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ABSTRACT
Background. Physostegia chlorotic mottle virus (PhCMoV; genus: Alphanucleorhab-
dovirus, family: Rhabdoviridae) and tomato brown rugose fruit virus (ToBRFV; genus:
Tobamovirus, family: Virgaviridae) are newly emerging plant viruses that have a
dramatic effect on tomato production. Among various known virus-control strategies,
RNAi-mediated defence has shown the potential to protect plants against various
pathogens including viral infections. Micro(mi)RNAs play a major role in RNAi-
mediated defence.
Methods. Using in silico analyses, we investigated the possibility of tomato-encoded
miRNAs (TomiRNA) to target PhCMoV and ToBRFV genomes using five different
algorithms, i.e., miRanda, RNAhybrid, RNA22, Tapirhybrid and psRNATarget.
Results. The results revealed that 14 loci on PhCMoV and 10 loci on ToBRFV can
be targeted by the TomiRNAs based on the prediction of at least three algorithms.
Interestingly, one TomiRNA, miR6026, can target open reading frames from both
viruses, i.e., the phosphoprotein encoding gene of PhCMoV, and the two replicase
components of ToBRFV. There are currently no commercially available PhCMoV-
or ToBRFV-resistant tomato varieties, therefore the predicted data provide useful
information for the development of PhCMoV- and ToBFRV-resistant tomato plants.

Subjects Bioinformatics, Computational Biology, Genomics, Plant Science, Virology
Keywords miRNA, Alphanucleorhabdovirus, Tobamovirus, PhCMoV, ToBRFV, Resistance,
Transgenes, RNA interference, Solanum lycopersicum

INTRODUCTION
Tomato (Solanum lycopersicum) is an economically important vegetable crop for human
consumption as a fresh crop and as an ingredient in many prepared foods; it is also used as
a model in fundamental research areas such as plant growth and fruit development (Hobson
& Grierson, 2012). The production of tomato continues increasing worldwide. They are
grown as annuals and as facultative perennial plants (Rick, 1974). The tomato genome
possesses a haploid set of 12 chromosomes, and the genome of tomato was sequenced in
2012 (The Tomato Genome Consortium, 2012).
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Tomato production is hampered by different pathogens including fungi, nematodes
and viruses (Moriones & Navas-Castillo, 2000; Kiss et al., 2001; Zia et al., 2014). Several
viruses from different families affect tomatoes worldwide and are responsible for serious
yield losses. Viruses can cause a wide range of symptoms including marbling of fruits,
leaf distortion and deformation, mosaic and stunting. Important tomato viruses include
tomato yellow leaf curl virus (TYLCV; genus: Begomovirus, family: Geminiviridae), pepino
mosaic virus (PepMV; genus Potexvirus, family Alphaflexiviridae), tobamoviruses (family:
Virgaviridae), e.g., tobacco mosaic virus (TMV) and tomato mosaic virus (ToMV), tomato
spotted wilt virus (TSWV; genus: Tospovirus, family: Peribunyaviridae), tomato torrado
virus (ToTV; genus:Torradovirus, family: Secoviridae), criniviruses (family:Closteroviridae)
i.e., tomato chlorosis virus (ToCV) and tomato infectious chlorosis virus (TICV) and
cucumber mosaic virus (CMV; genus: Cucumovirus, family: Bromoviridae), amongst others
(Best, 1968; Pelham, 1972; Broadbent, 1976; Jordá, 1992; Duffus, Liu & Wisler, 1996; Wisler
et al., 1998; Moriones & Navas-Castillo, 2000; Verbeek et al., 2007; Hanssen & Thomma,
2010). Tomato viruses are transmitted by different means such as fungi, insects (by
aphids, thrips, whiteflies, leafhoppers and treehoppers), or mechanically by tools or human
handling of crops whereas seed transmission is also possible for some viruses (Sakimura,
1962; Amari et al., 2008; Alfaro-Fernandez, 2010; Hanssen et al., 2010; Jeger et al., 2017; Ong
et al., 2020).

Recently, two new viruses were discovered that cause severe symptoms on tomato
plants i.e., Physostegia chlorotic mottle virus (PhCMoV; genus: Alphanucleorhabdovirus,
family: Rhabdoviridae) and tomato brown rugose fruit virus (ToBRFV; a tobamovirus)
(Salem et al., 2016;Gaafar et al., 2018). PhCMoVwas first detected in Physostegia virginiana
from Austria (Menzel et al., 2016). PhCMoV was found to infect tomatoes in Germany
causing severe fruit marbling (Gaafar et al., 2018). The virions of PhCMoV are bacilliform
containing (-ve) ssRNAs. PhCMoV’s genome consists of seven open reading frames (ORF)
which are predicted to encode the nucleocapsid [N], phospho- [P], movement [Y], matrix
[M], glyco- [G], RNA dependent RNA polymerase/large [L] proteins, and the X protein
(with unknown function) (Fig. 1). Although PhCMoV can be transmitted mechanically,
its natural dispersal pathways are currently unknown.

ToBRFV was reported from several countries in the Middle East, Europe, America
and China (Salem et al., 2016; Alkowni, Alabdallah & Fadda, 2019; Ling et al., 2019; Menzel
et al., 2019; Panno, Caruso & Davino, 2019; Yan et al., 2019). The virions of ToBRFV are
rod-shaped, and their genome consists of (+ve) ssRNA with four ORFs that encode the
large (LC) and the small (SC) replicase components ‘‘subunits’’ as well as the movement
(MP) and the capsid (CP) proteins (Fig. 1).

Plant viruses are unique amongst plant diseases in a way that once an infection has taken
place, no cure is available. The control of viral vectors, e.g., insects or fungi, by pesticides is
often not effective to control the virus disease. Additionally, many viruses are transmitted
mechanically, thus requiring strict hygiene measures to prevent virus outbreaks. Although
the use of virus-resistant varieties is the preferred and most successful way to prevent virus
induced crop losses, not many commercial virus-resistant tomato varieties are available.
Resistance is limited to a few numbers of viruses including TMV, ToMV, TSWV and
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Figure 1 Genomic organization of (A) Physostegia chlorotic mottle virus (PhCMoV; KY859866) and
(B) tomato brown rugose fruit virus (ToBRFV; NC_028478). The open reading frames are shown in yel-
low. PhCMoV; N, nucleocapsid, X, hypothetical protein with unknown function; P, phosphoprotein; Y,
movement protein; M, matrix protein; G, glycoprotein and L, Large protein/RNA dependent RNA poly-
merase. ToBRFV; R (LC), replicase large component ‘‘subunit’’; R (SC), replicase small component; MP,
movement protein and CP, capsid protein.

Full-size DOI: 10.7717/peerj.10096/fig-1

TYLCV (Reimer Seeds, 2020a; Reimer Seeds, 2020b; Reimer Seeds, 2020c). Currently, there
are no PhCMoV- and ToBRFV-resistant tomato varieties available.

Plant microRNAs (miRNAs) are endogenous non-coding small RNAs of 21 to 24
nucleotides in length (Jin et al., 2013). Their precursor RNAs have hairpin-like secondary
structures (Starega-Roslan et al., 2011). miRNA precursors are processed by Dicer-like
(DCL) enzymes and converted into mature miRNAs (mat-miRNAs) (Wang et al., 2018b).
The mat-miRNAs join the RNA-induced silencing complex (RISC) which binds and
suppresses the target transcripts at transcriptional or post-transcriptional levels (Baulcombe,
2004; Rogers & Chen, 2013; Borges & Martienssen, 2015). Together with small interfering
RNAs (siRNAs), they are part of the plant small RNAs (sRNAs) that are involved in the
cytoplasmic pathways of RNA silencing (Fang & Qi, 2016; Wang et al., 2018b). Thus, they
can regulate the growth, development, genome stability and response of plants to both
biotic and abiotic stresses (Jin et al., 2013).

Transgenic plants expressing artificial microRNAs (amiRNAs) have successfully been
used to provide tolerance or resistance to virus infections caused by begomo-, cucumo- and
orthotospoviruses (Zhang et al., 2011; Ali et al., 2013; van Vu, Choudhury & Mukherjee,
2013; Mitter et al., 2016). For example, transgenic tomato plants expressing amiRNAs
targeting the transcripts of the pre-coat and coat proteins encoding sequences of tomato
leaf curl New Delhi virus (ToLCNDV) showed tolerance to the virus infection (van Vu,
Choudhury & Mukherjee, 2013). Moreover, transgenic tomato plants expressing amiRNAs,
targeting the 2a and 2b genes and the 3′ untranslated conserved region of CMV, displayed
effective resistance to CMV infection, and CMV in mixed infections with non-targeted
viruses, including TMV and TYLCV (Zhang et al., 2011).

Plant miRNA-mRNA binding depends on a high quality match between the target
sequence and the miRNA (Witkos, Koscianska & Krzyzosiak, 2011). Computational tools
are available that predict several miRNA target sites within virus sequences (Pradhan et
al., 2015; Iqbal et al., 2016; Iqbal et al., 2017; Jabbar et al., 2019). To study the possible
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Table 1 List of plant microRNA target prediction tools used in this study and their parameters.

Tool Parameters Reference/source

miRanda Score threshold = 140, energy threshold =−20 kcal/mol Enright et al. (2003)
Run on Galaxy server: https://usegalaxy.eu/

RNAhybrid The E-value was set to−20 kcal/mol, and the remainder of
the parameters were set to default

Srivastava et al. (2014)
https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/

RNA22 Minimum number of paired-up bases was kept to 12 while
the maximum folding energy was kept at−14 kcal/mol

Miranda et al. (2006)
https://cm.jefferson.edu/rna22/Interactive/

Tapirhybrid Score <= 8 and mfe_ratio >= 0.5 Bonnet et al. (2010)
http://bioinformatics.psb.ugent.be/webtools/tapir/

psRNATarget Minimum expectation score= 7.0, extending gap= 0.5,
opening gap= 2, G.U pair= 1, other mismatches= 1, HSP
size=19, seed region= 2–7 nucleotides.

Dai, Zhuang & Zhao (2018)
http://plantgrn.noble.org/psRNATarget/analysis?function=
3

interactions between tomato miRNAs (TomiRNA) and the PhCMoV and ToBRFV
genomes, we used five different bioinformatic algorithms to predict the TomiRNA binding
to the PhCMoV and ToBRFV genome sequences. Their analyses provide useful information
to aid the development of PhCMoV- and ToBRFV-resistant tomato plants using amiRNA.

MATERIALS & METHODS
Sources and data retrieving
The available full genome sequences of different Physostegia chlorotic mottle virus isolates
(PhCMoV; accession no. KX636164, KY706238, KY859866 and MK948541) as well as
tomato brown rugose fruit virus isolates (ToBRFV NC_028478, KX619418, MN013187,
MN013188, MK133095, MK165457, MN167466, MK133093, MK648157, MN182533 and
MK319944) were obtained from NCBI GenBank. A total of 147 tomato (S. lycopersicum;
sly) mature miRNA sequences (TomiRNA; commonly called sly-miRNA) were obtained
from miRBase website (http://www.mirbase.org/) and used for this study (Table S1).

In silico microRNA target prediction analyses
For each virus, the retrieved sequences were aligned using MUSCLE tool [maxiters=16]
(Edgar, 2004; Cuccuru et al., 2014) on Galaxy server (https://usegalaxy.eu/). The generated
consensus sequences were visualized on Geneious Prime (2020.1.2) and open reading
frames were predicted using Find ORFs tool. The generated consensus sequences of
both viruses were used for further analyses. To predict the TomiRNA target sites, five
different bioinformatic tools were used, i.e., miRanda, RNAhybrid, RNA22, Tapirhybrid
and psRNATarget (Enright et al., 2003; Krüger & Rehmsmeier, 2006; Miranda et al., 2006;
Bonnet et al., 2010; Srivastava et al., 2014;Dai, Zhuang & Zhao, 2018). The parameters used
for each tool are shown in Table 1. The precursor of the potential microRNAs (pre-miRNA)
were folded using RNAfold (Gruber et al., 2008; Lorenz et al., 2011).

Statistical analysis
TomiRNA predicted data obtained from all the five bioinformatic tools were analysed using
scripts written on R statistical software (R Core Team, 2013). For graphical representation
of the result, ggplot2 and limma packages were used (Ritchie et al., 2015;Wickham, 2016).
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RESULTS AND DISCUSSION
In the last years, two emerging viruses, i.e., PhCMoV and ToBRFV, have affected the
production of tomatoes in Europe and worldwide, respectively. There are currently no
known tomato varieties resistant to these viruses, thus alternative solutions are required,
e.g., the production of transgenic plants.

Plant viruses can be targeted by host plant miRNAs (Chen, 2011). In recent years,
endogenous miRNAs as important regulators of gene expression have also been used
in functional genetic studies and for crops genetic improvement (Sablok et al., 2011).
Moreover, amiRNA is used as a gene regulation strategy, designed to target e.g., pathogen
genes. Transgenic plants producing amiRNA were shown to be resistant or tolerant to viral
infection (Zhang et al., 2011; Ali et al., 2013). By using computational approaches, we can
predict host miRNA targeting sites within the genome of the viruses, thus helping us to
choose possible candidates prior to engineering or transformation (Xia, Cao & Shao, 2009;
Witkos, Koscianska & Krzyzosiak, 2011; Peterson et al., 2014; Iqbal et al., 2017).

Various miRNA target prediction and identification algorithms have been investigated
for their accuracy and efficiency (Bartel, 2009; Xia, Cao & Shao, 2009; Witkos, Koscianska
& Krzyzosiak, 2011; Srivastava et al., 2014). We selected five different bioinformatic
algorithms (miRanda, RNAhybrid, RNA22, Tapirhybrid and psRNATarget) for this study
based on their performance and we used the recommended parameters for the folding
energy, seed pairing, target site accessibility and pattern recognition, and ensuring the
minimum free energy (MFE) exceeding the threshold standards (Enright et al., 2003;Krüger
& Rehmsmeier, 2006; Miranda et al., 2006; Bonnet et al., 2010; Srivastava et al., 2014; Iqbal
et al., 2016; Iqbal et al., 2017; Dai, Zhuang & Zhao, 2018; Jabbar et al., 2019). Therefore,
the approach used here allowed a low number of mismatches in miRNA binding sites, to
reduce most of the falsely predicted target loci.

These five algorithms were developed to identify small RNAs’ target loci by different
approaches. miRanda considers for the prediction: the sequence complementarity, free
energy of miRNA-target duplex and the cross-species conservation of the target site
(John et al., 2004). It can also predict multiple target loci (John et al., 2004). RNAhybrid
analyses the loci sequence complementarity, target-site abundance and the MFE (Krüger &
Rehmsmeier, 2006). RNA22 identifies the target loci by implementing a different approach
i.e., the pattern-based approach and the folding energy (Miranda et al., 2006). It does
not rely on cross-species conservation (Miranda et al., 2006). Moreover, its algorithm
analyses the target sequence for putative miRNA binding sites then defines the targeting
miRNAs (Miranda et al., 2006). Tapirhybrid is a highly recommended plant miRNA target
prediction tool due to its precise algorithm (Bonnet et al., 2010; Srivastava et al., 2014).
It considers seed pairing, target site accessibility and multiple target sites (Bonnet et al.,
2010). psRNATarget analyses complementary matching between the miRNA sequence and
target sequence using a scoring schema and evaluates target site accessibility (Dai, Zhuang
& Zhao, 2018). The analytical performance of psRNATarget is enhanced by the developing
of its new scoring schema that is able to discover miRNA-target interactions at higher rates
(Dai, Zhuang & Zhao, 2018).
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The five algorithms identified possible target sites for TomiRNAs within the genomes
of the two viruses. All TomiRNAs used in this study can target the genome of one or both
viruses as predicted by at least one tool (Table S1).

TomiRNAs’ target loci on Physostegia chlorotic mottle virus genome:
Out of the 147 mature TomiRNAs, miRanda predicted that 38 TomiRNAs target 49 loci
on PhCMoV genome (Fig. 2A). RNAhybrid predicted that 145 TomiRNAs target 145 loci
(Fig. 2B), RNA22: 74 TomiRNAs and 170 loci (Fig. 2C), Tapirhybrid: 41 TomiRNAs and
46 loci (Fig. 2D), and psRNATarget: 107 TomiRNAs and 226 loci (Fig. 2E). Table 2 shows
the number of locations targeted by the TomiRNAs by the five different algorithms used
in this study.

Only 14 TomiRNAs have common loci on the PhCMoV genome as predicted by at least
three algorithms (Fig. 2F). Four out of the seven predicted genes of PhCMoV, i.e., P, M,
G and L, are targets by TomiRNAs as identified by at least three algorithms (Fig. 2F). For
the genes N, X and Y, only two or less algorithms were able to predict miRNA targets.
Eight TomiRNAs are targeting the L gene sequence, i.e., miR396a-5p (nucleotide [nt]
start position 7925), miR164b-3p (8494), miR482a (8611), miR5300 (9285), miR168a-3p
(9878), miR1916 (10935), miR477-3p (11628) and miR166c-5p (11956). Two TomiRNAs
are targeting theMgene, i.e.,miR408 at 4929 andmiR1918 at 5058, and two are targeting the
G gene i.e., miR394-5p at 6486 and miR10541 at 6874 (Fig. 2F). miR6026 is only targeting
the P gene at nt position 2663 and miR5303 is targeting the 5′ end at nt position 13248
(Fig. 2F). The predicted folding structures of the precursor miRNAs targeting PhCMoV
are shown in Fig. S1. Multiple alignments of the available whole genome sequences of both
viruses on NCBI showed high conservation among the different isolates at the locations
targeted by these TomiRNAs (Table S2).

TomiRNAs’ target loci on tomato brown rugose fruit virus genome:
Out of the 147 mature TomiRNAs, miRanda predicted that 14 TomiRNAs are targeting 15
loci on ToBRFV genome (Fig. 3A). RNAhybrid predicted 142 TomiRNAs targeting 142 loci
(Fig. 3B), RNA22: 41 TomiRNAs and 52 loci (Fig. 3C), Tapirhybrid: 27 TomiRNAs and
30 loci (Fig. 3D), and psRNATarget: 75 TomiRNAs and 109 loci (Fig. 3E). All the different
regions of ToBRFV are predicted to be targets of TomiRNAs by at least one algorithm
(Table 2).

Eleven TomiRNAs have common loci on the ToBRFV genome that were confirmed by
three algorithms (Fig. 3F). Most of the predicted locations are on the shared nt sequence of
the replicase genes R (LC) and R (SC) (Fig. 3F). These locations are targeted by miR10528
at loci (start positions 659 and 1734), miR399b (1024), miR391 (2213), miR6026 (2332),
miR171-3p (2484), miR319c-3p (2755) and miR10536 (3009). miR1919a, b and c-3p are
predicted to target the same position (starts at nt 4898) on the R (LC) gene sequence (Fig.
3F). The MP gene sequence is targeted by miR482c at position 5301 (Fig. 3F). For the CP
gene, only one or two algorithms were able to predict TomiRNA target loci at all. The
predicted folding structures of the precursor miRNAs targeting both viruses are shown
in Fig. S2. Multiple alignments of the available whole genome sequences of ToBRFV on

Gaafar and Ziebell (2020), PeerJ, DOI 10.7717/peerj.10096 6/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.10096#supp-3
http://dx.doi.org/10.7717/peerj.10096#supp-5
http://dx.doi.org/10.7717/peerj.10096#supp-4
http://dx.doi.org/10.7717/peerj.10096#supp-6
http://dx.doi.org/10.7717/peerj.10096


Figure 2 Predicted target sites of tomato’s miRNAs on the genome of PhCMoV using miRanda (A),
RNAhybrid (B), RNA22 (C), Tapirhybrid (D), psRNATarget (E) and (F) shows the common loci pre-
dicted by at least three miRNA target prediction algorithms. The genes are highlighted as follow; N (light
blue), X (violet), P (yellow), Y (blue), M (grey), G (green) and L (orange), and the 3′and 5′-UTRs (white).

Full-size DOI: 10.7717/peerj.10096/fig-2

NCBI showed that the loci targeted by these TomiRNAs are highly conserved among the
different isolates (Table S2).
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Table 2 The numbers of TomiRNA predicted to target each gene/regions of PhCMoV and ToBRFV.

Virus Region Prediction tools

miRanda RNAhybrid RNA22 Tapirhybrid psRNATarget

3′ 0 0 5 1 4
N 9 13 16 1 25
X 0 1 0 0 3
P 3 6 18 4 13
Y 3 9 11 5 18

PhCMoV M 2 13 8 2 19
G 1 13 21 7 34
L 30 86 87 24 92
5′ 1 2 3 1 2
UTRs a 0 2 1 1 16
5′ 0 0 0 0 2
R (LC) 13 121 34 28 84
R (SC) 9 96 20 20 58
MP 2 12 8 2 16
CP 0 4 6 0 6
3′ 0 5 4 0 1

ToBRFV

UTRs 0 0 0 0 0

Notes.
PhCMoV: N, nucleocapsid; X, hypothetical protein with unknown function; P, phosphoprotein; Y, movement protein; M, matrix protein; G, glycoprotein and; L, Large
protein/RNA dependent RNA polymerase.
ToBRFV: R (LC), replicase large component subunit; R (SC), replicase small component; MP, movement protein and; CP, capsid protein.

aUTRs, untranslated regions between coding sequences.

About the best TomiRNA candidates targeting PhCMoV and ToBRFV
genomes:
The 147 TomiRNAs used in this study can target different loci on the genomes of PhCMoV
and ToBRFV as predicted by at least one algorithm. Of these loci, only 14 PhCMoV and
10 ToBRFV loci are supported by at least three algorithms, and have strong sequence
complementarity, thus representing the best candidates. These candidate miRNAs were
found to be involved in regulating plant genes expression and in biotic and abiotic stresses
response.

miR164b-3p targets genes encoding stress-associated proteins and is suggested to be
involved in the calcium ion homeostasis (Zhao et al., 2017). It was expressed in a drought-
tolerant introgression line and was repressed by salt treatment (Liu et al., 2017; Xie et al.,
2017; Zhao et al., 2017). Using RNA sequencing, miR166c-5p was significantly down-
regulated in a drought-tolerant tomato introgression line, and in tomato leaf curl virus
(ToLCV)-infected tomato (Liu et al., 2018; Tripathi et al., 2018). miR168a-3p regulates the
expression of the ethylene receptor (Wang et al., 2017b; Wang et al., 2017a). miR168a-3p
was repressed under drought stress, up-regulated in ToLCV-resistant tomato cv LA1777
and accumulated in potato virus Y (PVY)-infected tomato plants (Liu et al., 2018; Tripathi
et al., 2018; Prigigallo et al., 2019). miR171b-3p was predicted to target SGN-E745132, an
uncharacterized protein coding gene (Feng et al., 2014). In PVY-infected tomato plants,
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Figure 3 Predicted target sites of tomato’s miRNAs on the genome of ToBRFV using miRanda (A),
RNAhybrid (B), RNA22 (C), Tapirhybrid (D), psRNATarget (E) and (F) shows the common loci
predicted by at least three miRNA target prediction algorithms. The genes are highlighted as follow; R
(LC) and R (SC) shared sequence [violet], rest of R (LC) (light blue), MP (yellow) and CP (blue); 5′and
3′ UTRs (white).

Full-size DOI: 10.7717/peerj.10096/fig-3
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miR171b-3p was also accumulated and was not detected in healthy plants (Prigigallo et al.,
2019).

miR319c-3p is involved in plant development and abiotic stress response (Shi et al.,
2019). The expression of miR319c-3p decreased in response to heat stress, whereas its
expression increased in moderately chill-tolerant and sensitive tomato genotypes (Shi et
al., 2019). This suggested that it may have been responsible for the up-regulation of the
tosinte branched/ cycloidea/ proliferating cell factors genes (TCP3, TCP29, and TCP2)
(Shi et al., 2019). miR319c-3p specifically expressed in ToLCV-infected tomato ‘‘Pusa
Ruby’’ but not in non-infected plants (Tripathi et al., 2018). The level of up-regulation was
correlated with the infection and/or symptoms. However, TMV infection of tomato plants
caused down-regulation of miR319c-3p (Abdelkhalek & Sanan-Mishra, 2019).

Microarray and northern hybridization showed a down-regulation of miR391 following
ToLCNDV infection (Naqvi, Haq & Mukherjee, 2010). miR394-5p can target the LEAF
CURLING RESPONSIVENESS (LCR) gene that is involved in the regulation of leaf, fruit
and seed development; and its accumulation levels varied between the different tissue types
of tomato plants (Tian et al., 2018). Its regulation affects the leaf curling phenotype (Song et
al., 2012). miR396a-5p induces tomato disease susceptibility to Phytophthora infestans and
Botrytis cinerea infections and enhances the tendency to produce reactive oxygen species
(ROS) under pathogen-related biotic stress by suppressing target genes and upregulating
salicylic acid (Chen et al., 2017). It was found that after drought stress, miR396a-5p was
down-regulated in drought tolerant IL9–1 tomato, while it was up-regulated in the sensitive
genotype M82 as determined by high-throughput sequencing (HTS) (Liu et al., 2017).

Functional analysis for tomato miRNAs targets revealed that miR408 targets copper-
transporting ATPase PAA2 gene as a response to copper levels (Feng et al., 2014). miR408
wasmore abundant in leaves and closed flowers than in fruits (Moxon et al., 2008). miR477-
3p targets transcription factor genes involved in plant development, and biotic and abiotic
stress responses (Liu et al., 2018). It also targets resistance leucine-rich repeat receptor-like
serine/threonine-protein kinase (RLK) (Hong et al., 2020). It was down-regulated under
drought treatment and was not expressed in ToLCV-resistant tomato cv LA1777 (Liu et
al., 2018; Tripathi et al., 2018).

Overexpression of miR482a transiently in Nicotiana benthamiana was associated with
the decline in nucleotide-binding site leucine-rich repeat (NBS-LRR) mRNA (Eckardt,
2012). miR482a was up-regulated in tomato plants inoculated with the early blight causing
fungus Alternaria solani and in ToLCNDV-infected plants (Pradhan et al., 2015; Sarkar et
al., 2017). miR482c was also up-regulated in tomato plants infected with ToLCNDV and
its overexpression induced enhanced susceptibility to late blight disease (Pradhan et al.,
2015; Hong et al., 2019).

miR1916 is suggested to act as a negative regulator in the plant resistance to abiotic
stress in Solanaceae (Chen, Meng & Luan, 2019). Overexpression of miR1916 in tomato
reduced its drought tolerance, and its silence in transgenic plants increased drought stress
resistance, significantly (Chen, Meng & Luan, 2019). It was down-regulated in tomato
after P. infestans or B. cinerea infection (Chen et al., 2019). Its overexpression displayed
significant enhancement in susceptibility to infection, as well as an increased tendency to
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ROS production. miR1918 was suggested to target the genome of ToLCV and to inhibit
the viral replication (Naqvi et al., 2011). However, it enhanced tomato sensitivity to the
infection of late blight disease causing pathogen ‘‘P. infestans’’ (Luan et al., 2016). miR1918
accumulated preferentially in the fruit (Moxon et al., 2008). Both miR1916 and miR1918
target tomato protein-expressing mRNAs (ESTs SGN-U322371 and SGN-U326398,
respectively) (Moxon et al., 2008). miR1919a, miR1919b andmiR1919c-3p are suggested to
target the long non-coding RNA LncRNAZ114 associated with ethylene pathway in tomato
(Wang et al., 2018a). The three TomiRNAs were up-regulated ToLCV-resistant tomato cv
LA1777 (Tripathi et al., 2018). In addition, miR1919a was up-regulated under cold stress
and down-regulated in a drought-sensitive genotype ‘‘M82’’, whereas it was up-regulated
in drought-tolerant genotype ‘‘IL9–1’’ (Chen et al., 2015; Liu et al., 2017).

miR5300 was predicted to target coiled coil-NBS-LRR domain genes involved in biotic
stress response (Shivaprasad et al., 2012; Valiollahi et al., 2014; Pentimone et al., 2018).
miR5300 was also found to be up-regulated in tomato roots inoculated with Pochonia
chlamydosporia and down-regulated in ToLCNDV-infected plants (Pradhan et al., 2015;
Pentimone et al., 2018). miR5303 was involved in growth-regulation, fruit development
and ripening process in tomato (Mohorianu et al., 2011; Karlova et al., 2013; Yin et al.,
2018; Zhao et al., 2018). miR10528, miR10536 and miR10541 were only identified in
ToLCNDV-infected plants using HTS whereas miR399b appeared to be down-regulated
in ToLCNDV-infected plants (Pradhan et al., 2015).

miR6026
miR6026 can target the genomes of PhCMoV and ToBRFV at the P gene of PhCMoV
and the replicase components’ genes of ToBRFV (Figs. 2 and 3). Figure 4B shows the
predicted folding structure of the precursor miR6026 (pre-miR6026). The sequence of the
mature miR6026 (mat-miR6026) is UUC UUG GCU AGA GUU GUA UUG C (GenBank
accession no. NR_108016). Nucleotide sequence alignments show that the sequences where
the mat-miR6026 targets both PhCMoV and ToBRFV are conserved amongst all available
isolates on NCBI (Figs. 4B and 4C). Seventeen nt out of 22 nt of mat-miR6026 can bind
to both viral sequences (77% complementary) (Figs. 4B and 4C). The mat-miR6026 seed
pairs with its match on the sequence of PhCMoVwith 9mers and a supplementary of 8mers
(Fig. 4B). With ToBRFV, the seed pairs with its match with 10mers and a supplementary
of 7mers (Fig. 4C). The presence of conserved Watson–Crick pairing to the 5′ region of the
miRNA ‘‘the miRNA seed’’, reduces the occurrence of false-positive predictions (Lewis et
al., 2003; Brennecke et al., 2005; Krek et al., 2005; Lewis, Burge & Bartel, 2005; Bartel, 2009).
This perfect seed pairing also adds to the reliability of the prediction of the algorithms used
(Lewis et al., 2003).

miR6026 is located on tomato chromosome 1 (position 832340 to 832581) (Li et al.,
2012). It is predicted to regulate plant innate immune receptors (Li et al., 2012). It targets
members of the DCL2 family, i.e., DCL2a, DCL2b, and DCL2d (Wang et al., 2018b). It has
been demonstrated that miR6026 is also up-regulated in PVY-infected plants (Prigigallo
et al., 2019). Moreover, miR6026 is also up-regulated in tomato roots inoculated with P.
chlamydosporia endophytic hyphomycetes (Pentimone et al., 2018).
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Figure 4 miR6026. The predicted folding structure of the precursor miR6026 (pre-miR6026) with mini-
mum free energy (A). The mature miR6026 (mat-miR6026) is highlighted in green. The predicted binding
of the mat-miR6026 to the consensus sequence based on the alignment of the available PhCMoV (B) and
ToBRFV (C) sequences on NCBI.

Full-size DOI: 10.7717/peerj.10096/fig-4

These predicted miRNAs may be utilized to develop effective amiRNA constructs, which
could be used to enhance the tomato plants immunity to both viruses. It is plausible that
viral ORFs could be degraded after being recognized by amiRNA (Zhang et al., 2011; Song
et al., 2014). Using these TomiRNA candidates for the transformation of tomato plants
might not only defend plants against PhCMoV and ToBRFV but to other closely related
viruses. Multiple amiRNAs can be inserted in a single gene expression cassette, which can
be transformed to develop transgenic plant resistant to multiple viruses (Niu et al., 2006;
Schwab et al., 2010). Therefore, future work will include the validation of these promising
candidates in the development of PhCMoV- and ToBRFV-resistance in tomato plants.
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CONCLUSION
In this study, a comprehensive computational approach was used to identify tomato-
derived miRNAs for the silencing of PhCMoV and ToBRFV by RNA interference. Using
five different bioinformatic tools with different algorithms, putative TomiRNAs targeting
PhCMoV and ToBRFV have been predicted with high levels of conserved sites on the
genomes of both viruses. Among the 14 best candidates of TomiRNAs targeting PhCMoV
and the 11 targeting ToBRFV, miR6026 can target both viruses. The findings of this study
may aid the development of PhCMoV- and ToBRFV-resistant tomato plants.
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