunächst durch Resistenzproteine der Pflanze erkannt ("Defense response"). Danach leiten u. a. Proteinkinasen das Signal weiter ("Signal transduction") und durch Expression weiterer Gene wird zum Beispiel die hypersensitive Reaktion oder die Bildung weiterer Sekundärmetabolite ausgelöst ("Regulation of gene expression"). Der Zusammenhang zwischen den drei genannten GO-Klassen konnte vor allem in den am stärksten hochregulierten "Clustern" der resistenten Genotypen beobachtet werden. In herabregulierten "Clustern" konnte dies nicht festgestellt werden. Zwar lag der Anteil der GO-Klasse "Defense response" in einem "Cluster" des anfälligen Genotyps auch bei über 10 %, aber dadurch kam es zu keiner Steigerung der Expression der GO-Klassen "Signal transduction" oder "Regulation of gene expression". Lediglich der Anteil der GO-Klasse "Response to stress" war erhöht. Hier könnte zwar das Pathogen durch Rezeptorproteine erkannt werden, jedoch kann keine Signalweiterleitung und damit keine Aktivierung weiterer Resistenzgene erfolgen. Ursache dafür könnte unter Umständen eine Veränderung des Rezeptorproteins sein, sodass dieses in seiner Funktion gestört ist (siehe RPS5-ähnliches CC-NBS-LRR-Resistenzprotein aus Rpv10-Locus von 'Solaris', Abbildung 38).

4.4. Validierende Genexpressionsanalyse Resistenz-korrelierender Kandidatengene über qRT-PCR

Die quantitative Real-Time-PCR (qRT-PCR) ist eine weit verbreitete Methode zur Quantifizierung der Genexpression. Neben der Expressionsanalyse noch nicht charakterisierter Gene, findet sie auch bei der Validierung von Microarray- und RNA-Seq-Analysen Anwendung. Besonders ihre Sensitivität, Effizienz und Schnelligkeit zeichnen die Methode aus. Zudem lassen sich die Ergebnisse gut reproduzieren (Wong & Medrano 2005). Die relativ hohen Standardabweichungen zwischen den biologischen Replikaten stellen allerdings – wie in dieser Arbeit auch – das Hauptproblem bei der Auswertung der Genexpressionsergebnisse über qRT-PCR dar. Oftmals ist keine Aussage möglich, ob im Endeffekt eine Induktion oder Repression vorliegt. Eine Wiederholung des Inokulationsversuches sowie der qRT-PCR wäre notwendig, um die Ergebnisse verifizieren zu können.

Die Ergebnisse der RNA-Seq-Analyse und Genexpressionsanalyse über qRT-PCR sind nur bedingt miteinander vergleichbar. Vor allem die Normalisierung der Ergebnisse stellt ein Problem dar, da zwei verschiedene Arten der Quantifizierung genutzt wurden. Im Falle der RNA-Seq-Analyse handelte es sich um eine absolute Quantifizierung über die Anzahl "gemappter" reads pro Gen. Bei der qRT-PCR wurde mithilfe eines internen "Housekeeping"-Gens eine relative Quantifizierung der Genexpression durchgeführt. Eine weitere Schwierigkeit stellten in ihrer Sequenz sehr ähnliche Gene dar. Aufgrund der Sequenzhomologie der Gene wurde unter Umständen die gleiche Anzahl von reads in diesem Bereich "gemappt", sodass sich ähnlich hohe Expressionswerte ergaben. Dennoch konnten durch die RNA-Seq-Analyse differentiell exprimierte Gene identifiziert werden. Im Anschluss wurde deren Genexpression über einen größeren zeitlichen Verlauf mittels qRT-PCR näher charakterisiert. Allerdings war die Voraussetzung hierfür, dass die Oligonukleotidpaare als PCR-Primer spezifisch für das zu untersuchende Gen waren, um ein aussagekräftiges Ergebnis zu erhalten.

Durch das Experiment wurde zwar die Genexpression bis drei Tage nach Inokulation untersucht, aber die Ergebnisse zeigen letztlich, dass verhältnismäßig früh nach Inokulation die entscheidenden Prozesse in Gang gesetzt werden. In vorherigen Arbeiten konnte dies bereits beobachtet werden (Figueiredo et al. 2012). Unter anderem im anfälligen Genotyp ohne Resistenzloci kommt es nach 72 Stunden zu gesteigerter Geninduktion, wie beispielsweise beim Ethylen-responsiven Transkriptionsfaktor (Oligonukleotidpaar Nr. 2) aus dem Rpv10-Locus. Hier handelt es sich jedoch vermutlich um keine Resistenz-korrelierende Genantwort. Nach dieser verhältnismäßig langen Zeit nach der Inokulation konnte sich das Pathogen in der Pflanze etablieren. Eine mögliche Resistenzreaktion durch die Pflanze erfolgt zu spät. Schaut man sich die Kandidatengene aus den Resistenzloci *Rpv3* und *Rpv10* an, so zeigen auch das RPS5-ähnliche Resistenzprotein (Nr. 3), das putative Aquaporin (Nr. 4) und das TIR-NB-LRR-Resistenzprotein (Nr. 5) im anfälligen Genotyp nach 72 hpi die höchste Genexpression. Eine direkte Korrelation zwischen Resistenz und deutlich gesteigerter Genexpression zeigt das putative Aquaporin-Gen für den resistenten Genotyp mit Rpv3 und Rpv10. Schon nach 3 hpi ist die Expression um das Doppelte erhöht. Der Genotyp ohne Resistenzloci zeigt eine

verminderte Expression und im Selbstungsnachkommen von 'Solaris' mit homozygotem Rpv10 kommt es nur zu einer leichten Geninduktion, was jedoch wegen der Standardabweichung eher fraglich ist. Durch *Rpv3* wird eine hypersensitive Reaktion (HR) nach Pathogenbefall induziert (Casagrande et al. 2011). Da Aquaporine auch als Transporter von H₂O₂ fungieren können (Jang et al. 2012), könnte dadurch die gesteigerte Expression im Rpv3-Träger 2008-059-121 (Rpv3 / Rpv10) erklärt werden. Es verwundert nicht, dass das zu RPS5-ähnliche Resistenzprotein als Hauptkandidatengen für die *Rpv10*-vermittelte Pathogenantwort keine gesteigerte Genexpression in den resistenten Genotypen aufweist. NBS-LRR-Resistenzproteine fungieren als Rezeptoren vorhandener Pathogeneffektoren und induzieren die Effektor-getriggerte Immunantwort (ETI) (Chisholm et al. 2006). Dabei ist wichtig, dass die Rezeptoren in funktioneller Form vorliegen und beim Vorhandensein von Pathogenen über weitere Signaltransduktionswege nachgeschaltete Resistenzreaktionen in Gang setzen. Eine gesteigerte Induktion ist dazu nicht notwendig. Im Falle von RPS5 aus Arabidopsis thaliana ist bekannt, dass die LRR-Domäne die Funktion des Proteins hemmt (Shao et al. 2003). Der Austausch von ADP durch ATP führt dazu, dass das NBS-LRR-Protein zwischen aktivem und inaktivem Zustand wechselt (Takken & Tameling 2009). Das vollständige Entfernen der LRR-Domäne führt zur Autoaktivierung von RPS5 (Ade et al. 2007). Durch das bakterielle Effektorprotein AvrPphB (Avirulence protein Pseudomonas phaseolicolaB) wird die Abspaltung der Proteinkinase PBS1 (AVRPPHB Susceptible 1) von RPS5 ausgelöst (Shao et al. 2003). Dadurch wird das Resistenzprotein RPS5 indirekt aktiviert und die hypersensitive Reaktion (HR) ausgelöst (Ade et al. 2007). Durch Mutation verursachte Unterschiede in der Sequenz von RPS5 führen zu verminderten Resistenzeigenschaften gegen u. a. den Falschen Mehltau bei Arabidopsis (Warren et al. 1998). Eine besonders gesteigerte Induktion des RPS5-ähnlichen Resistenzproteins aus Rpv10 ist nicht notwendig, um eine Resistenzantwort gegen P. viticola auszulösen. Wichtig ist ein funktionell vorliegendes Protein, sodass eine Signalweiterleitung über bespielsweise eine MAP-Kinase-Kaskade (Mitogen-aktivierte Protein-Kinase-Kaskade) möglich ist. Ähnlich verhält es sich mit dem Resistenzprotein vom Typ TIR-NB-LRR aus Rpv3. Auch hier ist wichtig, dass Pathogeneffektoren erkannt werden und eine Signaltransduktion erfolgen kann. Eine besonders gesteigerte Genexpression zeigen schließlich am Ende der Signalkaskade vor allem Proteine, die z. B. sekundäre Pflanzenstoffe wie Phytoalexine (Stilben, Resveratrol) bilden. Stilben gilt als Schlüsselelement der Resveratrolsynthese und reguliert dadurch die hypersensitive Reaktion (HR) (Chang et al. 2011). Eine Untersuchung der Genexpression der Stilbensynthasen durch qRT-PCR war nicht möglich, da keine spezifischen Oligonukleotidpaare als Primer entwickelt werden konnten. Stilbensynthasen bilden in der Weinrebe auf Chromosom 16 ein Gencluster und sind zueinander sehr ähnlich (Vannozzi *et al.* 2012).

Bei den sechs beispielhaft aufgeführten DEG aus der RNA-Seq-Analyse handelt es sich größtenteils um Transkriptionsfaktoren ("PREDICTED: Probable WRKY transcription factor 47-like isoform X1" aus Glycine max) sowie Proteinkinasen ("PREDICTED: Uncharacterized aarF domain-containing protein kinase At1g79600" aus Sesamum indicum und "Serine/threonine-protein kinase SAPK3" aus Triticum urartu). Diese sind entscheidende Bestandteile der Pathogenabwehr, da sie die Stärke und den Umfang der Abwehrreaktion bestimmen. Nach der Erkennung eines Pathogens durch Rezeptorproteine in der Plasmamembran leiten Proteinkinasen das Signal weiter und verstärken es dabei. WRKY-Transkriptionsfaktoren führen anschließend im Zellkern zur Aktivierung weiterer Prozesse, die zur Bekämpfung des Pathogens führen. Die Familie der WRKY-Transkriptionsfaktoren zählt zu einer der größten Familie von Transkriptionsregulatoren und kommt ausschließlich in Pflanzen vor. Sie sind an einer Vielzahl von Prozessen wie z. B. Resistenzantwort, Seneszenz oder abiotische Stressantwort als Aktivator oder Repressor der Transkription beteiligt. Ihr Name leitet sich von der hoch konservierten WRKY-Domäne ab. Charakteristisch hierfür ist das Aminosäuremotif WRKYGQK am N-Terminus (Bakshi & Oelmüller 2014). In der Weinrebe konnte bereits mehrfach eine Beteiligung von WRKY-Transkriptionsfaktoren an der Pathogenabwehr gegen Plasmopara viticola nachgewiesen werden. Eine gesteigerte Expression von VvWRKY1 führt durch Expression von Genen aus dem Jasmonat-Stoffwechselweg zu einer gesteigerten Resistenz gegenüber P. viticola (Marchive et al. 2013). Nach Infektion durch P. viticola korreliert die Induktion von VvWRKY33 mit der Expression von VvPR10.1 (Pathogenesis-related protein) (Merz et al. 2015). Eine Beteiligung an der Pathogenabwehr konnte ebenso für MrWRKY30 aus Muscadinia (Vitis) rotundifolia nachgewiesen werden (Jiang et al. 2015). "PREDICTED: Probable WRKY transcription factor 47-like isoform X1" wurde in beiden resistenten Genotypen schon früh nach der Inokulation induziert. Nach 6 hpi liegt die Expression in Genotyp 2008-059-121 (*Rpv3 / Rpv10*) scheinbar höher als im Genotyp mit homozygotem Rpv10. Allerdings kann aufgrund der hohen Standardabweichung keine finale Aussage darüber getroffen werden. "Serine/threonineprotein kinase SAPK3" wurde in den frühen Zeitpunkten 3 hpi und 6 hpi im für Rpv10 homozygoten Selbstungsnachkommen 2011-003-013 deutlich höher induziert als im 132

Genotyp mit *Rpv3* und *Rpv10*. Hier scheint es, dass diese Proteinkinase charakteristisch für die *Rpv10*-vermittelte Resistenzantwort ist. Nach der Erkennung eines Pathogens durch Rezeptorproteine leitet diese Proteinkinase vom Typ Serin/Threonine-Proteinkinase das Signal weiter an nachgeschaltete Resistenzproteine, die dann die Abwehrreaktion auslösen. Dabei muss es zu einer Signalverstärkung kommen, sodass die Pathogenabwehr möglichst effektiv ablaufen kann. Im Vergleich zum RPS5-ähnlichen Resistenzprotein ist das Gen für "PREDICTED: Uncharacterized aarF domain-containing protein kinase At1g79600" in beiden resistenten Genotypen in nahezu vergleichbarem Maße an der Signaltransduktion nach Inkolution mit *P. viticola* beteiligt.

Neben Genen aus der Signaltransduktion und der Transkriptionsregulierung konnten weitere Gene identifiziert werden, die nach Pathogenbefall differentiell exprimiert wurden. So ist das Gen für "Hydroxycinnamoyl CoA shikimate/quinate hydroxycinnamoyl transferase" an der Biosynthese von Phenylpropanoiden beteiligt (Hoffmann *et al.* 2004). Da Stilbene und andere Phytoalexine zu den Phenylpropanoiden zählen, besteht hier ein direkter Zusammenhang zwischen der Induktion nach Pathogenbefall und der Resistenz gegen *P. viticola*. Solche Zusammenhänge zwischen *P. viticola*-Resistenz und der Akkumulation von Stilbenoiden wurde bereits gezeigt (Malacarne *et al.* 2011, Pezet *et al.* 2004a, Pezet *et al.* 2004b). Im Vergleich der beiden resistenten Genotypen zeigt das Gen für "Hydroxycinnamoyl CoA shikimate/quinate hydroxycinnamoyl transferase" auf den ersten Blick eine stärkere Induktion in 2011-003-013 (*Rpv10 / Rpv10*) im Vergleich zu 2008-059-121 (*Rpv3 / Rpv10*). Allerdings wird dies durch die hohe Standardabweichung relativiert, sodass weitere Genexpressionsuntersuchungen notwendig sind, um diesen Zusammenhang zu überprüfen.

Über das Gen für das hypothetische Protein B456_012G083000 ist nichts Näheres über eine Funktion bekannt. Dennoch besteht aufgrund seiner Zuordnung in die GO-Klasse "GO:0009627 (Systemic acquired resistance)" und der relativ starken Induktion in 2008-059-121 (*Rpv3 / Rpv10*) nach 12 hpi, 24 hpi sowie 72 hpi eine mögliche Korrelation zwischen der Resistenz gegen *P. viticola* und der Expression dieses Gens.

Ein weiteres mögliches Kandidatengen mit Beteiligung an der Resistenz gegen *P. viticola* zeigt Ähnlichkeit mit einem Gen, das für ein "UDP-Glycosyltransferase superfamily protein" aus *Theobroma cacao* codiert. UDP-Glycosyltransferasen (<u>Uridindiphos-</u> phat) sind ein wichtiger Bestandteil des Stoffwechsels. In Mais katalysieren sie den Transfer von Glucose zwischen UDP-Glucose und Flavanol in der AnthocyaninBiosynthese (Furtek *et al.* 1988). Eine direkte Verbindung zu Abwehrreaktionen gegen Pathogene konnte in der Weinrebe noch nicht nachgewiesen werden. Allerdings konnte in anderen Organismen wie z. B. der Winterkresse (Augustin *et al.* 2012), Tabak (Chong *et al.* 2002) und *A. thaliana* (Shin *et al.* 2012) eine Beteiligung der UDP-Glycosyltransferase an Resistenzreaktionen beobachtet werden. Aufgrund der nachgewiesenen starken Geninduktion auf über das Zehnfache nach 6 hpi in 2008-059-121 (*Rpv3 / Rpv10*) könnte auch in der Weinrebe ein Zusammenhang zu der Resistenzantwort gegen den Falschen Mehltau der Weinrebe (*Plasmopara viticola*) bestehen.

5. Schlussfolgerung und Ausblick

Durch Sequenzierung von PCR-Amplikons eines für Rpv10 homozygoten Selbstungsnachkommens von 'Solaris' und BAC-Klonen aus 'Solaris' konnte sowohl das resistente (83.656 bp) als auch anfällige (81.508 bp) Allel des Rpv10-Locus vollständig dargestellt werden. Zwischen den beiden Allelen existieren neben einem Längenunterschied von rund 2.100 bp erhebliche Unterschiede innerhalb der Nukleotidsequenz, sodass eine Homologisierung der beiden Sequenzen nur mit einem geringen Grad von 70 % möglich war. Im Bereich von Rpv10 liegen sowohl im resistenten als auch im anfälligen Allel neun Gene. In jedem der neun Gene bestehen Sequenzunterschiede zwischen den beiden Allelen. Aus diesem Grund liegen die Gene im anfälligen Allel nicht in der für die Resistenz notwendigen aktiven Form vor. Fünf der neun Gene stellen aufgrund ihrer bereits bekannten Proteindomänen-Funktionen potenzielle Kandidatengene für die Rpv10-vermittelte Resistenzantwort gegen P. viticola dar. Diese fünf Kandidatengene zeigen Ähnlichkeit zu Genen, die für zwei Ankyrin-haltige Proteine, einen Ethylenresponsiven Transkriptionsfaktor (ERF), ein Protein mit Ähnlichkeit zu dem CC-NBS-LRR-Resistenzprotein RPS5 und ein putatives Aquaporin codieren und mit der Resistenzantwort gegen Pathogene in Verbindung stehen. Ein weiteres Gen mit Ähnlichkeit zu einem Bindeprotein-Gen der großen RuBisCO-Untereinheit besitzt Chaperonin-Proteindomänen. Chaperonine sind u. a. an der Interaktion mit anderen durch Stress induzierte Komponenten beteiligt (Wang et al. 2004). Daher wurde die Genexpression nach P. viticola-Inokulation dieses Kandidatengens und der drei anderen Kandidatengene mittels qRT-PCR untersucht. Die beiden Ankyrin-Gene konnten aufgrund nicht erstellbarer spezifischer Primer nicht näher untersucht werden.

Weitere mögliche Kandidatengene für die durch *Rpv10* und *Rpv3* vermittelte *Plasmopa-ra*-Resistenz konnten durch eine RNA-Seq-Analyse identifiziert werden. Durch Einteilung der differentiell exprimierten Gene (DEG) in die entsprechenden GO-Klassen (<u>Gene ontology</u>) wurden daraus Gene für die folgende Validierung über qRT-PCR im Hochdurchsatz ausgewählt. Bei der Clusteranalyse konnte gezeigt werden, dass im anfälligen Genotyp 2008-059-020 ohne Resistenzloci vermutlich Pathogene durch Rezeptorproteine detektiert werden können, es aber danach zu keiner effizienten Signalweiterleitung und Expression weiterer Resistenzproteine kommt.

Mithilfe der Genexpressionsanalyse dreier Genotypen mit unterschiedlichen Kombinationen von *Rpv3* und *Rpv10* zu verschiedenen Zeitpunkten nach Inokulation über qRT- PCR wurden Gene detektiert, die spezifisch bei der durch *Rpv3* und *Rpv10* vermittelten Resistenz gegen *P. viticola* aktiviert werden. Dabei zeigte sich, dass typische Rezeptorproteine wie z. B. das RPS5-ähnliche Rezeptorprotein vom Typ CC-NBS-LRR aus *Rpv10* nach Pathogeninokulation keine besonders gesteigerte Expression aufweisen. Die nachgeschalteten an der Resistenzantwort beteiligten Elemente (v. a. Proteinkinasen, Transkriptionsfaktoren und Gene des Sekundärstoffwechsels) werden dagegen um ein Vielfaches induziert. Besonders charakteristisch für *Rpv3* scheint "PREDICTED: Probable WRKY transcription factor 47-like isoform X1" zu sein. Für *Rpv10* können die Serin/Threonin-Proteinkinase SAPK3 und "Hydroxycinnamoyl CoA shikimate/quinate hydroxycinnamoyl transferase" genannt werden, die spezifisch für die durch *Rpv10* vermittelte Resistenz gegen *P. viticola* erscheinen.

Durch die teilweise sehr hohe Standardabweichung zwischen den biologischen Replikaten sind weitere Genexpressionsuntersuchungen notwendig, um die Ergebnisse abzusichern. Dabei sollte ein weiterer Genotyp hinzugenommen werden, der nur Rpv3 trägt, um eine mögliche Überdeckung mit in Rpv10-Trägern aktivierten Genen wie im Genotyp 2008-059-121 zu vermeiden. Außerdem sollte versucht werden, die Expression der beiden Ankyrin-Gene aus Rpv10 zu untersuchen. Die Ergebnisse der Genexpressionsanalyse sind ein erster Hinweis auf eine Beteiligung am Abwehrmechanismus gegen den Falschen Mehltau der Weinrebe. Ein Beweis der Resistenz-vermittelnden Eigenschaften muss letztendlich durch stabile Transformation der Kandidatengene in anfällige Rebsorten über z. B. Agrobakterien-vermittelten Gentransfer oder durch das CRISPR/Cas-System (Clustered Regularly Interspaced Short Palindromic Repeats) erfolgen. Die CRISPR/Cas-Technik ist eine relativ neue Methode, mit der sich Doppelstrangbrüche gezielt induzieren lassen und damit Test-DNA in ein Rezipientengenom integriert werden kann. Zusätzlich zu den molekularbiologischen Untersuchungen sind auch mikroskopische bzw. zellphysiologische Untersuchungen notwendig, um mögliche Unterschiede auf zellulärer Ebene zwischen den verschiedenen Resistenzmechanismen gegen den Falschen Mehltau der Weinrebe (Plasmopara viticola) darzustellen.

Literaturverzeichnis

Ade, J., B. J. DeYoung, C. Golstein und R. W. Innes (2007). Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. *Proc Natl Acad Sci U S A* **104**(7): 2531-2536.

Adl, S. M., A. G. Simpson, M. A. Farmer, R. A. Andersen, O. R. Anderson, J. R. Barta, S. S. Bowser, G. Brugerolle, R. A. Fensome, S. Fredericq, T. Y. James, S. Karpov, P. Kugrens, J. Krug, C. E. Lane, L. A. Lewis, J. Lodge, D. H. Lynn, D. G. Mann, R. M. McCourt, L. Mendoza, O. Moestrup, S. E. Mozley-Standridge, T. A. Nerad, C. A. Shearer, A. V. Smirnov, F. W. Spiegel und M. F. Taylor (2005). The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. *Journal of Eukaryotic Microbiology* **52**(5): 399-451.

Akkurt, M., L. Welter, E. Maul, R. Töpfer und E. Zyprian (2007). Development of SCAR markers linked to powdery mildew (*Uncinula necator*) resistance in grapevine (*Vitis vinifera* L. and *Vitis* sp.). *Molecular Breeding* **19**(2): 103-111.

Ali, G. S. und A. S. N. Reddy (2008). PAMP-triggered immunity: Early events in the activation of FLAGELLIN SENSITIVE2. *Plant Signal Behav* **3**(6): 423-426.

Anonymous (2000). Descriptive list of varieties - Grapes 2000. Landbuch Verlag. Hannover, Deutschland.

Arce, G. T., E. B. Gordon, S. M. Cohen und P. Singh (2010). Genetic toxicology of folpet and captan. *Critical Reviews in Toxicology* **40**(6): 546-574.

Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin und G. Sherlock (2000). Gene Ontology: tool for the unification of biology. *Nature Genetics* **25**(1): 25-29.

Augustin, J. M., S. Drok, T. Shinoda, K. Sanmiya, J. K. Nielsen, B. Khakimov, C. E. Olsen, E. H. Hansen, V. Kuzina, C. T. Ekstrom, T. Hauser und S. Bak (2012). UDP-glycosyltransferases from the UGT73C subfamily in *Barbarea vulgaris* catalyze sapogenin 3-O-glucosylation in saponin-mediated insect resistance. *Plant Physiology* **160**(4): 1881-1895.

Baggerly, K. A., L. Deng, J. S. Morris und C. M. Aldaz (2003). Differential expression in SAGE: accounting for normal between-library variation. *Bioinformatics* **19**(12): 1477-1483.

Bahadir, M., H. Parlar und M. Spiteller (2000). Springer Umweltlexikon. Springer.

Bakshi, M. und R. Oelmüller (2014). WRKY transcription factors: Jack of many trades in plants. *Plant Signal Behav* **9**(2): e27700.

Barker, C. L., T. Donald, J. Pauquet, M. B. Ratnaparkhe, A. Bouquet, A. F. Adam-Blondon, M. R. Thomas und I. Dry (2005). Genetic and physical mapping of the grapevine powdery mildew resistance gene, *Run1*, using a bacterial artificial chromosome library. *Theoretical and Applied Genetics* **111**(2): 370-377.

Battilana, J., L. Costantini, F. Emanuelli, F. Sevini, C. Segala, S. Moser, R. Velasco, G. Versini und M. Stella Grando (2009). The 1-deoxy-D: -xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. *Theoretical and Applied Genetics* **118**(4): 653-669.

Battilana, J., S. Lorenzi, F. M. Moreira, P. Moreno-Sanz, O. Failla, F. Emanuelli und M. S. Grando (2013). Linkage mapping and molecular diversity at the flower sex locus in wild and cultivated grapevine reveal a prominent SSR haplotype in hermaphrodite plants. *Molecular Biotechnology* **54**(3): 1031-1037.

Becker, H. (1981). Erste Ergebnisse der Züchtung interspezifischer Ertragssorten mit der Erbmasse der *Vitis amurensis* Ruprecht in Geisenheim. *Deutsches Weinbau Jahrbuch*, **32:** 25-35.

Bellin, D., E. Peressotti, D. Merdinoglu, S. Wiedemann-Merdinoglu, A. F. Adam-Blondon, G. Cipriani, M. Morgante, R. Testolin und G. Di Gaspero (2009). Resistance to *Plasmopara viticola* in grapevine 'Bianca' is controlled by a major dominant gene causing localised necrosis at the infection site. *Theoretical and Applied Genetics* **120**(1): 163-176.

Bellow, S., G. Latouche, S. C. Brown, A. Poutaraud und Z. G. Cerovic (2013). Optical detection of downy mildew in grapevine leaves: daily kinetics of autofluorescence upon infection. *Journal of Experimental Botany* **64**(1): 333-341.

Benjamini, Y. und Y. Hochberg (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society. Series B (Methodological)* **57**(1): 289-300.

Berkelmann-Löhnertz, B., D. Heibertshasuen, O. Baus-Reichel, U. Hofmann und R. Kauer (2008). Ohne Kupfer geht es nicht - Status quo im ökologischen Weinbau nach vier Jahren BÖL-Verbundprojekt. *Fachgespräch: "Bedeutung von Kupfer für den Pflanzenschutz, insbesondere für den Ökologischen Landbau – Reduktions- und Ersatzstrategien"*. K. S. und F. B. Berichte aus dem JKI, Berlin. **142:** 17-20.

Bigeard, J., J. Colcombet und H. Hirt (2015). Signaling mechanisms in pattern-triggered immunity (PTI). *Mol Plant* **8**(4): 521-539.

Blanc, S., S. Wiedemann-Merdinoglu, V. Dumas, P. Mestre und D. Merdinoglu (2012). A reference genetic map of *Muscadinia rotundifolia* and identification of *Ren5*, a new major locus for resistance to grapevine powdery mildew. *Theoretical and Applied Genetics* **125**(8): 1663-1675.

Blasi, P., S. Blanc, S. Wiedemann-Merdinoglu, E. Prado, E. H. Ruhl, P. Mestre und D. Merdinoglu (2011). Construction of a reference linkage map of *Vitis amurensis* and genetic mapping of *Rpv8*, a locus conferring resistance to grapevine downy mildew. *Theoretical and Applied Genetics* **123**(1): 43-53.

Bleyer, G. (2008). Die Peronospora-Prognose wird immer wieder verbessert. *Der Badische Winzer* **4**: 23-26.

Bolender, N., A. Sickmann, R. Wagner, C. Meisinger und N. Pfanner (2008). Multiple pathways for sorting mitochondrial precursor proteins. *EMBO Rep* **9**(1): 42-49.

Boubakri, H., M. A. Wahab, J. Chong, C. Bertsch, A. Mliki und I. Soustre-Gacougnolle (2012). Thiamine induced resistance to *Plasmopara viticola* in grapevine and elicited host-defense responses, including HR like-cell death. *Plant Physiology and Biochemistry* **57**: 120-133.

Boubakri, H., M. A. Wahab, J. Chong, C. Gertz, S. Gandoura, A. Mliki, C. Bertsch und I. Soustre-Gacougnolle (2013). Methionine elicits H₂O₂ generation and defense gene expression in grapevine and reduces *Plasmopara viticola* infection. *Journal of Plant Physiology* **170**(18): 1561-1568.

Bozkurt, T. O., S. Schornack, M. J. Banfield und S. Kamoun (2012). Oomycetes, effectors, and all that jazz. *Current Opinion in Plant Biology* **15**(4): 483-492.

Brueggeman, R., N. Rostoks, D. Kudrna, A. Kilian, F. Han, J. Chen, A. Druka, B. Steffenson und A. Kleinhofs (2002). The barley stem rust-resistance gene *Rpg1* is a novel disease-resistance gene with homology to receptor kinases. *Proceedings of the National Academy of Sciences* **99**(14): 9328-9333.

Bugliosi, R., G. Spera, A. La Torre, L. Campoli und M. Scaglione (2006). Artificial intelligence approach with the use of artificial neural networks for the creation of a forecasting model of *Plasmopara viticola* infection. *Commun Agric Appl Biol Sci* **71**(3 Pt A): 859-865.

Cabezas, J. A., M. T. Cervera, L. Ruiz-Garcia, J. Carreno und J. M. Martinez-Zapater (2006). A genetic analysis of seed and berry weight in grapevine. *Genome* **49**(12): 1572-1585.

Caffi, T., G. Gilardi, M. Monchiero und V. Rossi (2013). Production and release of asexual sporangia in *Plasmopara viticola*. *Phytopathology* **103**(1): 64-73.

Campbell, C. (2004). *Phylloxera*: how wine was saved for the world. HarperCollins. London.

Cao, H., J. Glazebrook, J. D. Clarke, S. Volko und X. Dong (1997). The *Arabidopsis NPR1* gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. *Cell* **88**(1): 57-63.

Casagrande, K., L. Falginella, S. D. Castellarin, R. Testolin und G. Di Gaspero (2011). Defence responses in *Rpv3*-dependent resistance to grapevine downy mildew. *Planta* **234**(6): 1097-1109.

Chang, X., E. Heene, F. Qiao und P. Nick (2011). The phytoalexin resveratrol regulates the initiation of hypersensitive cell death in *Vitis* cell. *PLoS One* 6(10): e26405.

Chen, W.-J., F. Delmotte, S. R. Cervera, L. Douence, C. Greif und M.-F. Corio-Costet (2007). At Least Two Origins of Fungicide Resistance in Grapevine Downy Mildew Populations. *Applied and Environmental Microbiology* **73**(16): 5162-5172.

Chisholm, S. T., G. Coaker, B. Day und B. J. Staskawicz (2006). Host-microbe interactions: shaping the evolution of the plant immune response. *Cell* **124**(4): 803-814.

Chong, J., R. Baltz, C. Schmitt, R. Beffa, B. Fritig und P. Saindrenan (2002). Downregulation of a pathogen-responsive tobacco UDP-Glc:phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. *Plant Cell* **14**(5): 1093-1107.

Churchill, G. A. und R. W. Doerge (1994). Empirical threshold values for quantitative trait mapping. *Genetics* **138**(3): 963-971.

Costantini, L., J. Battilana, F. Lamaj, G. Fanizza und M. S. Grando (2008). Berry and phenology-related traits in grapevine (*Vitis vinifera* L.): from quantitative trait loci to underlying genes. *BMC Plant Biology* **8**: 38.

Creasy, G. L. und L. L. Creasy (2009). Grapevine pests, diseases and disorders. *Grapes*. G. L. Creasy und L. L. Creasy. CABI, Wallingford, USA.

Cunningham, F., M. R. Amode, D. Barrell, K. Beal, K. Billis, S. Brent, D. Carvalho-Silva, P. Clapham, G. Coates, S. Fitzgerald, L. Gil, C. G. Girón, L. Gordon, T. Hourlier, S. E. Hunt, S. H. Janacek, N. Johnson, T. Juettemann, A. K. Kähäri, S. Keenan, F. J. Martin, T. Maurel, W. McLaren, D. N. Murphy, R. Nag, B. Overduin, A. Parker, M. Patricio, E. Perry, M. Pignatelli, H. S. Riat, D. Sheppard, K. Taylor, A. Thormann, A. Vullo, S. P. Wilder, A. Zadissa, B. L. Aken, E. Birney, J. Harrow, R. Kinsella, M. Muffato, M. Ruffier, S. M. J. Searle, G. Spudich, S. J. Trevanion, A. Yates, D. R. Zerbino und P. Flicek (2015). Ensembl 2015. *Nucleic Acids Research* **43**(D1): D662-D669.

Dalbo, M. A., G. N. Ye, N. F. Weeden, H. Steinkellner, K. M. Sefc und B. I. Reisch (2000). A gene controlling sex in grapevines placed on a molecular marker-based genetic map. *Genome* **43**(2): 333-340.

Dalbó, M. A., G. N. Ye, N. F. Weeden, W. F. Wilcox und B. I. Reisch (2001). Markerassisted Selection for Powdery Mildew Resistance in Grapes. *Journal of the American Society for Horticultural Science* **126**(1): 83-89.

Dangl, J. L. und J. D. Jones (2001). Plant pathogens and integrated defence responses to infection. *Nature* **411**(6839): 826-833.

Delmotte, F., W. J. Chen, S. Richard-Cervera, C. Greif, D. Papura, X. Giresse, G. Mondor-Genson und M. F. Corio-Costet (2006). Microsatellite DNA markers for *Plasmopara viticola*, the causal agent of downy mildew of grapes. *Molecular Ecology Notes* **6**(2): 379-381.

Delmotte, F., V. Machefer, X. Giresse, S. Richard-Cervera, M. P. Latorse und R. Beffa (2011). Characterization of single-nucleotide-polymorphism markers for *Plasmopara viticola*, the causal agent of grapevine downy mildew. *Applied and Environmental Microbiology* **77**(21): 7861-7863.

Delmotte, F., P. Mestre, C. Schneider, H. H. Kassemeyer, P. Kozma, S. Richart-Cervera, M. Rouxel und L. Deliere (2013). Rapid and multiregional adaptation to host partial resistance in a plant pathogenic oomycete: Evidence from European populations of *Plasmopara viticola*, the causal agent of grapevine downy mildew. *Infect Genet Evol*.

Deslandes, L., J. Olivier, N. Peeters, D. X. Feng, M. Khounlotham, C. Boucher, I. Somssich, S. Genin und Y. Marco (2003). Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. *Proc Natl Acad Sci U S A* **100**(13): 8024-8029.

DeYoung, B. J. und R. W. Innes (2006). Plant NBS-LRR proteins in pathogen sensing and host defense. *Nature Immunology* 7(12): 1243-1249.

Di Gaspero, G. und G. Cipriani (2003). Nucleotide binding site/leucine-rich repeats, Pto-like and receptor-like kinases related to disease resistance in grapevine. *Molecular Genetics and Genomics* **269**(5): 612-623.

Di Gaspero, G., D. Copetti, C. Coleman, S. D. Castellarin, R. Eibach, P. Kozma, T. Lacombe, G. Gambetta, A. Zvyagin, P. Cindric, L. Kovacs, M. Morgante und R. Testolin (2012). Selective sweep at the *Rpv3* locus during grapevine breeding for downy mildew resistance. *Theoretical and Applied Genetics* **124**(2): 277-286.

Diez-Navajas, A. M., C. Greif, A. Poutaraud und D. Merdinoglu (2007). Two simplified fluorescent staining techniques to observe infection structures of the oomycete *Plasmopara viticola* in grapevine leaf tissues. *Micron* **38**(6): 680-683.

Dixon, R. A. (2001). Natural products and plant disease resistance. *Nature* **411**(6839): 843-847.

Doligez, A., A. Bouquet, Y. Danglot, F. Lahogue, S. Riaz, P. Meredith, J. Edwards und P. This (2002). Genetic mapping of grapevine (*Vitis vinifera* L.) applied to the detection of QTLs for seedlessness and berry weight. *Theoretical and Applied Genetics* **105**(5): 780-795.

Drapkin, H. J., D. P. Hill, S. Carbon, H. Dietze, C. J. Mungall, M. C. Munoz-Torres, J. Lomax, D. Osumi-Sutherland und P. Roncaglia (2015). Gene Ontology Consortium: going forward. *Nucleic Acids Research* **43**(D1): D1049-D1056.

Eibach, R., E. Zyprian, L. Welter und R. Töpfer (2007). The use of molecular markers for pyramiding resistance genes in grapevine breeding. *Vitis* **46**(3): 120-124.

Eurostat (2007). The use of plant protection products in the European Union (1992 - 2003).

Fechter, I., L. Hausmann, M. Daum, T. R. Sörensen, P. Viehover, B. Weisshaar und R. Töpfer (2012). Candidate genes within a 143 kb region of the flower sex locus in *Vitis*. *Molecular Genetics and Genomics* **287**(3): 247-259.

Fechter, I., L. Hausmann, E. Zyprian, M. Daum, D. Holtgräwe, B. Weisshaar und R. Töpfer (2014). QTL analysis of flowering time and ripening traits suggests an impact of a genomic region on linkage group 1 in *Vitis. Theoretical and Applied Genetics* **127**(9): 1857-1872.

Feechan, A., C. Anderson, L. Torregrosa, A. Jermakow, P. Mestre, S. Wiedemann-Merdinoglu, D. Merdinoglu, A. R. Walker, L. Cadle-Davidson, B. Reisch, S. Aubourg, N. Bentahar, B. Shrestha, A. Bouquet, A. F. Adam-Blondon, M. R. Thomas und I. B. Dry (2013). Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species *Muscadinia rotundifolia* identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. *Plant Journal*.

Feechan, A., A. M. Jermakow und I. B. Dry (2009). Grapevine MLO candidates required for powdery mildew pathogenicity? *Plant Signal Behav* **4**(6): 522-523.

Figueiredo, A., F. Monteiro, A. M. Fortes, M. Bonow-Rex, E. Zyprian, L. Sousa und M. S. Pais (2012). Cultivar-specific kinetics of gene induction during downy mildew early infection in grapevine. *Funct Integr Genomics* **12**(2): 379-386.

Fischer, B. M., I. Salakhutdinov, M. Akkurt, R. Eibach, K. J. Edwards, R. Töpfer und E. M. Zyprian (2004). Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. *Theoretical and Applied Genetics* **108**(3): 501-515.

Flemming, H., O. Hierholzer und G. Mohr (1963). Dithianon - eine organische Verbindung mit breiter fungizider Wirkung. *Zeitschrift für Pflanzenkrankheiten (Pflanzenpathologie) und Pflanzenschutz* **70**(1): 4-11.

Flor, H. H. (1971). Current Status of the Gene-For-Gene Concept. *Annual Review of Phytopathology* **9**(1): 275-296.

Fontaine, M. C., F. Austerlitz, T. Giraud, F. Labbe, D. Papura, S. Richard-Cervera und F. Delmotte (2013). Genetic signature of a range expansion and leap-frog event after the recent invasion of Europe by the grapevine downy mildew pathogen *Plasmopara viticola*. *Molecular Ecology* **22**(10): 2771-2786.

Furtek, D., J. W. Schiefelbein, F. Johnston und O. E. Nelson, Jr. (1988). Sequence comparisons of three wild-type Bronze-1 alleles from Zea mays. *Plant Molecular Biology* **11**(4): 473-481.

Galet, P. (1993). Les maladies et les parasites de la vigne - Tome 1. Imprimerie du Paysan du Midi. Montpellier, France.

Gessler, C., I. Pertot und M. Perazzolli (2011). *Plasmopara viticola*: a review of knowledge on downy mildew of grapevine and effective disease management. *Phytopathologia Mediterranea* **50**(1): 3-44.

Gill, U. S., S. Lee und K. S. Mysore (2015). Host versus nonhost resistance: distinct wars with similar arsenals. *Phytopathology* **105**(5): 580-587.

Gindro, K., R. Pezet und O. Viret (2003). Histological study of the responses of two *Vitis vinifera* cultivars (resistant and susceptible) to *Plasmopara viticola* infections. *Plant Physiology and Biochemistry* **41**(9): 846-853.

Gobbin, D. (2004). Redefining *Plasmopara viticola* epidemiological cycle by molecular genetics. Dissertation (Swiss Federal Institute of Technology, Zürich).

Gobbin, D., G. Bleyer, S. Keil, H. H. Kassemeyer und C. Gessler (2007). Evidence for sporangial dispersal leading to a single infection event and a sudden high incidence of grapevine downy mildew. *Plant Pathology* **56**(5): 843-847.

Gobbin, D., M. Jermini, B. Loskill, I. Pertot, M. Raynal und C. Gessler (2005). Importance of secondary inoculum of *Plasmopara viticola* to epidemics of grapevine downy mildew. *Plant Pathology* **54**(4): 522-534.

Gobbin, D., I. Pertot und C. Gessler (2003a). Genetic structure of a *Plasmopara viticola* population in an isolated italian mountain vineyard. *Journal of Phytopathology* **151**(11-12): 636-646.

Gobbin, D., I. Pertot und C. Gessler (2003b). Identification of microsatellite markers for *Plasmopara viticola* and establishment of high throughput method for SSR analysis. *European Journal of Plant Pathology* **109**(2): 153-164.

Gobbin, D., A. Rumbou, C. C. Linde und C. Gessler (2006). Population genetic structure of *Plasmopara viticola* after 125 years of colonization in European vineyards. *Molecular Plant Pathology* **7**(6): 519-531.

Gobbin, D., G. Valsesia und C. Gessler (2001). Genetic variability of *Plasmopara viticola* between and within selected populations.

Gomès, E. und P. Coutos-Thévenot (2009). Molecular Aspects of Grapevine-Pathogenic Fungi Interactions. *Grapevine Molecular Physiology & Biotechnology*. K. A. Roubelakis-Angelakis. Springer, Netherlands, Dordrecht.

Gómez-Gómez, L., G. Felix und T. Boller (1999). A single locus determines sensitivity to bacterial flagellin in *Arabidopsis thaliana*. *Plant Journal* **18**(3): 277-284.

Gómez-Zeledón, J., R. Zipper und O. Spring (2013). Assessment of phenotypic diversity of *Plasmopara viticola* on *Vitis* genotypes with different resistance. *Crop Protection* **54**(0): 221-228.

Grattapaglia, D. und R. Sederoff (1994). Genetic Linkage Maps of *Eucalyptus Grandis* and *Eucalyptus Urophylla* Using a Pseudo-Testcross: Mapping Strategy and RAPD Markers. *Genetics* **137**(4): 1121-1137.

Guan, X., G. Buchholz und P. Nick (2014). Actin marker lines in grapevine reveal a gatekeeper function of guard cells. *Journal of Plant Physiology* **171**(13): 1164-1173.

Gururani, M. A., J. Venkatesh, C. P. Upadhyaya, A. Nookaraju, S. K. Pandey und S. W. Park (2012). Plant disease resistance genes: Current status and future directions. *Physiological and Molecular Plant Pathology* **78**(0): 51-65.

Hachenberger, R. (2000). Auf den Spuren des Lembergers. IPa Verlag. Vaihingen an der Enz.

Hammond-Kosack, K. E. und J. D. Jones (1997). PLANT DISEASE RESISTANCE GENES. *Annual Review of Plant Physiology and Plant Molecular Biology* **48**: 575-607.

Hanahan, D. (1983). Studies on transformation of *Escherichia coli* with plasmids. *Journal of Molecular Biology* **166**(4): 557-580.

Hausmann, L., K. Neumann, R. Eibach, E. Zyprian und R. Töpfer (2009). Development of a molecular marker for an anthocyanin 5-o-glucosyltransferase homologous gene of *Vitis* ssp. correlated with anthocyanin 3,5-diglucoside formation in berry skin, International Society for Horticultural Science (ISHS), Leuven, Belgium.

Heath, M. C. (2000a). Hypersensitive response-related death. *Plant Molecular Biology* **44**(3): 321-334.

Heath, M. C. (2000b). Nonhost resistance and nonspecific plant defenses. *Current Opinion in Plant Biology* **3**(4): 315-319.

Hein, I., E. M. Gilroy, M. R. Armstrong und P. R. Birch (2009). The zig-zag-zig in oomycete-plant interactions. *Molecular Plant Pathology* **10**(4): 547-562.

Hoffmann, L., S. Besseau, P. Geoffroy, C. Ritzenthaler, D. Meyer, C. Lapierre, B. Pollet und M. Legrand (2004). Silencing of Hydroxycinnamoyl-Coenzyme A Shikimate/Quinate Hydroxycinnamoyltransferase Affects Phenylpropanoid Biosynthesis. *The Plant Cell* **16**(6): 1446-1465.

Hoffmann, S., G. Di Gaspero, L. Kovacs, S. Howard, E. Kiss, Z. Galbacs, R. Testolin und P. Kozma (2008). Resistance to *Erysiphe necator* in the grapevine 'Kishmish vatkana' is controlled by a single locus through restriction of hyphal growth. *Theoretical and Applied Genetics* **116**(3): 427-438.

Hwang, C. F., K. Xu, R. Hu, R. Zhou, S. Riaz und M. A. Walker (2010). Cloning and characterization of *XiR1*, a locus responsible for dagger nematode resistance in grape. *Theoretical and Applied Genetics* **121**(4): 789-799.

Jaillon, O., J. M. Aury, B. Noel, A. Policriti, C. Clepet, A. Casagrande, N. Choisne, S. Aubourg, N. Vitulo, C. Jubin, A. Vezzi, F. Legeai, P. Hugueney, C. Dasilva, D. Horner, E. Mica, D. Jublot, J. Poulain, C. Bruyere, A. Billault, B. Segurens, M. Gouyvenoux, E. Ugarte, F. Cattonaro, V. Anthouard, V. Vico, C. Del Fabbro, M. Alaux, G. Di Gaspero, V. Dumas, N. Felice, S. Paillard, I. Juman, M. Moroldo, S. Scalabrin, A. Canaguier, I. Le Clainche, G. Malacrida, E. Durand, G. Pesole, V. Laucou, P. Chatelet, D. Merdinoglu, M. Delledonne, M. Pezzotti, A. Lecharny, C. Scarpelli, F. Artiguenave, M. E. Pe, G. Valle, M. Morgante, M. Caboche, A. F. Adam-Blondon, J. Weissenbach, F. Quetier und P. Wincker (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. *Nature* 449(7161): 463-467.

Janda, M., J. Matouskova, L. Burketova und O. Valentova (2014). Interconnection between actin cytoskeleton and plant defense signaling. *Plant Signal Behav* **9**(11): e976486.

Jang, J. Y., J. Y. Rhee, G. C. Chung und H. Kang (2012). Aquaporin as a membrane transporter of hydrogen peroxide in plant response to stresses. *Plant Signal Behav* 7(9): 1180-1181.

Jansen, R. C. (1993). Interval mapping of multiple quantitative trait loci. *Genetics* **135**(1): 205-211.

Jansen, R. C. (1994). Controlling the type I and type II errors in mapping quantitative trait loci. *Genetics* **138**(3): 871-881.

Jansen, R. C. und P. Stam (1994). High resolution of quantitative traits into multiple loci via interval mapping. *Genetics* **136**(4): 1447-1455.

Jiang, R. H. Y. und B. M. Tyler (2012). Mechanisms and Evolution of Virulence in Oomycetes. *Annual Review of Phytopathology, Vol 50*. N. K. VanAlfen, J. E. Leach und S. Lindow. Annual Reviews, Palo Alto. **50**: 295-318.

Jiang, W., J. Wu, Y. Zhang, L. Yin und J. Lu (2015). Isolation of a WRKY30 gene from *Muscadinia rotundifolia* (Michx) and validation of its function under biotic and abiotic stresses. *Protoplasma* **252**(5): 1361-1374.

Jones, D. A. und J. D. G. Jones (1997). The role of leucine rich repeat proteins in plant defenses. *Adv Bot Res Inc Adv Plant Pathol* **24**: 120-127.

Jones, J. D. (2001). Putting knowledge of plant disease resistance genes to work. *Current Opinion in Plant Biology* **4**(4): 281-287.

Jones, J. D. und J. L. Dangl (2006). The plant immune system. *Nature* **444**(7117): 323-329.

Jürges, G., H. H. Kassemeyer, M. Dürrenberger, M. Düggelin und P. Nick (2009). The mode of interaction between *Vitis* and *Plasmopara viticola* Berk. & Curt. Ex de Bary depends on the host species. *Plant Biol (Stuttg)* **11**(6): 886-898.

Kadota, Y., K. Shirasu und C. Zipfel (2015). Regulation of the NADPH Oxidase RBOHD During Plant Immunity. *Plant & Cell Physiology* **56**(8): 1472-1480.

Kal, A. J., A. J. van Zonneveld, V. Benes, M. van den Berg, M. G. Koerkamp, K. Albermann, N. Strack, J. M. Ruijter, A. Richter, B. Dujon, W. Ansorge und H. F. Tabak (1999). Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. *Mol Biol Cell* **10**(6): 1859-1872.

Kamoun, S., O. Furzer, J. D. Jones, H. S. Judelson, G. S. Ali, R. J. Dalio, S. G. Roy, L. Schena, A. Zambounis, F. Panabieres, D. Cahill, M. Ruocco, A. Figueiredo, X. R. Chen, J. Hulvey, R. Stam, K. Lamour, M. Gijzen, B. M. Tyler, N. J. Grunwald, M. S. Mukhtar, D. F. Tome, M. Tor, G. Van Den Ackerveken, J. McDowell, F. Daayf, W. E. Fry, H. Lindqvist-Kreuze, H. J. Meijer, B. Petre, J. Ristaino, K. Yoshida, P. R. Birch und F. Govers (2015). The Top 10 oomycete pathogens in molecular plant pathology. *Molecular Plant Pathology* 16(4): 413-434.

Kamoun, S., E. Huitema und V. G. Vleeshouwers (1999). Resistance to oomycetes: a general role for the hypersensitive response? *Trends in Plant Science* **4**(5): 196-200.

Kast, W. K. und M. Stark-Urnau (1999). Survival of sporangia from *Plasmopara viticola*, the downy mildew of grapevine. *Vitis* **38**(4): 185-186.

Kauer, R., B. Fader und M. Wolff (2008). Aktuelle Situation der Bekämpfung von *Plasmopara viticola* in der Praxis des ökologischen Weinbaus in Deutschland. *Fachgespräch: "Bedeutung von Kupfer für den Pflanzenschutz, insbesondere für den Ökologischen Landbau – Reduktions- und Ersatzstrategien"*. K. S. und F. B. Berichte aus dem JKI, Berlin. **142:** 21-26.

Kiefer, B., M. Riemann, C. Büche, H. H. Kassemeyer und P. Nick (2002). The host guides morphogenesis and stomatal targeting in the grapevine pathogen *Plasmopara viticola*. *Planta* **215**(3): 387-393.

Király, L., B. Barna und Z. Király (2007). Plant Resistance to Pathogen Infection: Forms and Mechanisms of Innate and Acquired Resistance. *Journal of Phytopathology* **155**(7-8): 385-396.

Kobayashi, Y., M. Yamada, I. Kobayashi und H. Kunoh (1997). Actin Microfilaments are Required for the Expression of Nonhost Resistance in Higher Plants. *Plant and Cell Physiology* **38**(6): 725-733.

Koopman, T., C. C. Linde, P. H. Fourie und A. McLeod (2007). Population genetic structure of *Plasmopara viticola* in the Western Cape Province of South Africa. *Molecular Plant Pathology* **8**(6): 723-736.

Kortekamp, A. (2005). Growth, occurrence and development of septa in *Plasmopara viticola* and other members of the *Peronosporaceae* using light- and epifluorescencemicroscopy. *Mycological Research* **109**(Pt 5): 640-648.

Kortekamp, A. (2006). Expression analysis of defence-related genes in grapevine leaves after inoculation with a host and a non-host pathogen. *Plant Physiology and Biochemistry* **44**(1): 58-67.

Kortekamp, A., L. Welter, S. Vogt, A. Knoll, F. Schwander, R. Töpfer und E. Zyprian (2008). Identification, isolation and characterization of a CC-NBS-LRR candidate disease resistance gene family in grapevine. *Molecular Breeding* **22**(3): 421-432.

Kortekamp, A., R. Wind und E. Zyprian (1997). The role of callose deposits during infection of two downy mildew-tolerant and two-susceptible *Vitis* cultivars. *Vitis* **36**(2): 103-104.

Kortekamp, A., R. Wind und E. Zyprian (1999). The role of hairs on the wettability of grapevine (*Vitis* spp.) leaves. *Vitis* **38**(3): 101-105.

Kortekamp, A. und E. Zyprian (1999). Leaf Hairs as a Basic Protective Barrier against Downy Mildew of Grape. *Journal of Phytopathology* **147**(7-8): 453-459.

Kortekamp, A. und E. Zyprian (2003). Characterization of *Plasmopara*-resistance in grapevine using in vitro plants. *Journal of Plant Physiology* **160**(11): 1393-1400.

La Torre, A., V. Pompi, C. Mandala und C. Cioffi (2011). Grapevine downy mildew control using reduced copper amounts in organic viticulture. *Commun Agric Appl Biol Sci* **76**(4): 727-735.

Labinskyy, N., A. Csiszar, G. Veress, G. Stef, P. Pacher, G. Oroszi, J. Wu und Z. Ungvari (2006). Vascular dysfunction in aging: potential effects of resveratrol, an anti-inflammatory phytoestrogen. *Current Medicinal Chemistry* **13**(9): 989-996.

Lamb, C. und R. A. Dixon (1997). THE OXIDATIVE BURST IN PLANT DISEASE RESISTANCE. *Annual Review of Plant Physiology and Plant Molecular Biology* **48**: 251-275.

Lande, R. und R. Thompson (1990). Efficiency of Marker-Assisted Selection in the Improvement of Quantitative Traits. *Genetics* **124**(3): 743-756.

Lander, E. S. und D. Botstein (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. *Genetics* **121**(1): 185-199.

Leitao, L., C. Prista, M. C. Loureiro-Dias, T. F. Moura und G. Soveral (2014). The grapevine tonoplast aquaporin TIP2;1 is a pressure gated water channel. *Biochemical and Biophysical Research Communications* **450**(1): 289-294.

Leitao, L., C. Prista, T. F. Moura, M. C. Loureiro-Dias und G. Soveral (2012). Grapevine aquaporins: gating of a tonoplast intrinsic protein (TIP2;1) by cytosolic pH. *PLoS One* 7(3): e33219.

Licausi, F., F. M. Giorgi, S. Zenoni, F. Osti, M. Pezzotti und P. Perata (2010). Genomic and transcriptomic analysis of the AP2/ERF superfamily in *Vitis vinifera*. *BMC Genomics* **11**: 719.

Liu, R., L. Wang, J. Zhu, T. Chen, Y. Wang und Y. Xu (2015). Histological responses to downy mildew in resistant and susceptible grapevines. *Protoplasma* **252**(1): 259-270.

Livak, K. J. und T. D. Schmittgen (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* **25**(4): 402-408.

Lowe, K. M. und M. A. Walker (2006). Genetic linkage map of the interspecific grape rootstock cross Ramsey (*Vitis champinii*) x Riparia Gloire (*Vitis riparia*). *Theoretical and Applied Genetics* **112**(8): 1582-1592.

Lu, H., D. N. Rate, J. T. Song und J. T. Greenberg (2003). ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the *Arabidopsis* defense response. *Plant Cell* **15**(10): 2408-2420.

Luo, M., Y.-H. Wang, D. Frisch, T. Joobeur, R. A. Wing und R. A. Dean (2001). Melon bacterial artificial chromosome (BAC) library construction using improved methods and

identification of clones linked to the locus conferring resistance to melon Fusarium wilt (*Fom-2*). *Genome* **44**(2): 154-162.

Maekawa, T., W. Cheng, L. N. Spiridon, A. Toller, E. Lukasik, Y. Saijo, P. Liu, Q. H. Shen, M. A. Micluta, I. E. Somssich, F. L. Takken, A. J. Petrescu, J. Chai und P. Schulze-Lefert (2011). Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. *Cell Host Microbe* **9**(3): 187-199.

Magnani, E., K. Sjölander und S. Hake (2004). From Endonucleases to Transcription Factors: Evolution of the AP2 DNA Binding Domain in Plants. *The Plant Cell* **16**(9): 2265-2277.

Mahanil, S., D. Ramming, M. Cadle-Davidson, C. Owens, A. Garris, S. Myles und L. Cadle-Davidson (2012). Development of marker sets useful in the early selection of *Ren4* powdery mildew resistance and seedlessness for table and raisin grape breeding. *Theoretical and Applied Genetics* **124**(1): 23-33.

Malacarne, G., U. Vrhovsek, L. Zulini, A. Cestaro, M. Stefanini, F. Mattivi, M. Delledonne, R. Velasco und C. Moser (2011). Resistance to *Plasmopara viticola* in a grapevine segregating population is associated with stilbenoid accumulation and with specific host transcriptional responses. *BMC Plant Biology* **11**: 114.

Malinovsky, F. G., J. U. Fangel und W. G. Willats (2014). The role of the cell wall in plant immunity. *Front Plant Sci* **5**: 178.

Marchive, C., C. Leon, C. Kappel, P. Coutos-Thevenot, M. F. Corio-Costet, S. Delrot und V. Lauvergeat (2013). Over-Expression of VvWRKY1 in Grapevines Induces Expression of Jasmonic Acid Pathway-Related Genes and Confers Higher Tolerance to the Downy Mildew. *PLoS One* **8**(1): e54185.

Marguerit, E., C. Boury, A. Manicki, M. Donnart, G. Butterlin, A. Nemorin, S. Wiedemann-Merdinoglu, D. Merdinoglu, N. Ollat und S. Decroocq (2009). Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. *Theoretical and Applied Genetics* **118**(7): 1261-1278.

Martin, G. B., S. H. Brommonschenkel, J. Chunwongse, A. Frary, M. W. Ganal, R. Spivey, T. Wu, E. D. Earle und S. D. Tanksley (1993). Map-based cloning of a protein kinase gene conferring disease resistance in tomato. *Science* **262**(5138): 1432-1436.

Matasci, C. L., D. Gobbin, H. J. Schärer, L. Tamm und C. Gessler (2008). Selection for fungicide resistance throughout a growing season in populations of *Plasmopara viticola*. *European Journal of Plant Pathology* **120**(1): 79-83.

Matasci, C. L., M. Jermini, D. Gobbin und C. Gessler (2010). Microsatellite based population structure of *Plasmopara viticola* at single vine scale. *European Journal of Plant Pathology* **127**(4): 501-508.

Maurel, C. (2007). Plant aquaporins: novel functions and regulation properties. *FEBS Letters* **581**(12): 2227-2236.

McDonald, B. A. und C. Linde (2002). Pathogen population genetics, evolutionary potential, and durable resistance. *Annual Review of Phytopathology* **40**: 349-379.

McHale, L., X. Tan, P. Koehl und R. W. Michelmore (2006). Plant NBS-LRR proteins: adaptable guards. *Genome Biol* **7**(4): 212.

Merdinoglu, D., S. Wiedeman-Merdinoglu, P. Coste, V. Dumas, S. Haetty, G. Butterlin und C. Greif (2003). Genetic analysis of downy mildew resistance derived from *Muscadinia rotundifolia*, International Society for Horticultural Science (ISHS), Leuven, Belgium.

Merz, P. R., T. Moser, J. Holl, A. Kortekamp, G. Buchholz, E. Zyprian und J. Bogs (2015). The transcription factor VvWRKY33 is involved in the regulation of grapevine (*Vitis vinifera*) defense against the oomycete pathogen *Plasmopara viticola*. *Physiologia Plantarum* **153**(3): 365-380.

Mi, H., B. Lazareva-Ulitsky, R. Loo, A. Kejariwal, J. Vandergriff, S. Rabkin, N. Guo, A. Muruganujan, O. Doremieux, M. J. Campbell, H. Kitano und P. D. Thomas (2005). The PANTHER database of protein families, subfamilies, functions and pathways. *Nucleic Acids Research* **33**(suppl 1): D284-D288.

Mochizuki, M., Y. Aoki und S. Suzuki (2012). Detection and analysis of genetic variations in GOB locus of by DNA sequence analysis. *Journal of General Plant Pathology* **78**(3): 170-175.

Mohr, H. D. (2011). Farbatlas Krankheiten, Schädlinge und Nützlinge an der Weinrebe. Eugen Ulmer. Stuttgart, Germany.

Monaco, M. K., J. Stein, S. Naithani, S. Wei, P. Dharmawardhana, S. Kumari, V. Amarasinghe, K. Youens-Clark, J. Thomason, J. Preece, S. Pasternak, A. Olson, Y. Jiao, Z. Lu, D. Bolser, A. Kerhornou, D. Staines, B. Walts, G. Wu, P. D'Eustachio, R. Haw, D. Croft, P. J. Kersey, L. Stein, P. Jaiswal und D. Ware (2014). Gramene 2013: comparative plant genomics resources. *Nucleic Acids Research* **42**(Database issue): D1193-1199.

Monteiro, F., M. Sebastiana, M. S. Pais und A. Figueiredo (2013). Reference gene selection and validation for the early responses to downy mildew infection in susceptible and resistant *Vitis vinifera* cultivars. *PLoS One* **8**(9): e72998.

Moreira, F., A. Madini, R. Marino, L. Zulini, M. Stefanini, R. Velasco, P. Kozma und M. S. Grando (2011). Genetic linkage maps of two interspecific grape crosses (*Vitis* spp.) used to localize quantitative trait loci for downy mildew resistance. *Tree Genetics & Genomes* **7**(1): 153-167.

Mortazavi, A., B. A. Williams, K. McCue, L. Schaeffer und B. Wold (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nature Methods* **5**(7): 621-628.

Mosavi, L. K., T. J. Cammett, D. C. Desrosiers und Z. Y. Peng (2004). The ankyrin repeat as molecular architecture for protein recognition. *Protein Science* **13**(6): 1435-1448.

Moser, T. (2014). Untersuchung der transkriptionellen Regulation von Kandidatengenen der Pathogenabwehr gegen *Plasmopara viticola* in der Weinrebe. Dissertation (Karlsruher Institut für Technologie (KIT), Karlsruhe).

Mou, S., Z. Liu, D. Guan, A. Qiu, Y. Lai und S. He (2013). Functional analysis and expressional characterization of rice ankyrin repeat-containing protein, *Os*PIANK1, in basal defense against *Magnaporthe oryzae* attack. *PLoS One* **8**(3): e59699.

Müller, K. und H. Sleumer (1934). Biologische Untersuchungen über die Peronosporakrankheit des Weinstocks. *Landwirtsch Jb* **79**(4): 509-576.

Musetti, R., R. Polizzotto, A. Vecchione, S. Borselli, L. Zulini, M. D'Ambrosio, L. S. di Toppi und I. Pertot (2007). Antifungal activity of diketopiperazines extracted from *Alternaria alternata* against *Plasmopara viticola*: an ultrastructural study. *Micron* **38**(6): 643-650.

Musetti, R., A. Vecchione, L. Stringher, S. Borselli, L. Zulini, C. Marzani, M. D'Ambrosio, L. S. di Toppi und I. Pertot (2006). Inhibition of Sporulation and Ultrastructural Alterations of Grapevine Downy Mildew by the Endophytic Fungus *Alternaria alternata*. *Phytopathology* **96**(7): 689-698.

Mysore, K. S. und C. M. Ryu (2004). Nonhost resistance: how much do we know? *Trends in Plant Science* **9**(2): 97-104.

Nanni, I. M., A. Pirondi, D. Mancini, G. Stammler, R. Gold, I. Ferri, A. Brunelli und M. Collina (2015). Differences in the efficacy of Carboxylic Acid Amides (CAA) fungicides against less sensitive strains of *Plasmopara viticola*. *Pest Manag Sci*.

Nicholas, P., P. Magarey und M. Wachtel (1994). Diseases and Pests: Grape Production Series No. 1. Adelaide, Australia.

Nürnberger, T. und V. Lipka (2005). Non-host resistance in plants: new insights into an old phenomenon. *Molecular Plant Pathology* **6**(3): 335-345.

O'Connor, M., M. Peifer und W. Bender (1989). Construction of large DNA segments in *Escherichia coli*. *Science* **244**(4910): 1307-1312.

OIV (2015). Statistical Report on World Vitiviniculture. http://www.oiv.int/oiv/files/Report_Mainz_Congress_2015_OIV_EN.pdf.

Okamuro, J. K., B. Caster, R. Villarroel, M. Van Montagu und K. D. Jofuku (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in *Arabidopsis*. *Proceedings of the National Academy of Sciences* **94**(13): 7076-7081.

Oliveros, J. C. (2007-2015). An interactive tool for comparing lists with Venn's diagrams (http://bioinfogp.cnb.csic.es/tools/venny/index.html).

Peressotti, E., E. Duchene, D. Merdinoglu und P. Mestre (2011). A semi-automatic nondestructive method to quantify grapevine downy mildew sporulation. *Journal of Microbiological Methods* 84(2): 265-271.

Peressotti, E., S. Wiedemann-Merdinoglu, F. Delmotte, D. Bellin, G. Di Gaspero, R. Testolin, D. Merdinoglu und P. Mestre (2010). Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistant variety. *BMC Plant Biology* **10**: 147.

Pezet, R., K. Gindro, O. Viret und H. Richter (2004a). Effects of resveratrol, viniferins and pterostilbene on *Plasmopara viticola* zoospore mobility and disease development. *Vitis* **43**(3).

Pezet, R., K. Gindro, O. Viret und J. L. Spring (2004b). Glycosylation and oxidative dimerization of resveratrol are respectively associated to sensitivity and resistance of grapevine cultivars to downy mildew. *Physiological and Molecular Plant Pathology* **65**(6): 297-303.

Polesani, M., L. Bortesi, A. Ferrarini, A. Zamboni, M. Fasoli, C. Zadra, A. Lovato, M. Pezzotti, M. Delledonne und A. Polverari (2010). General and species-specific transcriptional responses to downy mildew infection in a susceptible (*Vitis vinifera*) and a resistant (*V. riparia*) grapevine species. *BMC Genomics* **11**: 117.

Pou, A., H. Medrano, J. Flexas und S. D. Tyerman (2013). A putative role for TIP and PIP aquaporins in dynamics of leaf hydraulic and stomatal conductances in grapevine under water stress and re-watering. *Plant Cell Environ* **36**(4): 828-843.

Pugliese, M., M. L. Gullino und A. Garibaldi (2011). Effect of climate change on infection of grapevine by downy and powdery mildew under controlled environment. *Commun Agric Appl Biol Sci* **76**(4): 579-582.

Pusztahelyi, T., I. J. Holb und I. Pocsi (2015). Secondary metabolites in fungus-plant interactions. *Front Plant Sci* **6**: 573.

Qi, D., B. J. DeYoung und R. W. Innes (2012). Structure-function analysis of the coiled-coil and leucine-rich repeat domains of the RPS5 disease resistance protein. *Plant Physiology* **158**(4): 1819-1832.

Reizer, J., A. Reizer und M. H. Saier (1993). The MIP Family of Integral Membrane Channel Proteins: Sequence Comparisons, Evolutionary Relationships, Reconstructed Pathway of Evolution, and Proposed Functional Differentiation of the Two Repeated Halves of the Proteins. *Critical Reviews in Biochemistry and Molecular Biology* **28**(3): 235-257.

Rex, F. (2012). Resistenz gegen die Schwarzfäule (*Guignardia bidwellii*) in der Weinrebe (*Vitis* spec.) – Etablierung phänotypischer Erfassungsmethoden und genetische Kartierung von Resistenzloci. Dissertation (Karlsruher Institut für Technologie (KIT), Karlsruhe).

Rex, F., I. Fechter, L. Hausmann und R. Töpfer (2014). QTL mapping of black rot (*Guignardia bidwellii*) resistance in the grapevine rootstock 'Börner' (*V. riparia* Gm183 x *V. cinerea* Arnold). *Theoretical and Applied Genetics* **127**(7): 1667-1677.

Riaz, S., J.-M. Boursiquot, G. S. Dangl, T. Lacombe, V. Laucou, A. C. Tenscher und M. A. Walker (2013). Identification of mildew resistance in wild and cultivated Central Asian grape germplasm. *BMC Plant Biology* **13**: 149-149.

Riaz, S., R. Hu und M. A. Walker (2012). A framework genetic map of *Muscadinia* rotundifolia. Theoretical and Applied Genetics **125**(6): 1195-1210.

Riaz, S., A. C. Tenscher, D. W. Ramming und M. A. Walker (2011). Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (*Erysiphe necator*) and their use in marker-assisted breeding. *Theoretical and Applied Genetics* **122**(6): 1059-1073.

Rossi, V. und T. Caffi (2012). The role of rain in dispersal of the primary inoculum of *Plasmopara viticola*. *Phytopathology* **102**(2): 158-165.

Rouxel, M., P. Mestre, A. Baudoin, O. Carisse, L. Delière, M. A. Ellis, D. Gadoury, J. Lu, M. Nita, S. Richard-Cervera, A. Schilder, A. Wise und F. Delmotte (2014). Geographic distribution of cryptic species of *Plasmopara viticola* causing downy mildew on wild and cultivated grape in eastern North America. *Phytopathology* **104**(7): 692-701.

Rouxel, M., P. Mestre, G. Comont, B. L. Lehman, A. Schilder und F. Delmotte (2013). Phylogenetic and experimental evidence for host-specialized cryptic species in a biotrophic oomycete. *New Phytologist* **197**(1): 251-263.

Rouxel, M., D. Papura, M. Nogueira, V. Machefer, D. Dezette, S. Richard-Cervera, S. Carrere, P. Mestre und F. Delmotte (2012). Microsatellite markers for characterization of native and introduced populations of *Plasmopara viticola*, the causal agent of grapevine downy mildew. *Applied and Environmental Microbiology* **78**(17): 6337-6340.

Rumbolz, J., S. Wirtz, H. H. Kassemeyer, R. Guggenheim, E. Schäfer und C. Büche (2002). Sporulation of *Plasmopara viticola*: Differentiation and Light Regulation. *Plant Biology* **4**(3): 413-422.

Rumbou, A. und C. Gessler (2006). Particular structure of *Plasmopara viticola* populations evolved under Greek island conditions. *Phytopathology* **96**(5): 501-509.

Sanger, F., S. Nicklen und A. R. Coulson (1977). DNA sequencing with chainterminating inhibitors. *Proc Natl Acad Sci U S A* **74**(12): 5463-5467.

Santamaria, M. E., M. Martinez, I. Cambra, V. Grbic und I. Diaz (2013). Understanding plant defence responses against herbivore attacks: an essential first step towards the development of sustainable resistance against pests. *Transgenic Research* **22**(4): 697-708.

Scherer, E. und U. Gisi (2006). Characterization of genotype and mating type in European isolates of *Plasmopara viticola*. *Journal of Phytopathology* **154**(7-8): 489-495.

Schnee, S., E. F. Queiroz, F. Voinesco, L. Marcourt, P. H. Dubuis, J. L. Wolfender und K. Gindro (2013). *Vitis vinifera* canes, a new source of antifungal compounds against *Plasmopara viticola, Erysiphe necator,* and *Botrytis cinerea. Journal of Agricultural and Food Chemistry* **61**(23): 5459-5467.

Schröder, S. (2010). Plant immunity as a result of co-evolution: Using the pair grapevine / downy mildew as a model. Dissertation (Karlsruher Institut für Technologie, Karlsruhe).

Schröder, S., S. Telle, P. Nick und M. Thines (2011). Cryptic diversity of *Plasmopara viticola* (Oomycota, Peronosporaceae) in North America. *Organisms Diversity & Evolution* **11**(1): 3-7.

Schwander, F. (2011). Identifikation des Mehltauresistenzlocus *Rpv10* für die Rebenzüchtung. Dissertation (Karlsruher Institut für Technologie (KIT), Karlsruhe).

Schwander, F., R. Eibach, I. Fechter, L. Hausmann, E. Zyprian und R. Töpfer (2012). *Rpv10*: a new locus from the Asian *Vitis* gene pool for pyramiding downy mildew resistance loci in grapevine. *Theoretical and Applied Genetics* **124**(1): 163-176.

Schwander, F., E. Zyprian und R. Töpfer (2014). Genetic Mapping of Acidity-Relevant Traits. *Proceedings of the XIth International Conference on Grapevine Breeding and Genetics (Acta Horticulturae 1082)*. L. Shao-Hua, D. Archbold und J. London. ISHS, Leuven, Belgium. 315-318.

Sefc, K. M., I. Pejic, E. Maletic, M. R. Thomas und F. Lefort (2009). Microsatellite Markers for Grapevine: Tools for Cultivar Identification & Pedigree Reconstruction. *Grapevine Molecular Physiology & Biotechnology*. K. A. Roubelakis-Angelakis. Springer, Netherlands.

Sekhwal, M. K., P. Li, I. Lam, X. Wang, S. Cloutier und F. M. You (2015). Disease Resistance Gene Analogs (RGAs) in Plants. *Int J Mol Sci* **16**(8): 19248-19290.

Selim, M., S. Legay, B. Berkelmann-Lohnertz, G. Langen, K. H. Kogel und D. Evers (2012). Identification of suitable reference genes for real-time RT-PCR normalization in the grapevine-downy mildew pathosystem. *Plant Cell Reports* **31**(1): 205-216.

Shao, F., C. Golstein, J. Ade, M. Stoutemyer, J. E. Dixon und R. W. Innes (2003). Cleavage of Arabidopsis PBS1 by a Bacterial Type III Effector. *Science* **301**(5637): 1230-1233.

Shin, S., J. A. Torres-Acosta, S. J. Heinen, S. McCormick, M. Lemmens, M. P. Paris, F. Berthiller, G. Adam und G. J. Muehlbauer (2012). Transgenic *Arabidopsis thaliana* expressing a barley UDP-glucosyltransferase exhibit resistance to the mycotoxin deoxynivalenol. *Journal of Experimental Botany* **63**(13): 4731-4740.

Shizuya, H., B. Birren, U. J. Kim, V. Mancino, T. Slepak, Y. Tachiiri und M. Simon (1992). Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA

in *Escherichia coli* using an F-factor-based vector. *Proc Natl Acad Sci U S A* **89**(18): 8794-8797.

Solovyev, V., P. Kosarev, I. Seledsov und D. Vorobyev (2006). Automatic annotation of eukaryotic genes, pseudogenes and promoters. *Genome Biol* **7** Suppl 1: S10.11-12.

Son, G. H., J. Wan, H. J. Kim, X. C. Nguyen, W. S. Chung, J. C. Hong und G. Stacey (2012). Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response. *Mol Plant Microbe Interact* **25**(1): 48-60.

Song, W. Y., G. L. Wang, L. L. Chen, H. S. Kim, L. Y. Pi, T. Holsten, J. Gardner, B. Wang, W. X. Zhai, L. H. Zhu, C. Fauquet und P. Ronald (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, *Xa21*. *Science* **270**(5243): 1804-1806.

Spurgeon, S. L., R. C. Jones und R. Ramakrishnan (2008). High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. *PLoS One* **3**(2): e1662.

Staatliches Weinbauinstitut Freiburg (2014). Pflanzenschutz im Weinbau -Antiresistenzstrategien bei Fungiziden im Weinbau 2014.

Statistisches Bundesamt (2015). Weinerzeugung Deutschland 2007 bis 2014.

Steimetz, E., S. Trouvelot, K. Gindro, A. Bordier, B. Poinssot, M. Adrian und X. Daire (2012). Influence of leaf age on induced resistance in grapevine against *Plasmopara viticola*. *Physiological and Molecular Plant Pathology* **79**: 89-96.

Strasburger, E. und P. Sitte (2002). Lehrbuch der Botanik für Hochschulen. Spektrum Akademischer Verlag GmbH.

Strugala, R., R. Delventhal und U. Schaffrath (2015). An organ-specific view on nonhost resistance. *Front Plant Sci* **6**: 526.

Takken, F. L. und W. I. Tameling (2009). To nibble at plant resistance proteins. *Science* **324**(5928): 744-746.

Tameling, W. I., S. D. Elzinga, P. S. Darmin, J. H. Vossen, F. L. Takken, M. A. Haring und B. J. Cornelissen (2002). The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity. *Plant Cell* **14**(11): 2929-2939.

Tameling, W. I., J. H. Vossen, M. Albrecht, T. Lengauer, J. A. Berden, M. A. Haring, B. J. Cornelissen und F. L. Takken (2006). Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation. *Plant Physiology* **140**(4): 1233-1245.

This, P., T. Lacombe und M. R. Thomas (2006). Historical origins and genetic diversity of wine grapes. *Trends in Genetics* **22**(9): 511-519.

Thomas, P. D., M. J. Campbell, A. Kejariwal, H. Mi, B. Karlak, R. Daverman, K. Diemer, A. Muruganujan und A. Narechania (2003). PANTHER: A Library of Protein Families and Subfamilies Indexed by Function. *Genome Research* **13**(9): 2129-2141.

Thomma, B. P., T. Nürnberger und M. H. Joosten (2011). Of PAMPs and effectors: the blurred PTI-ETI dichotomy. *Plant Cell* **23**(1): 4-15.

Thordal-Christensen, H. (2003). Fresh insights into processes of nonhost resistance. *Current Opinion in Plant Biology* **6**(4): 351-357.

Toffolatti, S. L., G. Venturini, P. Campia, L. Cirio, D. Bellotto und A. Vercesi (2015). Sensitivity to cymoxanil in Italian populations of *Plasmopara viticola* oospores. *Pest Manag Sci* **71**(8): 1182-1188.

Töpfer, R., L. Hausmann und R. Eibach (2011a). Molecular Breeding. *Genetics, Genomics and Breeding of Grapes*. A. F. Adam-Blondon, J. M. Martinez-Zapater und C. Kole. Science Publishers, Enfield, USA.

Töpfer, R., L. Hausmann, M. Harst, E. Maul, E. Zyprian und R. Eibach (2011b). New Horizons for Grapevine Breeding. *Fruit, Vegetable and Cereal Science and Biotechnology 5.* H. Flachowsky und M. V. Hanke. Global Science Books.

Trapnell, C., B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. J. van Baren, S. L. Salzberg, B. J. Wold und L. Pachter (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nature Biotechnology* **28**(5): 511-515.

Tsai, M. F., D. Jiang, L. Zhao, D. Clapham und C. Miller (2014). Functional reconstitution of the mitochondrial Ca2+/H+ antiporter Letm1. *Journal of General Physiology* **143**(1): 67-73.

Ullmann, A., F. Jacob und J. Monod (1967). Characterization by in vitro complementation of a peptide corresponding to an operator-proximal segment of the beta-galactosidase structural gene of *Escherichia coli*. *Journal of Molecular Biology* **24**(2): 339-343.

Van der Biezen, E. A. und J. D. Jones (1998). Plant disease-resistance proteins and the gene-for-gene concept. *Trends in Biochemical Sciences* **23**(12): 454-456.

van Loon, L. C., M. Rep und C. M. Pieterse (2006). Significance of inducible defenserelated proteins in infected plants. *Annual Review of Phytopathology* **44**: 135-162.

Van Loon, L. C. und E. A. Van Strien (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. *Physiological and Molecular Plant Pathology* **55**(2): 85-97.

Vannozzi, A., I. B. Dry, M. Fasoli, S. Zenoni und M. Lucchin (2012). Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. *BMC Plant Biology* **12**: 130.

Velasco, R., A. Zharkikh, M. Troggio, D. A. Cartwright, A. Cestaro, D. Pruss, M.
Pindo, L. M. FitzGerald, S. Vezzulli, J. Reid, G. Malacarne, D. Iliev, G. Coppola, B.
Wardell, D. Micheletti, T. Macalma, M. Facci, J. T. Mitchell, M. Perazzolli, G.
Eldredge, P. Gatto, R. Oyzerski, M. Moretto, N. Gutin, M. Stefanini, Y. Chen, C.
Segala, C. Davenport, L. Demattè, A. Mraz, J. Battilana, K. Stormo, F. Costa, Q. Tao,
A. Si-Ammour, T. Harkins, A. Lackey, C. Perbost, B. Taillon, A. Stella, V. Solovyev, J.
A. Fawcett, L. Sterck, K. Vandepoele, S. M. Grando, S. Toppo, C. Moser, J. Lanchbury,
R. Bogden, M. Skolnick, V. Sgaramella, S. K. Bhatnagar, P. Fontana, A. Gutin, Y. Van
de Peer, F. Salamini und R. Viola (2007). A High Quality Draft Consensus Sequence of
the Genome of a Heterozygous Grapevine Variety. *PLoS One* 2(12): e1326.

Venuti, S., D. Copetti, S. Foria, L. Falginella, S. Hoffmann, D. Bellin, P. Cindric, P. Kozma, S. Scalabrin, M. Morgante, R. Testolin und G. Di Gaspero (2013). Historical Introgression of the Downy Mildew Resistance Gene *Rpv12* from the Asian Species *Vitis amurensis* into Grapevine Varieties. *PLoS One* **8**(4): e61228.

Vogel, A., O. Schilling, M. Niecke, J. Bettmer und W. Meyer-Klaucke (2002). ElaC Encodes a Novel Binuclear Zinc Phosphodiesterase. *Journal of Biological Chemistry* **277**(32): 29078-29085.

Wang, W., B. Vinocur, O. Shoseyov und A. Altman (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. *Trends in Plant Science* **9**(5): 244-252.

Wang, W., Y. Wen, R. Berkey und S. Xiao (2009a). Specific Targeting of the *Arabidopsis* Resistance Protein RPW8.2 to the Interfacial Membrane Encasing the Fungal Haustorium Renders Broad-Spectrum Resistance to Powdery Mildew. *The Plant Cell* **21**(9): 2898-2913.

Wang, Z., M. Gerstein und M. Snyder (2009b). RNA-Seq: a revolutionary tool for transcriptomics. *Nature Reviews: Genetics* **10**(1): 57-63.

Warren, R. F., A. Henk, P. Mowery, E. Holub und R. W. Innes (1998). A mutation within the leucine-rich repeat domain of the *Arabidopsis* disease resistance gene *RPS5* partially suppresses multiple bacterial and downy mildew resistance genes. *Plant Cell* **10**(9): 1439-1452.

Welter, L. J., N. Göktürk-Baydar, M. Akkurt, E. Maul, R. Eibach, R. Töpfer und E. M. Zyprian (2007). Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (*Vitis vinifera* L). *Molecular Breeding* **20**(4): 359-374.

Werner, A. (2015). Untersuchung von Kandidatengenen der *Plasmopara viticola* Resistenz der Weinrebe (*Vitis* spec.). Masterarbeit (Karlsruher Institut für Technologie (KIT), Karlsruhe).

Werner, S., U. Steiner, R. Becher, A. Kortekamp, E. Zyprian und H. B. Deising (2002). Chitin synthesis during in planta growth and asexual propagation of the cellulosic oomycete and obligate biotrophic grapevine pathogen *Plasmopara viticola*. *FEMS Microbiology Letters* **208**(2): 169-173.

Whisson, S. C., P. C. Boevink, L. Moleleki, A. O. Avrova, J. G. Morales, E. M. Gilroy, M. R. Armstrong, S. Grouffaud, P. van West, S. Chapman, I. Hein, I. K. Toth, L. Pritchard und P. R. J. Birch (2007). A translocation signal for delivery of oomycete effector proteins into host plant cells. *Nature* **450**(7166): 115-118.

Win, J., K. V. Krasileva, S. Kamoun, K. Shirasu, B. J. Staskawicz und M. J. Banfield (2012). Sequence Divergent RXLR Effectors Share a Structural Fold Conserved across Plant Pathogenic Oomycete Species. *PLoS Pathogens* **8**(1).

Wojtaszek, P. (1997). Oxidative burst: an early plant response to pathogen infection. *Biochemical Journal* **322**(Pt 3): 681-692.

Wong, F. P., H. N. Burr und W. F. Wilcox (2001). Heterothallism in *Plasmopara viticola*. *Plant Pathology* **50**(4): 427-432.

Wong, M. L. und J. F. Medrano (2005). Real-time PCR for mRNA quantitation. *BioTechniques* **39**(1): 75-85.

Wu, J., Y. Zhang, H. Zhang, H. Huang, K. M. Folta und J. Lu (2010). Whole genome wide expression profiles of *Vitis amurensis* grape responding to downy mildew by using Solexa sequencing technology. *BMC Plant Biology* **10**: 234.

Xu, K., S. Riaz, N. C. Roncoroni, Y. Jin, R. Hu, R. Zhou und M. A. Walker (2008). Genetic and QTL analysis of resistance to *Xiphinema index* in a grapevine cross. *Theoretical and Applied Genetics* **116**(2): 305-311.

Xu, W., R. Li, N. Zhang, F. Ma, Y. Jiao und Z. Wang (2014). Transcriptome profiling of *Vitis amurensis*, an extremely cold-tolerant Chinese wild *Vitis* species, reveals candidate genes and events that potentially connected to cold stress. *Plant Molecular Biology* **86**(4-5): 527-541.

Zhang, J., L. Hausmann, R. Eibach, L. J. Welter, R. Töpfer und E. M. Zyprian (2009). A framework map from grapevine V3125 (*Vitis vinifera* 'Schiava grossa' x 'Riesling') x rootstock cultivar 'Börner' (*Vitis riparia* x *Vitis cinerea*) to localize genetic determinants of phylloxera root resistance. *Theoretical and Applied Genetics* **119**(6): 1039-1051.

Veröffentlichungen

Internationale Journals

Dudenhöffer, J., Schwander, F., Töpfer, R., Zyprian, E. (2015). Sequence Analysis of Loci *Rpv10* and *Rpv3* for Resistance against Grapevine Downy Mildew (*Plasmopara viticola*). Proceedings of the Eleventh International Conference on Grapevine Breeding and Genetics (Acta Horticulturae). **1082**: 69-72

Fachbücher

Dudenhöffer, J., Schwander, F., Töpfer, R., Zyprian, E. (2015). Vergleichende Charakterisierung der Resistenz-Genorte *Rpv10* und *Rpv3* gegen den Falschen Mehltau der Weinrebe. *Deutsches Weinbau Jahrbuch*. **66**:170-174

Vorträge

Dudenhöffer, J., Schwander, F., Töpfer, R., Zyprian, E. (2012): Analysis of *Plasmopara viticola* resistance locus *Rpv10* and comparison to *Rpv3*. 5. Nachwuchswissenschaftler-forum des JKI, 04. - 06.12.2012, JKI, Quedlinburg

Dudenhöffer, J., Schwander, F., Hausmann, L., Töpfer, R., Zyprian, E. (2013): Untersuchung des Resistenzlocus *Rpv10* gegen den Falschen Mehltau der Weinrebe (*Plasmopara viticola*) und Vergleich mit *Rpv3*. 53. Arbeitstagung des FDW bei der DLG, 12.03.2013, Bayerische Landesanstalt für Weinbau und Gartenbau, Veitshöchheim

Dudenhöffer, J., Schwander, F., Hausmann, L., Töpfer, R., Zyprian, E. (2013): Analysis of grapevine downy mildew (*Plasmopara viticola*) resistance locus *Rpv10* and comparison to *Rpv3*. 8. Rhein-Wein-Symposium, 16. - 17.05.2013, KIT, Karlsruhe

Dudenhöffer, J., Schwander, F., Hausmann, L., Töpfer, R., Zyprian, E. (2013): Untersuchung des Resistenzlocus *Rpv10* gegen den Falschen Mehltau der Weinrebe (*Plasmopara viticola*) und Vergleich mit *Rpv3*. Tagung der AG 19 "Obst, Gehölze, Reben" der GPZ, JKI, Siebeldingen

Dudenhöffer, J., Schwander, F., Töpfer, R., Zyprian, E. (2014): Untersuchung des Resistenzlocus *Rpv10* gegen den Falschen Mehltau der Weinrebe (*Plasmopara viticola*) und Vergleich mit *Rpv3*. 54. Arbeitstagung des FDW bei der DLG, 29.04.2014, DLR, Neustadt/Weinstraße

Dudenhöffer, J., Schwander, F., Töpfer, R., Zyprian, E. (2014): Analysis of grapevine downy mildew (*Plasmopara viticola*) resistance locus *Rpv10* and comparison to *Rpv3*. 9. Rhein-Wein-Symposium, 15. - 16.05.2014, KIT, Karlsruhe

Dudenhöffer, J., Schwander, F., Töpfer, R., Zyprian, E. (2014): Sequence Analysis of Loci *Rpv10* and *Rpv3* for Resistance against Grapevine Downy Mildew (*Plasmopara viticola*). 11th International Conference on Grapevine Breeding and Genetics, 28.07. - 02.08.2014, Peking, China

Dudenhöffer, J., Schwander, F., Töpfer, R., Zyprian, E. (2014): Sequence analysis of loci *Rpv10* and *Rpv3* for resistance against grapevine downy mildew (*Plasmopara viticola*). 7. Nachwuchswissenschaftlerforum des JKI, 26. - 28.11.2014, JKI, Quedlinburg

Dudenhöffer, J., Schwander, F., Töpfer, R., Zyprian, E. (2015): Falsche Mehltauresistenz: Charakterisierung des Resistenzlocus *Rpv10*. Sitzung der Abteilung Reben der GFP, 19.02.2015, JKI, Siebeldingen

Dudenhöffer, J., Werner, A., Schwander, F., Hausmann, L., Töpfer, R., Zyprian, E. (2015): Untersuchung des Resistenzlocus *Rpv10* gegen den Falschen Mehltau der Weinrebe (*Plasmopara viticola*) und Vergleich mit *Rpv3*. 55. Arbeitstagung des FDW bei der DLG, 28.04.2015, DLR, Oppenheim

Dudenhöffer, J., Werner, A., Schwander, F., Hausmann, L., Töpfer, R., Zyprian, E. (2015): Analysis of grapevine downy mildew (*Plasmopara viticola*) resistance locus *Rpv10* and comparison to *Rpv3*. 10. Rhein-Wein-Symposium, 12. - 13.05.2015, KIT, Karlsruhe

Dudenhöffer, J., Werner, A., Schwander, F., Hausmann, L., Töpfer, R., Zyprian, E. (2015): Untersuchung des Resistenzlocus *Rpv10* gegen den Falschen Mehltau der Weinrebe (*Plasmopara viticola*) und Vergleich mit *Rpv3*. Tagung der AG 19 "Obst, Gehölze, Reben" der GPZ, Thünen-Institut für Forstgenetik, Großhansdorf

Poster

Dudenhöffer, J., Schwander, F., Moser, T., Hausmann, L., Töpfer, R., Zyprian, E. (2013): Analysis of *Plasmopara viticola* resistance locus *Rpv10* and comparison to *Rpv3*. 6. Nachwuchswissenschaftlerforum des JKI, 27. - 29.11.2013, JKI, Quedlinburg

Dudenhöffer, J., Schwander, F., Töpfer, R., Zyprian, E. (2014): Sequence Analysis of Loci *Rpv10* and *Rpv3* for Resistance against Grapevine Downy Mildew (*Plasmopara viticola*). 11th International Conference on Grapevine Breeding and Genetics, 28.07. - 02.08.2014, Peking, China

Anhang

Oligonukleotidpaare zur Darstellung von Rpv10

Tabelle 38: Primerpaare zur Darstellung des *Rpv10*-Locus über Amplikon-Sequenzierung (basierend auf PN40024 12X)

Name	Sequenz	Erwartete Frag- mentlänge [bp]
LR-Rpv10-for01	GATATGTTAGAGCAATTGCGGGAGT	4.800
LR-Rpv10-rev01	TTATTCCCACTTCACAGGCAGTTTC	
LR-Rpv10-for02	TCATTTTCTTGATTAGCGCTCTTGC	4.899
LR-Rpv10-rev02	AACCACCCTTTCCAAGATGAAGGTA	
LR-Rpv10-for03	TGTCGTTATTATGTCGGTGGAGCTT	— 5.661
LR-Rpv10-rev03	GGTCTTGTCATCCCCACCTTTTAAC	
LR-Rpv10-for04	GTCAGATCAGACCCATCTTCCTCAA	5.960
LR-Rpv10-rev04	GGAGCTTTCAGTGCAGCAATCTTTA	
LR-Rpv10-for05	GTCCCCGAAAATTGTTAATGATGGT	— 5.708
LR-Rpv10-rev05	AGGGCAACATCAATGGGTTAGTTCT	
LR-Rpv10-for06	CTGGGTCTTACAAGCTCTTGCCTTT	5.109
LR-Rpv10-rev06	AACCAGATTGGGTCGTAACAACAGA	
LR-Rpv10-for07	GATTGGGGCAACTCACATCAAATAA	7.775
LR-Rpv10-rev07	ATCTAAGTCACCAATGCCAAAACCA	
LR-Rpv10-for08	ATGTCATTGTCAAGTGCTTGCTGTC	4.423
LR-Rpv10-rev08	TCATCATACGCTCTACCATTGCTCA	
LR-Rpv10-for09	GGGATAGTTGGAAAGGTAGCAATCG	4.216
LR-Rpv10-rev09	CCCACCTCAAATACACACCAACAAT	
LR-Rpv10-for10	GTTGTCGAATTTAGCGTCTCCATTG	4.601
LR-Rpv10-rev10	GGAGCGAAAGGGTTTGTAGTGAGAT	
LR-Rpv10-for11	ATTAAGCTTTGGGGGTTTGCAAAGTG	5.763
LR-Rpv10-rev11	CTCGAACTAACAAGCGAAGCCAGTA	
LR-Rpv10-for12	ACCCCTTTTCACTTCCTATGATCCA	4.984
LR-Rpv10-rev12	AGTGCCAAATGCAATTAGGAGATCA	
LR-Rpv10-for13	CCATTGACATATGAATGTGGCCTTT	5.379
LR-Rpv10-rev13	TCTGTTGTGCATCCAAGGTTACTGA	
LR-Rpv10-for14	AGAGAGAAGGAGGTCCAAACAGCAT	6.096
LR-Rpv10-rev14	CCTGCAACTCTCCAACTTCCTCATA	
LR-Rpv10-for15	TGTTCGCTATTCCCTGAAGACCATA	5.139
LR-Rpv10-rev15	CAGTTCCTAGCAGCAATGTCCAACT	
LR-Rpv10-for16	AAAAGCAAGGAGTGCCTCCACTTAC	4.514
----------------	---------------------------	-------
LR-Rpv10-rev16	CTAGGCTGCCAAGCTGGATTAAGAT	
LR-Rpv10-for17	TTGCATTTCCCTTCTAAACTCCACA	5 211
LR-Rpv10-rev17	TGGTGAAGCCTGGTGATATTTCTGT	3.311
LR-Rpv10-for18	CTGATTTCCCAAGCTGTAATTCACG	4.025
LR-Rpv10-rev18	TCTGGGTCTGTTGGGTTTAACAAGA	
LR-Rpv10-for19	TCTTGTTAAACCCAACAGACCCAGA	5 722
LR-Rpv10-rev19	GGTCTTGTTGTAGGTGCAAACATCC	3.132

Tabelle 39: Primerpaare zur Darstellung des *Rpv10*-Locus über Amplikon-Sequenzierung nach 1. Sequenzierung (basierend auf PN40024 12X)

Name	Sequenz	Erwartete Fragmentlänge [bp]
LR-Rpv10seq-for06a	TTGTTGGATTTAGATTTGATTGGTT	5 387 hr
LR-Rpv10seq-rev06a	CTGCCTTATGAAGAGATGAAGTTG	5.587 op
LR-Rpv10seq-for08a	ATCAGACATACAATATCGCAATGAA	4 824 ha
LR-Rpv10seq-rev08a	TGTTCCTTAATAAACTGTCCTTTGG	4.034 Up

Tabelle 40: Primerpaare zur Darstellung des *Rpv10*-Locus über Amplikon-Sequenzierung nach 1. Sequenzierung (basierend auf für *Rpv10* homozygotem Selbstungsnachkommen von 'Solaris')

Name	Sequenz	Erwartete Fragmentlänge [bp]
LR-Rpv10seq-for01-02a	ATATCTGGATTGTCTTCCTCGAAT	-1.254 hp
LR-Rpv10seq-rev01-02a	TCCCTCTCTTCTTTGATTGTTCTT	- 1.2 <i>3</i> 4 0p
LR-Rpv10seq-for01-02b	AGCCTGATAATTTCCAGCACTAAT	-1.012 hp
LR-Rpv10seq-rev01-02b	TCTCCCTCTCTTCTTTGATTGTTC	- 1.013 bp
LR-Rpv10seq-for01-02c	GATACAGCGACATGAAGACAATTC	-1.045 he
LR-Rpv10seq-rev01-02c	TGAAAGGAAATGAGGTAGAAAGGT	- 1.043 bp
LR-Rpv10seq-for05-06a	TTCACTGCTTCCATGTTGTAGTTT	1 170 hr
LR-Rpv10seq-rev05-06a	TTGGTTGAAATGAGTTGCATATTT	- 1.170 бр
LR-Rpv10seq-for05-06b	CACTGCTTCCATGTTGTAGTTTCT	1.029 hg
LR-Rpv10seq-rev05-06b	CCACGTGAATTAATAAATCCCAAT	- 1.038 bp
LR-Rpv10seq-for10a	GATGACTACAGCAATGGAGAGAGA	4 727 hr
LR-Rpv10seq-rev10a	GATGAGTTGCATGATTAGATTTGG	- 4.737 bp
LR-Rpv10seq-for10b	GAGATGACTACAGCAATGGAGAGA	4 720 hz
LR-Rpv10seq-rev10b	GATGAGTTGCATGATTAGATTTGG	- 4.739 bp
LR-Rpv10seq-for10c	GAGATGACTACAGCAATGGAGAGA	4.917 bp

LR-Rpv10seq-rev10c	ATGTTTCTCATTCACCCTTCATTT	
LR-Rpv10seq-for10d	TGACTACAGCAATGGAGAGAGAAG	5.080 ha
LR-Rpv10seq-rev10d	CCACTAACGAAATACGTCTTCAAA	– 5.089 bp
LR-Rpv10seq-for10e	GATGACTACAGCAATGGAGAGAGA	-5.001 hp
LR-Rpv10seq-rev10e	CCACTAACGAAATACGTCTTCAAA	– 5.091 op
LR-Rpv10seq-for10f	GAGGTGAAGAGATGACTACAGCAA	-5212 hp
LR-Rpv10seq-rev10f	AAAGAAAGATGGAAACCATGAAAG	5.212 op
LR-Rpv10seq-for17a	CAAGATCCAAATCAATGCCTAAAT	-5600 hp
LR-Rpv10seq-rev17a	TTACTACATTCAGCAGGTGAAGACA	5.000 op
LR-Rpv10seq-for17b	ATGAAAGTACAGGCAGAAGGAAAG	-5.084 hp
LR-Rpv10seq-rev17b	GAAAGGATCTCAGATTGTGACAGA	5.084 op
LR-Rpv10seq-for17c	TGGAAAGAGCACTACTGAGATGAA	-5.108 bp
LR-Rpv10seq-rev17c	ATGTTTGTGAATTGCCTGAGATTA	5.100 op
LR-Rpv10seq-for17d	GAGATAGTTTCTTGAGCCGTGTCT	-5.415 hp
LR-Rpv10seq-rev17d	TGAAGCCTGGTGATATTTCTGTAA	5.415 op
LR-Rpv10seq-for17e	TCTTTGCATTTCCCTTCTAAACTC	-5420 bp
LR-Rpv10seq-rev17e	GAACCCAACATGCTATATCCTTCT	5.420 op
LR-Rpv10seq-for17f	AATCAGCCTTAGAGCCTGTACAAT	-5.814 hp
LR-Rpv10seq-rev17f	AAAGTGAGGACTGCAAGAGAAACT	5.011 0p
LR-Rpv10seq-for17g	GAGATAGTTTCTTGAGCCGTGTCT	-5609 hp
LR-Rpv10seq-rev17g	TCTCATTGATGATGAAGTTGTGAA	5.009 op
LR-Rpv10seq-for17h	CCAGTTTGGGTCTATGAAAGTACA	- 5 346 bp
LR-Rpv10seq-rev17h	ATGTTTGTGAATTGCCTGAGATTA	5.5 10 op
LR-Rpv10seq-for17i	CCAGTTTGGGTCTATGAAAGTACA	- 5.347 bp
LR-Rpv10seq-rev17i	TATGTTTGTGAATTGCCTGAGATT	5.5 T/ op
LR-Rpv10seq-for17j	TCTTTGCATTTCCCTTCTAAACTC	– 5.721 bp
LR-Rpv10seq-rev17j	TGAAGCCTGGTGATATTTCTGTAA	5.721 op
LR-Rpv10seq-for17k	CCTTCTAAACTCCACACCTGACTT	– 5.821 bn
LR-Rpv10seq-rev17k	GAACCCAACATGCTATATCCTTCT	51021 op
LR-Rpv10seq-for17l	TCTTTGCATTTCCCTTCTAAACTC	- 5.833 bn
LR-Rpv10seq-rev17l	GAACCCAACATGCTATATCCTTCT	5.655 op
LR-Rpv10seq-for19a	AATATTTCAGTAACCCAATCCCAAT	– 6 222 bn
LR-Rpv10seq-rev19a	TGGTGAAGTTCAATGTAACCCTAAT	0.222 op
LR-Rpv10seq-for19b	TTCAAATATTTCAGTAACCCAATCC	– 6.552 bn
LR-Rpv10seq-rev19b	TGGTGAAGTTCAATGTAACCCTAAT	0.002 op
LR-Rpv10seq-for19c	AAGTTAACATTGAGAACCCAAATGA	– 6.415 bn
LR-Rpv10seq-rev19c	TGAATTAGAAAGATTGTCCTTCCTG	0.112 OP

LR-Rpv10seq-for19d	AGTTAACATTGAGAACCCAAATGAA	- 6 111 hr
LR-Rpv10seq-rev19d	TGAATTAGAAAGATTGTCCTTCCTG	- 0.414 Up

Oligonukleotidpaare für Genexpressionsanalyse über qRT-PCR

Nr.	Name	Sequenz	Erwartete Fragmentlänge [bp]
2	ERF_F	AGGTCGGGGAAGTTTAGG	101
2	ERF_R	CGCGCAAGAAATCGAGAA	- 121
2	RPS5-like_RT-I_F	CGAGCGTGAGGAGCAACTA	- 145
3	RPS5-like_RT-I_R	AGGACAGGTTCCGAGACA	- 145
4	Aqua_RT-I_F	AAAGGGAAATGGGTTGAGACA	• 133
4	Aqua_RT-I_R	TGGCATGGGAGGATCTGT	
5	LRRII_RT_F	CACCAGACTTGATCGCTTAAA	- 149
3	LRRII_RT_R	TTCCATATCCTCCGTGATCTCT	- 148
(Chap_Intron5_F	AGAGCGCAAAAGCCAATA	- 166
U	Chap_Intron5_R	ACTGCCATCACCAACAAT	- 100

Tabelle 41: Oligonukleotidpaare aus Kandidatengenen für *Rpv10* (Nr. 2, 3, 4, 6) und *Rpv3* (Nr. 5)

Taballa 42. Olianandala stida sana ana	DEC: final fin C	an atom 2011 002 012	(D
Tabelle 42: Oligonukleotlupaare aus	DEG spezifisch für G	renotyp 2011-003-013	• (<i>KPV10 KPV10</i>)

Nr.	Name	Sequenz	Erwartete Fragmentlänge [bp]
7	VIT03s0038g03800_a_F	GAAGTGGAGAGCGATGGT	- 146
'	VIT03s0038g03800_a_R	AAGCCGGCCATCAATGAAA	140
0	VIT07s0151g00350_a_F	GGAGATGGAACTTGTGGTACT	- 00
0	VIT07s0151g00350_a_R	GGGTCTTTTCTGTTCTCCCATT	<u> </u>
0	VIT11s0016g03830_a_F	GCCCATTTCGCACATTTTC	- 120
9	VIT11s0016g03830_a_R	ATGCATGGAGTTCAGTAGGT	128
10	VIT05s0077g01860_a_F	ACACGTTCTTCCGAATCCT	- 144
10	VIT05s0077g01860_a_R	ACGGCGGTGATGATTTCA	
11	VIT07s0005g00820_a_F	ACGATTTGGGCCGCTTTA	146
11	VIT07s0005g00820_a_R	CGCCCATTTTCCCCAAGGA	- 140
12	VIT10s0003g00140_a_F	CTCCGCCGTATCAAAAGT	00
12	VIT10s0003g00140_a_R	AGGGGCGTTAGGAAGAGA	- 99
14	VIT15s0046g01140_a_F	GGACTTGGACAGTAGGGAGAA	126
14	VIT15s0046g01140_a_R	AGACAAAAACGACGGGGAAA	- 130

	VIT16s0013g00990 a F	GCTTATGATCGAGCTGCTTT	
15			- 128
	VIT16s0013g00990_a_R	TCACIGICICCCCCTIT	
16	VIT04s0008g07340_a_F	ATCAACCATGGCGTTACCA	- 109
10	VIT04s0008g07340_a_R	GGATTTCTCAGGCTCCAAGT	109
17	VIT08s0007g03530_a_F	AAGAGGAGGCGGCTGAAA	_ 111
1/	VIT08s0007g03530_a_R	CAGCGACCCTAAACCTTTG	— 111
10	VIT06s0009g01070_a_F	GGCCCCCAAAGTGTTGAA	125
19	VIT06s0009g01070_a_R	TCAGCCTAACCGCCCATAC	- 123
21	VIT01s0026g01880_a_F	ACAACACAACCCCAAAGC	_ 122
21	VIT01s0026g01880_a_R	CAACTGGTGACAGGACTCA	- 125
22	VIT10s0092g00710_a_F	TTTGGGCTGGTAAGGGTACT	- 106
22	VIT10s0092g00710_a_R	GATGGAGGAGGTGGCATT	
24	VIT03s0063g01460_a_F	ATGCCCCGACTTCTTCAC	146
24	VIT03s0063g01460_a_R	CCTCCACATGCCAAACTCT	- 140
26	VIT09s0002g00910_a_F	GAAATGGAACCGCCGGAAA	- 142
20	VIT09s0002g00910_a_R	ACGGCCTGCAAATACTGA	- 145
27	VIT11s0052g00450_a_F	GGACGAGCAGATGGCTAT	- 110
27	VIT11s0052g00450_a_R	AGTGGTTGATTTGCTGAGATTG	- 110
28	VIT15s0048g02540_a_F	CCAAATTGTTCTCCTGCTCAT	- 118
20	VIT15s0048g02540_a_R	TCCCATTTTTCCACAAGTTCCT	- 118
20	VIT14s0068g01370_a_F	GCCAACAACCTCCACTCAAA	
29	VIT14s0068g01370_a_R	ACATTCCGCATCCCTACCA	— 110

Tabelle 43: Oligonukleotidpaare aus DEG spezifisch für Genotyp 2008-059-020 (Rpv - / Rpv -)

Nr.	Name	Sequenz	Erwartete Fragmentlänge [bp]
20	VIT04s0008g02560_a_F	CTATGTCTCCTTCCACCAATCT	- 92
30	VIT04s0008g02560_a_R	GCTTCTCCTTGCCTTGACT	- 03
21	VIT11s0016g01830_a_F	TGTGTGGATGGCGTAGGT	- 140
51	VIT11s0016g01830_a_R	AGGAGGGTATGGGAAGGT	140
27	VIT04s0023g01660_a_F	ACAACAGCAGGAGCAACA	- 120
32	VIT04s0023g01660_a_R	GCAAGCCCATATCCCAAAG	129
24	VIT10s0042g01070_a_F	AAGACGAGGAGATACAGAGAAT	- 127
34	VIT10s0042g01070_a_R	GTTGGTGCGGAGGGAGTTA	- 137
25	VIT09s0002g02980_a_F	CAGAAAGCGTCATCAATCGTA	115
35	VIT09s0002g02980_a_R	AACCCAGTTTCGGCATCA	- 115
36	VIT06s0004g03650_a_F	GGGTGCAGTTGATTTTTTGGT	112

	VIT06s0004g03650_a_R	GCCACTTTCGCTCCCACTA	
27	VIT14s0036g01450_a_F	CCCAGTACCGCCCATTAGAA	146
37	VIT14s0036g01450_a_R	GCAGCTCCAAATCCTCTCA	- 140

Tabelle 44: Oligonukleotidpaare aus DEG spezifisch für Genotyp 2008-059-121 (Rpv3 / Rpv10)

Nr.	Name	Sequenz	Erwartete Fragmentlänge [bp]
20	VIT01s0011g01490_a_F	GAAAGCGTGCAGATGGAT	00
38	VIT01s0011g01490_a_R	TGCGCCTGTGTTCTGAAT	- 90
20	VIT01s0011g06080_a_F	CGGCTAGGAAGAAAATGGT	1.4.2
39	VIT01s0011g06080_a_R	GGTGGATCGCATGGTGAA	- 143
42	VIT09s0002g03680_a_F	AGACGCTACACTGCTGATAAA	120
42	VIT09s0002g03680_a_R	GCCTGCAACACAATGGAT	- 139
42	VIT01s0026g01550_a_F	TCCACCAACACCTTCAAAGTT	102
43	VIT01s0026g01550_a_R	ACACTTCCCTCTCCTTCAG	- 102
4.4	VIT06s0004g07500_a_F	TCGTCTCTGGGCTCTTCT	1.4.1
44	VIT06s0004g07500_a_R	AGCACCCTTCACGCTAGA	- 141
45	VIT07s0005g02570_a_F	TGCCCTCGTGCCTACTAT	120
45	VIT07s0005g02570_a_R	GAGGGAGAGGGGTGATTATGATT	- 130
16	VIT08s0105g00230_a_F	GGTGAGCCCTGTTTGTTTG	- 116
40	VIT08s0105g00230_a_R	AGAGAGGATTGCCTGAAAGAT	
47	VIT14s0030g02200_a_F	CTCACAGGCTTCCAAAACTT	140
41/	VIT14s0030g02200_a_R	CCCCAGCTTTCTTTTGCAT	- 140
40	VIT07s0031g02510_a_F	AGCCCTTGTGTTACCTACATT	121
49	VIT07s0031g02510_a_R	CAGCTGTGAGAGGATGTGA	- 151
50	VIT12s0057g00420_a_F	ATGGCATGGTGGTAGATGT	_ 111
30	VIT12s0057g00420_a_R	CGTTGGCATCACCCTTTTC	- 111
51	VIT13s0084g00850_a_F	GTTTTGGAGGGGGGACGAT	- 115
51	VIT13s0084g00850_a_R	AACTTTGCTGGAGGTTGGA	115
54	VIT03s0063g01060_a_F	CAACCTGCATGAGTTCTCTAA	- 119
34	VIT03s0063g01060_a_R	GCCCGGAAGCAAAGAAGA	- 110
55	VIT04s0079g00410_a_F	CGAAGAAGGCCAAGGGAAA	- 144
33	VIT04s0079g00410_a_R	CAGCAGCAGTTAAAGAATGAG	144
56	VIT08s0007g07580_a_F	GGTATTTTCCTTGTGCTTCGAT	
50	VIT08s0007g07580_a_R	TGAGCAGCCCCAACATTG	- 144

61	VIT06s0009g01180_a_F	CTGCCAGCACCCTGATTT	- 116
	VIT06s0009g01180_a_R	GGGCTCACCAATCTGCTT	
62	VIT08s0056g00690_a_F	GCTGCAGACCCCTGATTA	- 110
	VIT08s0056g00690_a_R	CCGAACACCCACTACACAAA	
63	VIT09s0002g01080_a_F	ATTGGGAGGAATGTTGTTCTTG	- 120
	VIT09s0002g01080_a_R	CTCGGCTTTGATGTTTGTTT	
64	VIT16s0022g01330_a_F	TGGTTGGAGGATGGTTTGG	- 115
	VIT16s0022g01330_a_R	GCAAGGTTAGTTTCATGAGGTT	
65	VIT16s0100g00810_a_F	AGTTGGAAGAGTGGTCGTT	- 122
	VIT16s0100g00810_a_R	CGTGGGCCTTCAGAAAAT	
	VIT12s0028g01350_a_F	TGGTTGCAGCTTTGATTTGT	- 142
00	VIT12s0028g01350_a_R	GTTGCGGTAGTTCTTGTTCTT	
-	VIT14s0068g00110_a_F	TTCGGAAAAGGGCGAGCTA	- 121
07	VIT14s0068g00110_a_R	GGCTGTGAGGGGGAAATGAGT	
(0)	VIT09s0018g01190_a_F	AGCCTGTGGAACTCGAAT	- 76
00	VIT09s0018g01190_a_R	CGGAAGGGCGGTAAAAGT	
(0)	VIT15s0046g01190_a_F	CCCGAAAGCGACGAATAG	- 97
09	VIT15s0046g01190_a_R	GATAAAGAGGGAGTCGGAGATG	
71	VIT01s0026g02550_a_F	GTGCTTCCGTTTCTCTTTCTT	- 104
/1	VIT01s0026g02550_a_R	ACTTCCATGGCTCCTACATT	
72	VIT04s0023g01020_a_F	TTCCTCCACCATGGGTTTC	- 144
/3	VIT04s0023g01020_a_R	TCCTGGCTTTTTGAGCACTT	
74	VIT05s0020g03060_a_F	TATGCCACCGCTTTTTTGTT	- 102
/4	VIT05s0020g03060_a_R	GCTGTGTTTCCTCGGACTT	
77	VIT15s0021g02690_a_F	ACTGACCATTCTCCCATGT	- 82
//	VIT15s0021g02690_a_R	CTCCGTTCTCACTCCAATTC	
79	VIT18s0001g08090_a_F	AGACCCCTCCTAACCATACT	- 149
/0	VIT18s0001g08090_a_R	CCCTGCTTTTCCGTCTACTT	
70	VIT16s0098g00900_a_F	GTGGCTTCGACCTTCTGTT	- 142
19	VIT16s0098g00900_a_R	GTGCAGCTGACTTTCTTGTT	
80	VIT05s0020g00760_a_F	AGGATGCCCGCTCTATTT	- 146
00	VIT05s0020g00760_a_R	TTGGACAGCACGCAAGGA	
01	VIT08s0007g00710_a_F	TGTGCCTGGTCCTTCCTT	- 115
81	VIT08s0007g00710_a_R	CTGCCTTCCCAATTTTCTTCTC	
07	VIT16s0013g00350_a_F	ACAGTCCACGCAATCATCA	- 90
85	VIT16s0013g00350_a_R	CCCCACACAAAAGGATGTC	
84	VIT17s0000g04520_a_F	GCGGTTGATGATCGTTGTT	141

	VIT17s0000g04520_a_R	GATGGAACGGGCACAGTA	
85	VIT14s0083g01010_a_F	CCTGAAAGGTGTGCTGAGT	
	VIT14s0083g01010_a_R	GTCGAAGGAGCAGCTGAA	92
86	VIT15s0048g02070_a_F	CTCCGGCACCTTCATTCTT	00
	VIT15s0048g02070_a_R	CCGGAGAGCTACTTGCAT	

Tabelle 45: Oligonukleotidpaare aus gemeinsamen DEG aller drei Genotypen

Nr.	Name	Sequenz	Erwartete Fragmentlänge [bp]
88	VIT01s0011g03010_a_F	CGAAGAACGGAAGCAAGAG	- 120
	VIT01s0011g03010_a_R	GGCAAAATCAGGAACAAAGCA	
89	VIT05s0136g00140_a_F	CTGGAGTGCGGATCAAAT	— 106
	VIT05s0136g00140_a_R	GTCGGGGGATCTGGTAAATGT	
90	VIT07s0031g03210_a_F	AGGGGTGGTTCTTGATTTCTT	— 71
	VIT07s0031g03210_a_R	GCTTCTTTCCCGCATTTTTGT	
01	VIT08s0058g01450_a_F	GGAAGAAAGGCCACAGAAGA	122
91	VIT08s0058g01450_a_R	CCACTCCTCAAAATCACCACAT	- 155
	VIT13s0067g03210_a_F	GCACAGGATCGGTTTTCC	— 148
92	VIT13s0067g03210_a_R	CGCCACCAACTCTAATAACT	
02	VIT17s0000g06610_a_F	TGGTGCTTCCTCTTCTGGTT	- 135
95	VIT17s0000g06610_a_R	CGATTGCCCTTCTTTACGAGAT	
94	VIT17s0000g07520_a_F	TCCCCACCCTCCTTATCAC	- 119
	VIT17s0000g07520_a_R	CACAACAGATCTCACTCCTTAC	
05	VIT18s0001g07690_a_F	CTTTGTGGCCTCCTCCTT	- 133
95	VIT18s0001g07690_a_R	TAAAGTGGGGCGAGTGGAT	
07	VIT01s0011g05970_a_F	AGGGCCAGGATAAGCAAAA	- 128
97	VIT01s0011g05970_a_R	CTGTGTGAGTGCATTTCTGT	
98	VIT11s0016g02210_a_F	CAGCCCAACTAAGGAGCAA	- 104
	VIT11s0016g02210_a_R	CATATGATCCACCCCGGAAA	
99	VIT17s0000g06860_a_F	AGACCCGCCCAATAACAG	- 91
	VIT17s0000g06860_a_R	GCCAATCCTAACTTCTCTCTCT	
100	VIT19s0090g00410_a_F	TGACACAGGACCCACAGAA	- 92
100	VIT19s0090g00410_a_R	CTATTGGCTTGTCTGATGCTT	
102	VIT11s0016g01300_a_F	CCTGCAACTTTTCCCACAT	— 137
103	VIT11s0016g01300_a_R	CAAAGGAGGGCTTGAACAGA	
105	VIT15s0046g02930_a_F	AGGAACTGGGAGGAAGCA	- 86
	VIT15s0046g02930_a_R	CGGTGATGACATGTGGAGTAAA	

106	VIT15s0048g02410_a_F	AAATCATGTGGAGGAGAAAAGC	- 116
	VIT15s0048g02410_a_R	AGCACCAGCATCCTTAATGAA	
107	VIT07s0005g03260_a_F	AGAGCCCACACCTAACAAGA	- 124
	VIT07s0005g03260_a_R	ACCAAGCCACACCCTTAC	
108	VIT17s0000g08720_a_F	AATGACGGCACAGCAAAAA	- 102
	VIT17s0000g08720_a_R	ACCAAGGAAAGCGAGCAA	
109	VIT09s0002g03440_a_F	GGGGCATGGAACATATGG	- 83
	VIT09s0002g03440_a_R	CATCATCACTAGCCGCATAAC	
111	VIT19s0085g00550_a_F	GGATGGTGAAGCTTTGAGAGA	- 134
111	VIT19s0085g00550_a_R	GGAAAATGGAGGGGATCAGA	
112	VIT10s0003g04540_a_F	CCATGCTCTCCGTCTTCT	- 145
112	VIT10s0003g04540_a_R	GCACCACCAATCACGTATTC	
110	VIT13s0064g00860_a_F	GGTGCCGAGATTCATGAAG	- 130
115	VIT13s0064g00860_a_R	GAGGAGCCTGTTTATGTGAATG	
114	VIT18s0001g11800_a_F	CTCCTCCACCATGGGTTT	- 112
114	VIT18s0001g11800_a_R	AAGCGACGCAGATAAGCA	
116	VIT08s0007g08050_a_F	ACATCCTGAGCCTCCATT	- 142
	VIT08s0007g08050_a_R	CCCCCATATCCAGTGCTA	
117	VIT08s0105g00300_a_F	GACCACCTCAAGCCAGAT	- 82
	VIT08s0105g00300_a_R	ACTCAGGGACAAACAGCATA	
118	VIT13s0175g00080_a_F	CGCCTCTCTAAACCCCATAC	- 148
	VIT13s0175g00080_a_R	CCGCCTGGAAGAAATGAT	
119	VIT02s0154g00320_a_F	AGCACACACACCCAACTT	- 142
	VIT02s0154g00320_a_R	TGCCCTAAACCTCCTCTTCT	

Ergebnisse der validierenden Genexpressionsanalyse über qRT-PCR

Tabelle 46: Ergebnisse der validierenden Genexpressionsanalyse über qRT-PCR von DEG aus der RNA-Seq-Analyse. 100 % bildet den Nullpunkt und bedeutet keine Expressionsänderung. Die aufgetragenen Werte ergaben sich aus der Differenz zwischen den Expressionswerten der *P. viticola*-Inokulation und der Behandlung mit Wasser als Kontrolle. Die Legende befindet sich am Anfang der Tabelle. 2008-059-121 trägt *Rpv3* und *Rpv10*. 2011-003-013 trägt *Rpv10* homozygot. 2008-059-020 besitzt keinen der beiden Loci. * = y-Achse ist logarithmisch skaliert.

LXIII

LXIV

LXIX

Danksagungen

Ich danke allen, die mir bei der Erstellung dieser Arbeit geholfen haben:

- Apl. Prof. Dr. Eva Zyprian für die Betreuung des Projekts und der Promotion, für die Übernahme der Erstkorrektur und die stete Unterstützung bei Fragen und Problemen
- Dir. und Prof. Dr. Reinhard Töpfer für die Möglichkeit, diese Arbeit am Institut für Rebenzüchtung Geilweilerhof durchführen zu können und die fruchtbaren Diskussionen und Anregungen
- Prof. Dr. Peter Nick für die Übernahme der Zweitkorrektur und die gute Zusammenarbeit im Rahmen des Projekts
- Dr. Florian Schwander für die gute Einarbeitung in das Projekt, seine ständigen Hilfestellungen und praktischen Ratschläge
- Dr. Ludger Hausmann für die Bereitstellung von Sequenzinformationen
- Dr. Rudolf Eibach und Sabine Hieb-Gläßgen für die Unterstützung bei den *P. viticola*-Inokulationsversuchen
- Dr. Anna Kicherer, Pierre Schneider, Daniel Zendler, Anna Werner, Robert Richter und Franco Röckel für die vielfältige Unterstützung im Labor sowie die vielen Denkanstöße
- Margit Schneider, Heike Bennek, Sarina Elser, Andreas Preiß und allen anderen Mitarbeiterinnen und Mitarbeitern im Labor für die Hilfe bei kleineren und größeren Problemen sowie das angenehme Arbeitsklima
- Eberhard Corfier und seinem Team für die Anzucht und Pflege der Versuchspflanzen
- Claudia Welsch für die Bestellung und Bereitstellung von Materialien sowie Ulla Müller bei EDV-Fragen aller Art
- Dr. Werner Köglmeier und seinen Mitarbeiterinnen für die schnelle Beschaffung von Literaturwünschen
- Sabine Martin, Anita Heck und allen Mitarbeiterinnen in der Verwaltung für die vielfältige Hilfe bei verwaltungstechnischen Fragen
- Den Mitarbeiterinnen und Mitarbeitern des Instituts für Pflanzenschutz in Obstund Weinbau für die vielfältige Unterstützung

Außerdem möchte ich vor allem meinen Eltern Gabi und Hubert Dudenhöffer sowie meiner Schwester Lisa für die Unterstützung und ihr Verständnis bei der Erstellung dieser Arbeit danken. Ohne sie wäre das alles nicht möglich gewesen.

Mein besonderer Dank gilt Denise für ihr großes Verständnis und ihre ständige Unterstützung und Motivation in allen Situationen.

