



# Variation of Secondary Metabolite Profile of *Zataria multiflora* Boiss. Populations Linked to Geographic, Climatic, and Edaphic Factors

## **OPEN ACCESS**

#### Edited by:

Jens Rohloff, Norwegian University of Science and Technology, Norway

#### Reviewed by:

K. Husnu Can Baser, Near East University, Cyprus Daniela Rigano, University of Naples Federico II, Italy Chandan S. Chanotiya, Central Institute of Medicinal and Aromatic Plants (CIMAP), India

#### \*Correspondence:

Ali Karimi alek156@zedat.fu-berlin.de Torsten Meiners torsten.meiners@julius-kuehn.de

#### Specialty section:

This article was submitted to Technical Advances in Plant Science, a section of the journal Frontiers in Plant Science

Received: 30 October 2019 Accepted: 15 June 2020 Published: 03 July 2020

#### Citation:

Karimi A, Krähmer A, Herwig N, Schulz H, Hadian J and Meiners T (2020) Variation of Secondary Metabolite Profile of Zataria multiflora Boiss. Populations Linked to Geographic, Climatic, and Edaphic Factors. Front. Plant Sci. 11:969. doi: 10.3389/fpls.2020.00969 Ali Karimi<sup>1,2\*</sup>, Andrea Krähmer<sup>1</sup>, Nadine Herwig<sup>1</sup>, Hartwig Schulz<sup>1</sup>, Javad Hadian<sup>3</sup> and Torsten Meiners<sup>1\*</sup>

<sup>1</sup> Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius K\u00fchn Institute, Berlin, Germany, <sup>2</sup> Institute of Pharmacy, Freie Universit\u00e4t Berlin, Berlin, Germany, <sup>3</sup> Department of Agriculture, Medicinal Plants and Drug Research Institute, Shahid Beheshti University, Tehran, Iran

Geographic location and connected environmental and edaphic factors like temperature, rainfall, soil type, and composition influence the presence and the total content of specific plant compounds as well as the presence of a certain chemotype. This study evaluated whether geographic, edaphic, and climatic information can be utilized to predict the presence of specific compounds from medicinal or aromatic plants. Furthermore, we tested rapid analytical methods based on near infrared spectroscopy (NIR) coupled with gas chromatography/flame ionization (GC/FID) and gas chromatography/mass spectrometry (GC/MS) analytical methods for characterization and classification metabolite profiling of Zataria multiflora Boiss. populations. Z. multiflora is an aromatic, perennial plant with interesting pharmacological and biological properties. It is widely dispersed in Iran as well as in Pakistan and Afghanistan. Here, we studied the effect of environmental factors on essential oil (EO) content and the composition and distribution of chemotypes. Our results indicate that this species grows predominantly in areas rich in calcium, iron, potassium, and aluminum, with mean rainfall of 40.46 to 302.72 mm·year<sup>-1</sup> and mean annual temperature of 14.90°C to 28.80°C. EO content ranged from 2.75% to 5.89%. Carvacrol (10.56–73.31%), thymol (3.51–48.12%), linalool (0.90–55.38%), and pcymene (1.66–13.96%) were the major constituents, which classified 14 populations into three chemotypes. Corresponding to the phytochemical cluster analysis, the hierarchical cluster analysis (HCA) based on NIR data also recognized the carvacrol, thymol, and linalool chemotypes. Hence, NIR has the potential to be applied as a useful tool to determine rapidly the chemotypes of Z. multiflora and similar herbs. EO and EO constituent content correlated with different geographic location, climate, and edaphic factors. The structural equation models (SEMs) approach revealed direct effects of soil factors (texture, phosphor, pH) and mostly indirect effects of latitude and altitude directly

affecting, e.g., soil factors. Our approach of identifying environmental predictors for EO content, chemotype or presence of high amounts of specific compounds can help to select regions for sampling plant material with the desired chemical profile for direct use or for breeding.

Keywords: near-infrared spectroscopy, essential oil, carvacrol, linalool, chemical diversity, environmental factors, soil chemistry, *Zataria multiflora* Boiss

# INTRODUCTION

All over the world, plants face different local climatic regimes as well as different edaphic factors. To predict how different environmental factors affect species dispersal, the abundance of populations and chemotypes as well as the content of specific compounds can be a valuable tool to understand plant variation in chemical features. It can also facilitate prospecting plants with high amounts of specific compounds for nutrition, pharmaceutical or agricultural use. In most cases, plant essential oils (EOs) are characterized by a strong aroma, which is mainly produced by secondary metabolites. EO compounds are coupled with environmental acclimatization and play vital biological roles. Several factors, such as environmental and edaphic conditions, geographical regions, season of collection, harvesting time, genotype, and ecotype influence the quantitative and qualitative composition of EO (Milos et al., 2001; Zgheib et al., 2016; Morshedloo et al., 2018). For example, in Matricaria chamomilla L. climatic conditions, altitude, soil properties, and irrigation influence the phytochemical composition and antioxidant activity of EO (Formisano et al., 2015).

Zataria multiflora Boiss. (Lamiaceae) is an aromatic and perennial shrub growing wild in Iran (Figure 1A), Pakistan, and Afghanistan. This aromatic plant is known by the Persian name of Avishan Shirazi which is also entitled Sattar or Zattar, meaning thyme. Z. multiflora can be identified by the orbicular, densely gland-dotted, grey-green ovate leaves, and the thickly white hairy round buds in the leaf axils. Its inflorescence is verticillate, and the flowers are very small and white (Simbar et al., 2008). Z. multiflora has shown pharmacological (antimicrobial, antinociceptive, spasmolytic, and anti-inflammatory) properties, is utilized in traditional folk remedies for its antiseptic, analgesic, carminative, anthelmintic, and antidiarrheal properties, and it is also a condiment (Iranian Herbal Pharmacopoeia Committee, 2002; Moazeni et al., 2014; Khazdair et al., 2018; Mohajeri et al., 2018). Currently, some pharmaceutical forms of this plant, such as syrups, oral drops, soft capsules, and vaginal creams are produced (Sajed et al., 2013; Mahboubi, 2019).

The EO of Z. multiflora is rich in phenolic oxygenated monoterpenes. The main chemical constituents are carvacrol, thymol, linalool, and p-cymene (Hadian et al., 2011a; Saedi Dezaki et al., 2016; Mahmoudvand et al., 2017). Although there are some studies based on Z. multiflora EO constituents (Saleem et al., 2004; Niczad et al., 2019), there is hardly any information on the environmental factors affecting EO content and composition. Z. multiflora is not only harvested for local markets but is also one of the valuable species for industry, so this plant is under severe threat from overharvesting. Thus, a deep perception of its phytochemical and environmental characteristics in its natural habitats is crucial to foretell its behavior under man-made cultivation.

Today, the standard method for EO analysis is gas chromatography coupled with different detection techniques like mass spectrometry. In the last two decades, numerous vibrational spectroscopy methods including mid-infrared (IR), near-infrared (NIR), and Raman spectroscopy have been described as a useful tool to examine the plant secondary metabolites which are commonly applied in the chemical fingerprinting of plants (Schulz et al., 2004; Schulz et al., 2005; Gudi et al., 2014). However, up to now, no studies have been performed utilizing this capable approach to differentiate and characterize various *Z. multiflora* chemotypes.

The aim of this study was to evaluate how different environmental factors affect species dispersal with respect to EO production, chemotype as well as the content of specific compounds of *Z. multiflora* population (**Figures 1A, B**). Besides, we aimed to evaluate whether geographic, edaphic, and climatic information can predict the presence of specific compounds. Furthermore, we tested rapid analytical methods based on NIRS coupled with GC/GC-MS methods for characterization and classification metabolite profiling of *Z. multiflora* populations.

# MATERIALS AND METHODS

## **Study Area**

To determine the effects of geography, climate, and edaphic conditions on EO yield and composition of *Z. multiflora*, plant materials were collected in 2018 in 14 natural habitats across five provinces from the center to the south of Iran including their major growing areas Isfahan, Kerman, Yazd, Fars, and Hormozgan provinces (**Figure 1A**).

# **Plant Material and Chemicals**

Plant samples were collected in June 2018 at the flowering stage. At each region, 6 to 11 individual shrubs were collected depending on the population size with a minimum distance of 100 m. Voucher specimens (no. MPH-1799) were authenticated and deposited in the Herbarium of Medicinal Plants and Drugs Research Institute (MPH), Shahid Beheshti University, Tehran, Iran. Geographical data and altitude for each sampling area were recorded using GPS (**Table 1**). Besides, climate data for five years were taken from metrological stations closest to the habitats



| <b>IABLE 1</b> General information on natural nabitats of <i>Zataria multifiora</i> population | TABLE 1 | General information on natural habitats of Zataria multiflora populations. |
|------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------|

| Population name | Code | Province  | Location                    | Latitude (N) | Longitude (E) | Altitude (m) |
|-----------------|------|-----------|-----------------------------|--------------|---------------|--------------|
| Jandaq          | Jan  | Esfahan   | Jandaq toward mesr desert   | 33° 57' 44'' | 54° 31' 02''  | 1235         |
| Ashkezar        | Ash  | Yazd      | Zarband village             | 31° 48' 49'' | 54° 00' 26''  | 1946         |
| Taft            | Taf  | Yazd      | Darreh-ye Gahan mountains   | 31° 42' 26'' | 54° 10'       | 1697         |
| Siriz           | Sir  | Kerman    | Hamsij village              | 30° 55' 43'' | 55° 57' 01''  | 1763         |
| Fasa            | Fas  | Fars      | Kohankouye village          | 28° 59' 27'' | 53° 42' 25''  | 1516         |
| Arsenjan        | Ars  | Fars      | Tange laykhare mountains    | 29° 53' 49'' | 53° 16' 20''  | 1865         |
| Haneshk         | Han  | Fars      | Haneshk village, Safashahr  | 30° 49' 16'' | 53° 18' 19''  | 1898         |
| Darab           | Dar  | Fars      | Tange Talar Jangi mountains | 28° 44' 27'' | 54° 34' 41''  | 1276         |
| Gezeh           | Gez  | Hormozgan | Cheshmeh-ye seyyed          | 27° 06' 35'' | 54° 04' 46''  | 731          |
| Hongooyeh       | Hon  | Hormozgan | Darreh-ye Baraveh           | 27° 06' 19'' | 54° 04' 07''  | 820          |
| Daarbast        | Daa  | Hormozgan | Daarbast                    | 26° 58' 02'' | 54° 01' 59''  | 1009         |
| Gachooyeh       | Gac  | Hormozgan | Gachooyeh                   | 26° 58' 28'' | 53° 58' 06''  | 1055         |
| Kemeshk         | Kem  | Hormozgan | Kemeshk                     | 27° 03' 13'' | 53° 50' 41''  | 937          |
| Konar Siah      | Kon  | Hormozgan | Konar Siah                  | 27° 09' 05'' | 53° 57' 04''  | 981          |

(**Table 2**). Carvacrol, linalool, *p*-cymene, and  $\gamma$ -terpinene were purchased from Sigma-Aldrich-Fluka (Germany), and thymol and  $\alpha$ -pinene from Roth (Germany).

# Soil Analysis

Soil samples from the surface layer (0 to 30 cm depth) were taken from five randomly selected plots in each sampling site. The five soil samples were combined into a single 500 g sample that was dried at room temperature (20-25°C) and sieved to 2 mm. A duplicate soil sample was sieved through a 2 mm filter once again for determination of soil chemical characteristics including the soil texture (percentage content of sand, silt, and clay), the amount of abundant nutrients (N, P, K, Ca, Al, and Fe), pH value, and organic matter. The total heavy metal and nutrient contents of soil samples were determined after pressure dissolution with 69% supra pure nitric acid (according to A2.4.3.1, VDLUFA, 1991) by ICP-AES (iCAP<sup>TM</sup> 7600 Duo, Thermo Fischer Scientific). Contents of total carbon and total nitrogen were determined with CNS elemental analyzer (Vario EL Cube, Elementar Analysesysteme GmbH). Pedological base parameters (soil particle size, pH value, C/N) were collected for

characterization. The particle size determination of soil texture was performed according to DIN 19683-2 (1997).

# **Isolation of the Essential Oils**

The aerial plant parts were dried at room temperature  $(20-25^{\circ}C)$  in the shade, then the leaves of each plant were separated and 10 g of each plant sample were ground manually. The EO of each sampled plant (10 g of leaves) was isolated by hydro-distillation for 2 h utilizing a clevenger-type system (Pavela et al., 2018). The distilled oils were dried over anhydrous sodium sulfate and stored at 4°C in sealed glass vials for analysis. The yield of the essential oil was calculated based on the dry weight of the plant material.

# **GC-FID** and **GC/MS** Analyses

EOs were analyzed by GC–FID using an Agilent gas chromatograph 6890N, equipped with a HP-5 column (30 m  $\times$  0. 25 mm i.d., with a film thickness of 0.5  $\mu$ m). The oven temperature was programmed at 50°C for 2 min, then from 50°C to 320°C at 5°C min<sup>-1</sup>, and held at 320°C for 6 min. Both injector and detector temperatures were 250°C. Hydrogen was

| Region     | Rainfall                 | M-Temp | Soil texture     | pН   | ОМ   | Ν    | Р      | к                      | Ca        | F        | AI       |
|------------|--------------------------|--------|------------------|------|------|------|--------|------------------------|-----------|----------|----------|
|            | [mm year <sup>-</sup> '] | [.0]   |                  |      | [%]  |      |        | [mg kg <sup>-1</sup> ] |           |          |          |
| Jandaq     | 55.86                    | 21.50  | Silty sand       | 7.70 | 4.43 | 0.06 | 394.30 | 5581.40                | 69376.20  | 16424.20 | 17012.60 |
| Ashkezar   | 40.46                    | 21.10  | Loamy sand       | 7.80 | 5.17 | 0.04 | 409.70 | 7171.40                | 155569.40 | 14486.10 | 20489.70 |
| Taft       | 49.76                    | 20.30  | Sandy loamy silt | 7.70 | 5.74 | 0.04 | 354.90 | 7925.10                | 112373.80 | 19637.10 | 20137.30 |
| Siriz      | 107.80                   | 20.20  | Sandy loam       | 7.70 | 4.44 | 0.03 | 416.90 | 6863.10                | 75182.10  | 20339.10 | 20521.30 |
| Fasa       | 278.48                   | 20.30  | Clayey loam      | 7.60 | 6.97 | 0.06 | 329.20 | 8441.60                | 96355.40  | 23471.60 | 27656.70 |
| Arsenjan   | 215.22                   | 20.30  | Sandy loamy silt | 7.70 | 7.54 | 0.18 | 346.20 | 6151.10                | 117935.10 | 20298.30 | 20936.10 |
| Haneshk    | 180.06                   | 14.90  | Loamy sand       | 7.60 | 4.00 | 0.09 | 342.60 | 12427.10               | 12756.10  | 24538.40 | 34280.10 |
| Darab      | 276.38                   | 24.30  | Silty loam       | 7.60 | 10.0 | 0.23 | 312.60 | 5306.80                | 116218.30 | 16820.20 | 18424.30 |
| Gezeh      | 302.72                   | 28.80  | Sandy loam       | 7.80 | 7.02 | 0.05 | 293.40 | 3609.80                | 174266.60 | 11979.30 | 12212.20 |
| Hongooyeh  | 302.72                   | 28.80  | Silty loamy sand | 7.90 | 7.54 | 0.03 | 355.90 | 3640.50                | 139953.40 | 14064.00 | 12378.00 |
| Daarbast   | 302.72                   | 28.80  | Sandy loam       | 7.80 | 6.59 | 0.03 | 232.80 | 1993.80                | 197820.30 | 8190.60  | 6945.90  |
| Gachooyeh  | 302.72                   | 28.80  | Loamy sand       | 7.80 | 7.02 | 0.03 | 222.50 | 2368.80                | 195214.40 | 9272.40  | 7986.60  |
| Konar Siah | 302.72                   | 28.80  | Loamy sand       | 7.80 | 7.02 | 0.05 | 275.80 | 2272.10                | 178396.30 | 7442.80  | 6327.50  |
| Kemeshk    | 302.72                   | 28.80  | Loamy sand       | 7.80 | 7.02 | 0.04 | 249.20 | 2320.40                | 186805.30 | 8357.60  | 7157.10  |

TABLE 2 | Edaphic factors and climatic characteristics in natural habitats of Zataria multiflora.

M-Temp, Mean annual temperature; OM, organic matter.

used as carrier gas with a constant flow rate of 1 ml min<sup>-1</sup>, and 1  $\mu$ l of the diluted EOs (1/500 v/v in isooctane) was injected automatically (Gerstel MPS) in a splitless mode. Nitrogen was used as make-up gas, which was set at a flow of 45 ml min<sup>-1</sup>.

Mass spectrometry of the EOs was performed using an Agilent MSD 5975B/GC 6890N, equipped with a 30 m × 0.25 mm i.d., 0.5 µm, HP-5MS column. The injector temperature was 250°C, and the initial GC oven temperature was 50°C, held for 2 min, then raised to 320°C at 5°C min<sup>-1</sup> and held for 6 min. Helium was used as carrier gas with a flow rate of 1 ml min<sup>-1</sup>. One  $\mu$ l of the diluted EOs (1/500 v/v in isooctane) was injected automatically (Gerstel MPS) in a splitless mode. Injector and detector temperatures were set at 250°C. The EI<sup>+</sup>-MS operating parameters were as follows: ionization energy, 70 eV and ion source temperature, 230°C. The quadrupole mass spectrometer was scanned over 35 to 350 m/z. The runtime and solvent delay were set at 60 and 5 min, respectively (4.45 scans/s). Carvacrol, thymol, linalool, *p*-cymene,  $\gamma$ -terpinene, and  $\alpha$ -pinene were used as standard. 6-Methyl-5-hepten-2-one was used as internal standard and was added to the dilution before the analysis. The oil components were identified by comparison of mass spectra and retention indices with those recorded in the Adams (Adams, 2014), NIST mass spectral databases SRD 69 (NIST Chemistry WebBook, 2002), standard constituents, and the previously published data. The retention indices of individual components were calculated using a series of n-alkanes (C8-C40) (Sigma-Aldrich-Fluka, Germany) (1/100 in n-Pentan). The relative percentage composition of individual compounds was computed from the GC peak areas obtained without using correction factors.

## **NIR Spectroscopy and Chemometrics**

Before isolation of EO, vibrational spectroscopy was performed directly on the homogenized plant material. NIRS analyses were carried out on a Fourier-Transform (FT)-NIR spectrometer (Multi-Purpose Analyser MPA, Bruker Optics GmbH, Germany). Spectra were recorded in the wavenumber range of 4,000 to 12,000 cm<sup>-1</sup> with a spectral resolution of 8 cm<sup>-1</sup>. Approximately 7 g of dried

leaves were put in a glass Petri dish and spectra were collected during rotation of the dish using the integrating sphere for measuring in diffuse reflection. Spectra were acquired at 30 s. Each sample was analyzed with threefold repetition. The raw spectra were centered and corrected for scattering effects and baseline shifting using WMSC of the OPUS 6.5 software (Bruker Optics). Only averaged spectra of the three replicates were used for the later chemometric analysis.

## **Statistical Analysis**

Statistical analysis was performed using hierarchical cluster analysis (HCA) with SPSS version 16 to classify and cluster the populations of *Z. multiflora* based on the squared Euclidean distances. Pearson's correlation coefficients were estimated among the EO content, major components, and edaphic factors using SPSS (SPSS, Chicago, IL, USA) software package from version 16. The calculation of means, standard deviations (SD) and t-test were used to express the significance of differences (P < 0.05) using SAS 9.1 program (SAS Inc. USA).

For chemometrics (based on NIR), HCA was performed to evaluate the diversity of the samples. Characteristic spectral ranges were identified by comparison with spectra appropriate reference standards and HCA. Calibration models were built by 10-fold cross-validation using a partial least squares (PLS) algorithm. Therefore, GC data of each plant and averaged plant wise spectra of the population were correlated.

Furthermore, we set up SEMs for each region using partial least squares (PLS) regression using Warp PLS 6.0 (Kock and Lynn, 2012). The PLS regression was chosen over covariance based approaches because it suited our small sample size and, compared to covariance structure analysis, can accommodate both reflective and formative scales more easily. Moreover, PLS does not require any *a priori* distributional assumptions (Chin and Newsted, 1999). We present individual standardized path coefficients ( $\beta$ ), partial model fit scores ( $\mathbb{R}^2$ ), and overall model P values calculated by resampling estimations coupled with Bonferroni like corrections (Kock, 2010). To validate the models three model-fit indices [average path coefficient (APC),

average R-squared (ARS), and average variance inflation factor (AVIF)] were calculated for each region. For model fit, it is recommended that P values for APC and ARS are both lower than 0.05 (i.e., significance at the 0.05 level). The AVIF index controls for multicollinearity and should be below 5 (Kock, 2010). In the SEM analysis we set paths from geographic factors (latitude, longitude, altitude), climatic factors (rainfall, temperature), soil texture (relative proportion of clay, silt, and sand), constituents (N, P, K, Al, Ca, Fe), and pH value directly to EO content and compounds; furthermore, we included the possible effects of the geographic factors on climatic and soil factors.

# RESULTS

## **Phytochemical Analysis of Essential Oil**

The EOs were obtained and analyzed by hydro-distillation and GC-FID/GC-MS respectively. There was a significant difference in EO content among the studied populations. The EO content ranged from 2.75 (for population Siriz) to 5.89% in dry matter (DM), (for population Konar Siah) (**Figure 2**). Fifty-six compounds were identified with significant differences between the populations (**Table 3**). The oils mainly consisted of carvacrol (10.56–73.31%), thymol (3.51–48.12%), linalool (0.90–55.38%), *p*-cymene (1.66–13.96%),  $\gamma$ -terpinene (0.99–6.28%),  $\alpha$ -pinene (0.93–4.01%), carvacrol methyl ether (0.39–3.71%), myrcene (0.94–2.77%), *E*-caryophyllene (1.09–2.37%), and  $\alpha$ -terpinene (0.39–1.61%).

The Pearson correlations indicated positive and negative significant correlations between phytochemical compounds. Carvacrol had been positively correlated with carvacrol acetate (r = 0.70), carvacrol methyl ether (r = 0.54), and negatively correlated with linalool (r = -0.69), thymol (r = -0.64) and limonene (r = -0.79) while thymol was in significant negative correlation with carvacrol (r = -0.64). Furthermore, linalool had a significant positive correlation with *E*- $\beta$ -ocimene (r = 0.99), myrcene (r = 0.97), limonene (r = 0.72), *Z*- $\beta$ -ocimene (r = 0.69) and a negative correlation with  $\alpha$ -terpinene (r = -0.72),  $\gamma$ -terpinene (r = -0.70), carvacrol (r = -0.69), p-cymene (r = -0.61), carvacrol acetate (r = -0.56) and carvacrol methyl ether (r = -0.53).

To determine the degree of phytochemical variation, HCA based on the phytochemical profiles was performed (**Figure 3**). According to the major components, three chemotypes can be distinguished thus populations of *Z. multiflora* were divided into three main clusters. Cluster I consists of two populations (Siriz and Haneshk) characterized by higher content of linalool. Cluster II contains two populations (Fasa and Darab) which are characterized by higher amounts of thymol, carvacrol, *p*-cymene, and linalool. Cluster III contains ten populations including Jandaq, Ashkezar, Taft, Arsenjan, Gezeh, Hongooyeh, Daarbast, Gachooyeh, Konar Siah, and Kemeshk characterized by lower quantities of  $\alpha$ -pinene, myrcene,  $\alpha$ -terpinene, linalool, and carvacrol methyl ether and higher amounts of carvacrol, thymol, *p*-cymene, and  $\gamma$ -terpinene.

# **Environmental Characteristics**

Geographical, climatic, and edaphic characteristics of Z. *multiflora* natural habitats are exhibited in **Tables 1** and **2**. Our results indicate that this species grows in areas characterized by a mean rainfall of 40.46 to 302.72 mm year<sup>-1</sup> and mean annual temperature of 14.90°C to 28.80°C. The altitude ranges from 731 to 1946 m. The percentage of organic



### TABLE 3 | Variation of the phytochemical compositions (%) among the studied populations of Zataria multiflora.

| N  | Components                             | RI <sup>a</sup> | RI <sup>b</sup> |                 |                 | Popula          | tions           |                 |         |
|----|----------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------|
|    |                                        |                 |                 | Jandaq          | Ashkezar        | Taft            | Siriz           | Fasa            | Methods |
| 1  | α-Thujene                              | 933             | 929             | $0.43 \pm 0.06$ | 0.18 ± 0.10     | 0.41 ± 0.03     | 0.14 ± 0.05     | 0.30 ± 0.03     | RI, MS  |
| 2  | α-Pinene                               | 940             | 939             | $0.93 \pm 0.28$ | 1.82 ± 0.23     | $2.01 \pm 0.14$ | $1.85 \pm 0.33$ | $1.64 \pm 0.18$ | RI, MS  |
| 3  | Camphene                               | 955             | 954             | $0.10 \pm 0.03$ | $0.12 \pm 0.01$ | $0.12 \pm 0.01$ | $0.10 \pm 0.01$ | $0.10 \pm 0.01$ | RI, MS  |
| 4  | 2,4(10)-Thujadiene                     | 960             | 957             | -               | -               | -               | tr              | -               | RI, MS  |
| 5  | 1,3-Octanol                            | 969             | 973             | $0.07 \pm 0.01$ | $0.07 \pm 0.01$ | $0.07 \pm 0.01$ | $0.09 \pm 0.01$ | $0.08 \pm 0.01$ | RI, MS  |
| 6  | Sabinene                               | 979             | 977             | 0.11 ± 0.01     | 0.07 ± 0.01     | $0.11 \pm 0.01$ | $0.09 \pm 0.02$ | $0.08 \pm 0.01$ | RI, MS  |
| 7  | $\beta$ -Pinene                        | 983             | 978             | $0.23 \pm 0.03$ | $0.28 \pm 0.03$ | $0.37 \pm 0.01$ | $0.34 \pm 0.06$ | $0.33 \pm 0.01$ | RI, MS  |
| 8  | Myrcene                                | 995             | 992             | 1.35 ± 0.51     | 1.15 ± 0.16     | $1.39 \pm 0.14$ | 2.77 ± 0.51     | 1.45 ± 0.17     | RI, MS  |
| 9  | 3-Octanol                              | 997             | 995             | $0.05 \pm 0.01$ | $0.06 \pm 0.01$ | $0.10 \pm 0.05$ | $0.21 \pm 0.04$ | $0.10 \pm 0.06$ | RI, MS  |
| 10 | $\alpha$ -Phellandrene                 | 1010            | 1005            | $0.15 \pm 0.04$ | 0.17 ± 0.01     | $0.19 \pm 0.01$ | $0.29 \pm 0.03$ | $0.21 \pm 0.01$ | RI, MS  |
| 11 | δ-3-Carene                             | 1015            | 1011            | 0.02 ± 0.01     | $0.04 \pm 0.02$ | $0.02 \pm 0.01$ | $0.03 \pm 0.01$ | -               | RI, MS  |
| 12 | α-Terpinene                            | 1021            | 1019            | $0.92 \pm 0.08$ | $1.00 \pm 0.07$ | $1.38 \pm 0.26$ | $0.39 \pm 0.14$ | $1.61 \pm 0.09$ | RI, MS  |
| 13 | <i>p</i> -Cymene                       | 1030            | 1025            | 5.88 ± 1.38     | $5.69 \pm 0.31$ | 7.29 ± 1.17     | $1.66 \pm 0.95$ | 7.21 ± 0.42     | RI, MS  |
| 14 | Limonene                               | 1034            | 1030            | $0.37 \pm 0.10$ | $0.49 \pm 0.07$ | $0.54 \pm 0.12$ | $0.81 \pm 0.07$ | $0.61 \pm 0.03$ | RI, MS  |
| 15 | 1,8-Cineole                            | 1037            | 1035            | $0.24 \pm 0.10$ | $0.05 \pm 0.01$ | $0.08 \pm 0.01$ | $0.46 \pm 0.10$ | $0.03 \pm 0.01$ | RI, MS  |
| 16 | Z-β-Ocimene                            | 1039            | 1039            | $0.28 \pm 0.08$ | $0.41 \pm 0.04$ | $0.44 \pm 0.10$ | $0.69 \pm 0.21$ | $0.37 \pm 0.05$ | RI, MS  |
| 17 | $E$ - $\beta$ -Ocimene                 | 1050            | 1050            | $0.15 \pm 0.10$ | $0.07 \pm 0.01$ | $0.12 \pm 0.04$ | $1.31 \pm 0.12$ | $0.28 \pm 0.05$ | RI, MS  |
| 18 | γ-Terpinene                            | 1063            | 1062            | $3.65 \pm 0.72$ | 3.14 ± 0.26     | 5.24 ± 1.12     | 0.99 ± 0.57     | $6.28 \pm 0.40$ | RI, MS  |
| 19 | Z-Sabinene hydrate                     | 1071            | 1070            | $0.30 \pm 0.01$ | $0.14 \pm 0.06$ | $0.27 \pm 0.03$ | $0.08 \pm 0.02$ | 0.18 ± 0.01     | RI, MS  |
| 20 | Z-Linalool oxide                       | 1076            | 1074            | $0.04 \pm 0.01$ | $0.02 \pm 0.01$ | $0.05 \pm 0.01$ | 1.67 ± 0.57     | $0.15 \pm 0.03$ | RI, MS  |
| 21 | Terpinolene                            | 1092            | 1089            | $0.22 \pm 0.09$ | $0.21 \pm 0.03$ | $0.27 \pm 0.10$ | $1.62 \pm 0.42$ | $0.35 \pm 0.03$ | RI, MS  |
| 22 | Linalool                               | 1103            | 1100            | $1.19 \pm 0.23$ | $1.62 \pm 0.60$ | $3.35 \pm 2.20$ | $55.38 \pm 6.4$ | 9.59 ± 1.83     | RI, MS  |
| 23 | $E-\gamma$ -Caryophyllene              | 1106            | 1106            | $0.11 \pm 0.04$ | $0.04 \pm 0.01$ | $0.06 \pm 0.04$ | 1.37 ± 0.17     | $0.27 \pm 0.05$ | RI, MS  |
| 24 | 1-Octenyl-3-acetate                    | 1111            | 1113            | -               | -               | -               | $0.20 \pm 0.10$ | -               | RI, MS  |
| 25 | p-Menth-2-en-1-ol                      | 1124            | 1122            | -               | -               | -               | $0.32 \pm 0.18$ | -               | RI, MS  |
| 26 | allo-Ocimene                           | 1131            | 1132            | -               | -               | -               | $0.16 \pm 0.11$ | 0.11 ± 0.02     | RI, MS  |
| 27 | 1,3,8-p-Menthatriene                   | 1133            |                 | -               | -               | -               | $0.12 \pm 0.01$ | -               | MS      |
| 28 | Borneol                                | 1172            | 1171            | tr              | -               | $0.02 \pm 0.01$ | $0.63 \pm 0.18$ | $0.21 \pm 0.04$ | RI, MS  |
| 29 | Z-Linalool oxide (pyranoid)            | 1177            | 1173            | $0.10 \pm 0.01$ | $0.02 \pm 0.01$ | $0.05 \pm 0.02$ | $0.10 \pm 0.01$ | $0.08 \pm 0.01$ | RI, MS  |
| 30 | 4-Terpineol                            | 1183            | 1179            | $0.09 \pm 0.01$ | $0.14 \pm 0.03$ | $0.14 \pm 0.01$ | $0.25 \pm 0.03$ | $0.15 \pm 0.01$ | RI, MS  |
| 31 | p-Cymenol-8                            | 1188            | 1184            | $0.46 \pm 0.04$ | $0.46 \pm 0.02$ | $0.49 \pm 0.04$ | $0.23 \pm 0.03$ | $0.43 \pm 0.02$ | RI, MS  |
| 32 | <i>α</i> -Terpineol                    | 1195            | 1190            | $0.44 \pm 0.13$ | $0.56 \pm 0.05$ | $0.56 \pm 0.11$ | $0.68 \pm 0.05$ | $0.45 \pm 0.02$ | RI, MS  |
| 33 | Z-Dihydro carvone                      | 1202            | 1200            | $0.15 \pm 0.01$ | $0.17 \pm 0.01$ | $0.10 \pm 0.03$ | $0.15 \pm 0.06$ | $0.06 \pm 0.04$ | RI, MS  |
| 34 | Nerol                                  | 1234            | 1228            | $0.07 \pm 0.02$ | $0.06 \pm 0.01$ | -               | $0.10 \pm 0.02$ | -               | RI, MS  |
| 35 | Thymol methyl ether                    | 1238            | 1237            | -               | $0.08 \pm 0.03$ | $0.35 \pm 0.19$ | $0.20 \pm 0.08$ | $0.88 \pm 0.06$ | RI, MS  |
| 36 | Carvacrol methyl ether                 | 1248            | 1241            | $1.04 \pm 0.37$ | $1.50 \pm 0.40$ | $1.00 \pm 0.21$ | $0.39 \pm 0.10$ | $0.49 \pm 0.02$ | RI, MS  |
| 37 | Geraniol                               | 1260            | 1263            | $0.04 \pm 0.01$ | -               | $0.06 \pm 0.03$ | $1.00 \pm 0.43$ | 0.11 ± 0.02     | RI, MS  |
| 38 | Geranial                               | 1280            | 1273            | -               | -               | -               | tr              | -               | RI, MS  |
| 39 | <i>p</i> -Thymol                       | 1286            |                 | $0.07 \pm 0.03$ | $0.08 \pm 0.01$ | $0.10 \pm 0.02$ | $0.02 \pm 0.01$ | $0.10 \pm 0.01$ | MS      |
| 40 | Thymol                                 | 1295            | 1295            | $3.51 \pm 3.27$ | $9.94 \pm 2.03$ | 25.32 ± 12.7    | $6.17 \pm 3.00$ | 48.12 ± 2.9     | RI, MS  |
| 41 | Carvacrol                              | 1309            | 1305            | 73.31 ± 4.3     | 65.14 ± 1.8     | 42.23 ± 15.3    | 10.56 ± 3.9     | 12.42 ± 2.8     | RI, MS  |
| 42 | I hymol acetate                        | 1358            | 1359            | $0.02 \pm 0.01$ | $0.10 \pm 0.03$ | $0.49 \pm 0.27$ | $0.10 \pm 0.03$ | $0.87 \pm 0.07$ | RI, MS  |
| 43 | Carvacrol acetate                      | 1377            | 1368            | $0.80 \pm 0.21$ | $0.80 \pm 0.13$ | $0.60 \pm 0.19$ | $0.20 \pm 0.07$ | $0.16 \pm 0.01$ | RI, MS  |
| 44 | β-Bourbonene                           | 1384            | 1378            | -               | -               | -               | $0.09 \pm 0.04$ | -               | RI, MS  |
| 45 | E-Caryophyllene                        | 1435            | 1427            | $1.09 \pm 0.22$ | $1.61 \pm 0.21$ | $2.16 \pm 0.42$ | $1.56 \pm 0.60$ | $1.85 \pm 0.20$ | RI, MS  |
| 46 | Aromadendrene                          | 1455            | 1436            | $0.29 \pm 0.06$ | $0.40 \pm 0.07$ | $0.37 \pm 0.08$ | $0.14 \pm 0.10$ | $0.19 \pm 0.05$ | RI, MS  |
| 47 | α-Humuliene                            | 1469            | 1452            | $0.10 \pm 0.01$ | $0.11 \pm 0.01$ | $0.14 \pm 0.02$ | $0.14 \pm 0.04$ | $0.13 \pm 0.01$ | RI, MS  |
| 48 | 9-epi-(E)-Caryophyllene                | 14//            | 14/4            | -               | -               | -               | -               | -               | RI, MS  |
| 49 | E-β-Guaiene                            | 1504            | 1498            | -               | -               | -               | $0.02 \pm 0.01$ | -               | RI, MS  |
| 50 | Viriaitiorene                          | 1510            | 1505            | $0.24 \pm 0.10$ | $0.26 \pm 0.05$ | $0.28 \pm 0.08$ | $0.19 \pm 0.10$ | $0.18 \pm 0.02$ | RI, MS  |
| 51 | Spathulenol                            | 1594            | 1578            | $0.38 \pm 0.09$ | $0.35 \pm 0.03$ | $0.36 \pm 0.06$ | $0.59 \pm 0.17$ | $0.39 \pm 0.02$ | RI, MS  |
| 52 | Isoaromadendrene epoxide               | 1597            |                 | $0.08 \pm 0.01$ | $0.11 \pm 0.01$ | $0.12 \pm 0.02$ | $0.47 \pm 0.09$ | $0.14 \pm 0.02$ | MS      |
| 53 | Caryophyllene oxide                    | 1601            | 1599            | $0.18 \pm 0.03$ | $0.20 \pm 0.01$ | $0.20 \pm 0.05$ | $0.76 \pm 0.11$ | $0.21 \pm 0.02$ | RI, MS  |
| 54 | Caryopnylla-4(12),8(13)-dlen-5 beta-ol | 1654            | 1663            | $0.07 \pm 0.01$ | $0.08 \pm 0.01$ | $0.09 \pm 0.01$ | $0.32 \pm 0.03$ | $0.11 \pm 0.01$ | KI, MS  |
| 55 | 14-Hydroxy-9-epi-(E)-caryophyllene     | 16/3            | 1669            | $0.03 \pm 0.02$ | $0.07 \pm 0.02$ | $0.08 \pm 0.01$ | $0.34 \pm 0.06$ | $0.09 \pm 0.01$ | KI, MS  |
| 90 |                                        | 1686            | 16/4            | $0.05 \pm 0.03$ | $0.13 \pm 0.01$ | $0.08 \pm 0.01$ | $0.27 \pm 0.03$ | 0.09 ± 0.01     | KI, MS  |
|    | Monoterpene hydrocarbons               |                 |                 | 14.79           | 14.84           | 19.90           | 13.36           | 20.93           |         |
|    | Oxygenated monoterpens                 |                 |                 | 81.87           | 80.88           | 75.26           | 78.89           | /4.48           |         |
|    | Sesquiterpene nyarocarbons             |                 |                 | 1.83            | 2.42            | 3.01            | 3.51            | 2.62            |         |
|    | Oxygenated sesquiterpenes              |                 |                 | 0.80            | 0.94            | 0.93            | 2.75            | 1.03            |         |
|    | Essential oil content (%)              |                 |                 | 5.29 ± 0.72     | 4.12 ± 0.29     | $2.96 \pm 0.29$ | $2.75 \pm 0.42$ | 3.41 ± 0.28     |         |

(Continued)

## TABLE 3 | Continued

| N  | Components                             | RI <sup>a</sup> | RI <sup>b</sup> |                 |                 | Popula          | tions           |                 |         |
|----|----------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------|
|    |                                        |                 |                 | Gachooyeh       | Kemeshk         | Gezeh           | Hongooyeh       | Arsenjan        | Methods |
| 1  | α-Thujene                              | 933             | 929             | 0.29 ± 0.06     | 0.27 ± 0.11     | 0.47 ± 0.13     | 0.41 ± 0.09     | 0.33 ± 0.03     | RI, MS  |
| 2  | α-Pinene                               | 940             | 939             | $2.57 \pm 0.74$ | $2.59 \pm 0.73$ | $4.01 \pm 0.97$ | 3.23 ± 1.15     | $1.43 \pm 0.20$ | RI, MS  |
| 3  | Camphene                               | 955             | 954             | $0.14 \pm 0.02$ | $0.14 \pm 0.02$ | $0.11 \pm 0.04$ | $0.17 \pm 0.04$ | $0.10 \pm 0.01$ | RI, MS  |
| 4  | 2,4(10)-Thujadiene                     | 960             | 957             | -               | -               | -               | -               | -               | RI, MS  |
| 5  | 1,3-Octanol                            | 969             | 973             | $0.07 \pm 0.01$ | $0.07 \pm 0.01$ | $0.07 \pm 0.01$ | $0.08 \pm 0.01$ | $0.07 \pm 0.01$ | RI, MS  |
| 6  | Sabinene                               | 979             | 977             | $0.09 \pm 0.01$ | $0.09 \pm 0.01$ | $0.11 \pm 0.01$ | $0.11 \pm 0.01$ | $0.10 \pm 0.01$ | RI, MS  |
| 7  | β-Pinene                               | 983             | 978             | $0.47 \pm 0.05$ | $0.48 \pm 0.06$ | $0.64 \pm 0.11$ | $0.57 \pm 0.17$ | $0.32 \pm 0.02$ | RI, MS  |
| 8  | Myrcene                                | 995             | 992             | $1.11 \pm 0.13$ | $1.04 \pm 0.18$ | $1.12 \pm 0.17$ | $1.26 \pm 0.13$ | $1.32 \pm 0.15$ | RI, MS  |
| 9  | 3-Octanol                              | 997             | 995             | $0.13 \pm 0.08$ | $0.02 \pm 0.01$ | $0.10 \pm 0.10$ | $0.15 \pm 0.13$ | $0.04 \pm 0.02$ | RI, MS  |
| 10 | α-Phellandrene                         | 1010            | 1005            | $0.16 \pm 0.01$ | $0.17 \pm 0.01$ | 0.17 ± 0.01     | $0.17 \pm 0.01$ | $0.19 \pm 0.02$ | RI, MS  |
| 11 | δ-3-Carene                             | 1015            | 1011            | -               | $0.02 \pm 0.01$ | $0.03 \pm 0.02$ | -               | $0.03 \pm 0.02$ | RI, MS  |
| 12 | α-lerpinene                            | 1021            | 1019            | $1.20 \pm 0.14$ | $1.34 \pm 0.44$ | $1.17 \pm 0.08$ | $1.32 \pm 0.20$ | $0.92 \pm 0.05$ | RI, MS  |
| 13 | <i>p</i> -Cymene                       | 1030            | 1025            | $6.46 \pm 2.47$ | $5.50 \pm 1.54$ | 9.44 ± 1.18     | $10.27 \pm 0.7$ | $5.93 \pm 0.48$ | RI, MS  |
| 14 | Limonene                               | 1034            | 1030            | $0.42 \pm 0.07$ | $0.41 \pm 0.16$ | $0.58 \pm 0.21$ | $0.67 \pm 0.09$ | $0.42 \pm 0.09$ | RI, MS  |
| 15 | 1,8-Cineole                            | 1037            | 1035            | $0.10 \pm 0.06$ | $0.11 \pm 0.06$ | $0.08 \pm 0.05$ | $0.02 \pm 0.01$ | $0.12 \pm 0.07$ | RI, MS  |
| 16 | Z-β-Ocimene                            | 1039            | 1039            | $0.40 \pm 0.05$ | $0.32 \pm 0.13$ | $0.46 \pm 0.25$ | $0.55 \pm 0.13$ | $0.41 \pm 0.08$ | RI, MS  |
| 17 | <i>E-β</i> -Ocimene                    | 1050            | 1050            | $0.04 \pm 0.02$ | $0.06 \pm 0.02$ | $0.07 \pm 0.01$ | $0.08 \pm 0.01$ | $0.20 \pm 0.06$ | RI, MS  |
| 18 | γ-Terpinene                            | 1063            | 1062            | $5.45 \pm 0.77$ | $6.16 \pm 2.30$ | $5.08 \pm 0.34$ | $5.57 \pm 0.99$ | $3.49 \pm 0.23$ | RI, MS  |
| 19 | Z-Sabinene hydrate                     | 1071            | 1070            | $0.21 \pm 0.01$ | $0.11 \pm 0.04$ | $0.21 \pm 0.02$ | $0.19 \pm 0.02$ | 0.26 ± 0.01     | RI, MS  |
| 20 | Z-Linalool oxide                       | 1076            | 1074            | -               | -               | -               | tr              | $0.09 \pm 0.05$ | RI, MS  |
| 21 | Terpinolene                            | 1092            | 1089            | $0.18 \pm 0.01$ | $0.18 \pm 0.02$ | $0.20 \pm 0.02$ | $0.21 \pm 0.02$ | $0.28 \pm 0.04$ | RI, MS  |
| 22 | Linalool                               | 1103            | 1100            | $0.90 \pm 0.17$ | $1.01 \pm 0.55$ | 1.13 ± 0.22     | $1.28 \pm 0.54$ | 8.88 ± 3.17     | RI, MS  |
| 23 | $E-\gamma$ -Caryophyllene              | 1106            | 1106            | $0.06 \pm 0.02$ | $0.05 \pm 0.03$ | $0.07 \pm 0.01$ | $0.06 \pm 0.02$ | $0.11 \pm 0.04$ | RI, MS  |
| 24 | 1-Octenyl-3-acetate                    | 1111            | 1113            | -               | $0.02 \pm 0.01$ | tr              | $0.02 \pm 0.01$ | -               | RI, MS  |
| 25 | p-Menth-2-en-1-ol                      | 1124            | 1122            | -               | -               | -               | -               | -               | RI, MS  |
| 26 | Allo-Ocimene                           | 1131            | 1132            | -               | -               | -               | -               | $0.09 \pm 0.04$ | RI, MS  |
| 27 | 1,3,8-p-Menthatriene                   | 1133            |                 | -               | -               | -               | -               | -               | MS      |
| 28 | Borneol                                | 1172            | 1171            | -               | $0.02 \pm 0.01$ | -               | -               | $0.24 \pm 0.11$ | RI, MS  |
| 29 | Z-Linalool oxide (pyranoid)            | 1177            | 1173            | -               | tr              | tr              | $0.02 \pm 0.01$ | tr              | RI, MS  |
| 30 | 4-Terpineol                            | 1183            | 1179            | $0.20 \pm 0.02$ | $0.20 \pm 0.07$ | $0.18 \pm 0.02$ | $0.20 \pm 0.01$ | $0.17 \pm 0.02$ | RI, MS  |
| 31 | p-Cymenol-8                            | 1188            | 1184            | $0.48 \pm 0.04$ | $0.44 \pm 0.02$ | $0.50 \pm 0.04$ | $0.54 \pm 0.03$ | $0.44 \pm 0.02$ | RI, MS  |
| 32 | $\alpha$ -Terpineol                    | 1195            | 1190            | $0.54 \pm 0.06$ | $0.47 \pm 0.18$ | $0.63 \pm 0.30$ | $0.73 \pm 0.17$ | $0.47 \pm 0.07$ | RI, MS  |
| 33 | Z-Dihydro carvone                      | 1202            | 1200            | $0.14 \pm 0.01$ | $0.12 \pm 0.06$ | $0.16 \pm 0.02$ | $0.14 \pm 0.03$ | 0.13 ± 0.01     | RI, MS  |
| 34 | Nerol                                  | 1234            | 1228            | -               | tr              | $0.03 \pm 0.02$ | -               | $0.06 \pm 0.01$ | RI, MS  |
| 35 | Thymol methyl ether                    | 1238            | 1237            | $0.08 \pm 0.01$ | $0.05 \pm 0.01$ | $0.13 \pm 0.07$ | $0.15 \pm 0.06$ | $0.13 \pm 0.07$ | RI, MS  |
| 36 | Carvacrol methyl ether                 | 1248            | 1241            | $1.94 \pm 0.78$ | $1.87 \pm 1.19$ | $3.58 \pm 0.88$ | $2.90 \pm 1.67$ | $1.84 \pm 0.39$ | RI, MS  |
| 37 | Geraniol                               | 1260            | 1263            | $0.02 \pm 0.02$ | -               | -               | $0.03 \pm 0.02$ | tr              | RI, MS  |
| 38 | Geranial                               | 1280            | 1273            | -               | -               | -               | -               | $0.02 \pm 0.01$ | RI, MS  |
| 39 | <i>p</i> -Thymol                       | 1286            |                 | $0.10 \pm 0.05$ | $0.18 \pm 0.10$ | $0.15 \pm 0.03$ | $0.17 \pm 0.01$ | $0.07 \pm 0.01$ | MS      |
| 40 | Thymol                                 | 1295            | 1295            | $10.24 \pm 6.6$ | $7.34 \pm 4.00$ | 8.72 ± 1.97     | $14.67 \pm 7.8$ | 12.28 ± 2.2     | RI, MS  |
| 41 | Carvacrol                              | 1309            | 1305            | 60.26 ± 10.2    | $64.22 \pm 7.5$ | $54.17 \pm 6.3$ | $48.16 \pm 6.7$ | 55.10 ± 3.1     | RI, MS  |
| 42 | Thymol acetate                         | 1358            | 1359            | $0.09 \pm 0.07$ | $0.05 \pm 0.03$ | $0.19 \pm 0.13$ | $0.21 \pm 0.06$ | $0.08 \pm 0.02$ | RI, MS  |
| 43 | Carvacrol acetate                      | 1377            | 1368            | $0.66 \pm 0.13$ | $0.58 \pm 0.39$ | $1.39 \pm 0.10$ | $0.92 \pm 0.45$ | $0.55 \pm 0.06$ | RI, MS  |
| 44 | $\beta$ -Bourbonene                    | 1384            | 1378            | -               | -               | -               | -               | -               | RI, MS  |
| 45 | E-Caryophyllene                        | 1435            | 1427            | $1.95 \pm 0.40$ | $2.37 \pm 0.40$ | $1.85 \pm 0.30$ | $1.64 \pm 0.29$ | $1.38 \pm 0.25$ | RI, MS  |
| 46 | Aromadendrene                          | 1455            | 1436            | $0.43 \pm 0.09$ | $0.29 \pm 0.04$ | $0.49 \pm 0.05$ | $0.40 \pm 0.08$ | $0.20 \pm 0.05$ | RI, MS  |
| 47 | $\alpha$ -Humullene                    | 1469            | 1452            | $0.15 \pm 0.02$ | $0.15 \pm 0.02$ | $0.16 \pm 0.01$ | $0.15 \pm 0.02$ | $0.10 \pm 0.01$ | RI, MS  |
| 48 | 9-epi-(E)-Caryophyllene                | 1477            | 1474            | $0.02 \pm 0.02$ | -               | $0.05 \pm 0.02$ | $0.02 \pm 0.02$ | -               | RI, MS  |
| 49 | $E$ - $\beta$ -Guaiene                 | 1504            | 1498            | -               | -               | -               | -               | -               | RI, MS  |
| 50 | Viridiflorene                          | 1510            | 1505            | $0.31 \pm 0.07$ | $0.21 \pm 0.01$ | $0.35 \pm 0.03$ | $0.28 \pm 0.08$ | $0.15 \pm 0.03$ | RI, MS  |
| 51 | Spathulenol                            | 1594            | 1578            | $0.44 \pm 0.13$ | $0.27 \pm 0.05$ | $0.63 \pm 0.04$ | $0.59 \pm 0.11$ | $0.28 \pm 0.02$ | RI, MS  |
| 52 | Isoaromadendrene epoxide               | 1597            |                 | $0.11 \pm 0.02$ | $0.11 \pm 0.01$ | $0.14 \pm 0.01$ | $0.15 \pm 0.03$ | $0.10 \pm 0.02$ | MS      |
| 53 | Caryophyllene oxide                    | 1601            | 1599            | $0.21 \pm 0.06$ | $0.17 \pm 0.03$ | $0.30 \pm 0.05$ | $0.28 \pm 0.06$ | $0.19 \pm 0.03$ | RI, MS  |
| 54 | Caryophylla-4(12),8(13)-dien-5 beta-ol | 1654            | 1663            | $0.09 \pm 0.02$ | $0.07 \pm 0.01$ | $0.11 \pm 0.04$ | $0.12 \pm 0.02$ | $0.08 \pm 0.01$ | RI, MS  |
| 55 | 14-Hydroxy-9-epi-(E)-caryophyllene     | 1673            | 1669            | $0.06 \pm 0.04$ | $0.07 \pm 0.01$ | $0.11 \pm 0.01$ | $0.11 \pm 0.02$ | $0.06 \pm 0.02$ | RI, MS  |
| 56 | Khusinol                               | 1686            | 1674            | $0.08 \pm 0.02$ | $0.07 \pm 0.01$ | $0.11 \pm 0.01$ | $0.11 \pm 0.02$ | $0.07 \pm 0.01$ | RI, MS  |
|    | Monoterpene hydrocarbons               |                 |                 | 18.98           | 18.77           | 23.66           | 24.59           | 15.56           |         |
|    | Oxygenated monoterpens                 |                 |                 | 76.17           | 76.77           | 71.25           | 70.35           | 80.93           |         |
|    | Sesquiterpene hydrocarbons             |                 |                 | 2.92            | 3.09            | 2.97            | 2.55            | 1.94            |         |
|    | Oxygenated sesquiterpenes              |                 |                 | 0.99            | 0.76            | 1.40            | 1.35            | 0.78            |         |
|    | Essential oil content (%)              |                 |                 | $4.8\pm0.47$    | $5.62 \pm 0.91$ | $5.18 \pm 0.58$ | $4.96 \pm 0.34$ | $4.15 \pm 0.44$ |         |

(Continued)

## TABLE 3 | Continued

| 1       2       3       4       5       6       7       8       9       10       11       12       13       14       15       16       21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\alpha$ -Thujene<br>$\alpha$ -Pinene<br>Camphene<br>2,4(10)-Thujadiene<br>1,3-Octanol<br>Sabinene<br>$\beta$ -Pinene<br>Myrcene<br>3-Octanol<br>$\alpha$ -Phellandrene<br>$\delta$ -3-Carene<br>$\alpha$ -Terpinene<br>p-Cymene<br>Limonene<br>1,8-Cineole<br>$Z$ - $\beta$ -Ocimene<br>p-Cocimene<br>p-Cocimene<br>p-Cocimene<br>p-Cocimene<br>p-Cocimene<br>p-Cocimene<br>p-Cocimene<br>p-Cocimene<br>p-Cocimene<br>p-Cocimene<br>p-Cocimene<br>p-Cocimene<br>p-Cocimene<br>p-Cocimene<br>p-Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 933<br>940<br>955<br>960<br>969<br>979<br>983<br>995<br>997<br>1010<br>1015<br>1021<br>1030<br>1034<br>1037 | 929<br>939<br>954<br>957<br>973<br>977<br>978<br>992<br>995<br>1005<br>1011<br>1019<br>1025 | $\begin{tabular}{ c c c c c }\hline \hline Daarbast \\ \hline 0.40 \pm 0.24 \\ 3.89 \pm 2.00 \\ 0.19 \pm 0.07 \\ \hline & - \\ \hline 0.07 \pm 0.01 \\ 0.11 \pm 0.03 \\ 0.65 \pm 0.28 \\ 1.10 \pm 0.27 \\ 0.18 \pm 0.10 \\ 0.18 \pm 0.01 \\ 0.03 \pm 0.01 \\ 1.15 \pm 0.15 \\ \hline \end{tabular}$ | Konar Siah $0.43 \pm 0.25$ $3.31 \pm 2.50$ $0.14 \pm 0.07$ $ 0.15 \pm 0.01$ $0.21 \pm 0.10$ $0.56 \pm 0.30$ $1.15 \pm 0.29$ $0.13 \pm 0.10$ $0.8 \pm 0.01$                                               | $\begin{tabular}{ c c c c }\hline \hline Darab \\ \hline 0.36 \pm 0.03 \\ 2.62 \pm 0.28 \\ 0.15 \pm 0.01 \\ - \\ \hline 0.16 \pm 0.24 \\ 0.10 \pm 0.01 \\ 0.51 \pm 0.04 \\ 0.94 \pm 0.11 \\ 0.04 \pm 0.01 \\ 0.13 \pm 0.01 \\ \hline \end{tabular}$ | Haneshk $0.28 \pm 0.17$ $1.54 \pm 0.95$ $0.10 \pm 0.03$ - $0.08 \pm 0.02$ $0.10 \pm 0.02$ $0.30 \pm 0.13$ $2.34 \pm 0.76$ $0.16 \pm 0.09$ $0.34 \pm 0.11$                                 | Methods<br>RI, MS<br>RI, MS<br>RI, MS<br>RI, MS<br>RI, MS<br>RI, MS<br>RI, MS<br>RI, MS |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 1 2 3 4 5 5 5 6 5 9 3 10 4 11 1 5 10 11 1 12 10 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\alpha$ -Thujene $\alpha$ -Pinene         Camphene $2,4(10)$ -Thujadiene $1,3$ -Octanol         Sabinene $\beta$ -Pinene         Myrcene $3$ -Octanol $\alpha$ -Phellandrene $\delta$ -3-Carene $\alpha$ -Terpinene $p$ -Oymene         Limonene $1,8$ -Cineole $Z$ - $\beta$ -Ocimene $e$ - $\beta$ -Ocimene $\gamma$ -Terpinene $\gamma$ -Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 933<br>940<br>955<br>960<br>969<br>979<br>983<br>995<br>997<br>1010<br>1015<br>1021<br>1030<br>1034<br>1037 | 929<br>939<br>954<br>957<br>973<br>977<br>978<br>992<br>995<br>1005<br>1011<br>1019<br>1025 | $\begin{array}{c} 0.40 \pm 0.24 \\ 3.89 \pm 2.00 \\ 0.19 \pm 0.07 \\ - \\ 0.07 \pm 0.01 \\ 0.11 \pm 0.03 \\ 0.65 \pm 0.28 \\ 1.10 \pm 0.27 \\ 0.18 \pm 0.10 \\ 0.18 \pm 0.01 \\ 0.03 \pm 0.01 \\ 1.15 \pm 0.15 \end{array}$                                                                         | $\begin{array}{c} 0.43 \pm 0.25 \\ 3.31 \pm 2.50 \\ 0.14 \pm 0.07 \\ - \\ 0.15 \pm 0.01 \\ 0.21 \pm 0.10 \\ 0.56 \pm 0.30 \\ 1.15 \pm 0.29 \\ 0.13 \pm 0.10 \\ 0.18 \pm 0.01 \\ 0.02 + 0.01 \end{array}$ | $\begin{array}{c} 0.36 \pm 0.03 \\ 2.62 \pm 0.28 \\ 0.15 \pm 0.01 \\ - \\ 0.16 \pm 0.24 \\ 0.10 \pm 0.01 \\ 0.51 \pm 0.04 \\ 0.94 \pm 0.11 \\ 0.04 \pm 0.01 \\ 0.13 \pm 0.01 \end{array}$                                                           | $\begin{array}{c} 0.28 \pm 0.17 \\ 1.54 \pm 0.95 \\ 0.10 \pm 0.03 \\ - \\ 0.08 \pm 0.02 \\ 0.10 \pm 0.02 \\ 0.30 \pm 0.13 \\ 2.34 \pm 0.76 \\ 0.16 \pm 0.09 \\ 0.34 \pm 0.11 \end{array}$ | RI, MS<br>RI, MS<br>RI, MS<br>RI, MS<br>RI, MS<br>RI, MS<br>RI, MS<br>RI, MS            |
| 2 3 4 5<br>6 5<br>7 7 8<br>9 9 5<br>10 6<br>11 6<br>12 6<br>13 7<br>14 1<br>15 7<br>16 2<br>13 7<br>14 1<br>15 7<br>16 2<br>13 7<br>17 8<br>19 2<br>20 2<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\alpha$ -Pinene<br>Camphene<br>2,4(10)-Thujadiene<br>1,3-Octanol<br>Sabinene<br>$\beta$ -Pinene<br>Myrcene<br>3-Octanol<br>$\alpha$ -Phellandrene<br>$\delta$ ·3-Carene<br>$\alpha$ -Terpinene<br>p-Cymene<br>Limonene<br>1,8-Cineole<br>$Z$ - $\beta$ -Ocimene<br>p-Goimene<br>$E$ - $\beta$ -Ocimene<br>p-Terpinene<br>Z-Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 940<br>955<br>960<br>969<br>979<br>983<br>995<br>997<br>1010<br>1015<br>1021<br>1030<br>1034<br>1037        | 939<br>954<br>957<br>973<br>977<br>978<br>992<br>995<br>1005<br>1011<br>1019<br>1025        | $\begin{array}{c} 3.89 \pm 2.00 \\ 0.19 \pm 0.07 \\ - \\ 0.07 \pm 0.01 \\ 0.11 \pm 0.03 \\ 0.65 \pm 0.28 \\ 1.10 \pm 0.27 \\ 0.18 \pm 0.10 \\ 0.18 \pm 0.01 \\ 0.03 \pm 0.01 \\ 1.15 \pm 0.15 \end{array}$                                                                                          | $\begin{array}{c} 3.31 \pm 2.50 \\ 0.14 \pm 0.07 \\ - \\ 0.15 \pm 0.01 \\ 0.21 \pm 0.10 \\ 0.56 \pm 0.30 \\ 1.15 \pm 0.29 \\ 0.13 \pm 0.10 \\ 0.18 \pm 0.01 \\ 0.02 + 0.01 \end{array}$                  | $2.62 \pm 0.28$ $0.15 \pm 0.01$ $-$ $0.16 \pm 0.24$ $0.10 \pm 0.01$ $0.51 \pm 0.04$ $0.94 \pm 0.11$ $0.04 \pm 0.01$ $0.13 \pm 0.01$                                                                                                                 | $\begin{array}{c} 1.54 \pm 0.95 \\ 0.10 \pm 0.03 \\ - \\ 0.08 \pm 0.02 \\ 0.10 \pm 0.02 \\ 0.30 \pm 0.13 \\ 2.34 \pm 0.76 \\ 0.16 \pm 0.09 \\ 0.34 \pm 0.11 \end{array}$                  | RI, MS<br>RI, MS<br>RI, MS<br>RI, MS<br>RI, MS<br>RI, MS<br>RI, MS                      |
| 3       4         5       6         6       7         8       1         9       3         10       6         11       6         12       6         13       14         15       16         17       18         19       20         21       21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Camphene<br>2,4(10)-Thujadiene<br>1,3-Octanol<br>Sabinene<br>$\beta$ -Pinene<br>Myrcene<br>3-Octanol<br>$\alpha$ -Phellandrene<br>$\delta$ ·3-Carene<br>$\alpha$ -Terpinene<br>p-Cymene<br>Limonene<br>1,8-Cineole<br>$Z$ - $\beta$ -Ocimene<br>$\varepsilon$ - $\beta$ -Ocimene<br>$\varepsilon$ - $\beta$ -Ocimene<br>$\gamma$ -Terpinene<br>Z-Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 955<br>960<br>969<br>979<br>983<br>995<br>997<br>1010<br>1015<br>1021<br>1030<br>1034<br>1037               | 954<br>957<br>973<br>977<br>978<br>992<br>995<br>1005<br>1011<br>1019<br>1025               | $\begin{array}{c} 0.19 \pm 0.07 \\ - \\ 0.07 \pm 0.01 \\ 0.11 \pm 0.03 \\ 0.65 \pm 0.28 \\ 1.10 \pm 0.27 \\ 0.18 \pm 0.10 \\ 0.18 \pm 0.01 \\ 0.03 \pm 0.01 \\ 1.15 \pm 0.15 \end{array}$                                                                                                           | $\begin{array}{c} 0.14 \pm 0.07 \\ - \\ 0.15 \pm 0.01 \\ 0.21 \pm 0.10 \\ 0.56 \pm 0.30 \\ 1.15 \pm 0.29 \\ 0.13 \pm 0.10 \\ 0.18 \pm 0.01 \\ 0.02 + 0.01 \end{array}$                                   | $\begin{array}{c} 0.15 \pm 0.01 \\ - \\ 0.16 \pm 0.24 \\ 0.10 \pm 0.01 \\ 0.51 \pm 0.04 \\ 0.94 \pm 0.11 \\ 0.04 \pm 0.01 \\ 0.13 \pm 0.01 \end{array}$                                                                                             | $\begin{array}{c} 0.10 \pm 0.03 \\ - \\ 0.08 \pm 0.02 \\ 0.10 \pm 0.02 \\ 0.30 \pm 0.13 \\ 2.34 \pm 0.76 \\ 0.16 \pm 0.09 \\ 0.34 \pm 0.11 \end{array}$                                   | RI, MS<br>RI, MS<br>RI, MS<br>RI, MS<br>RI, MS<br>RI, MS                                |
| 4 : 5<br>6 : 7<br>8 : 1<br>9 : 5<br>10 : 6<br>11 : 6<br>12 : 6<br>13 : 7<br>14 : 1<br>15 : 5<br>16 : 2<br>13 : 7<br>14 : 1<br>15 : 5<br>16 : 2<br>17 : 7<br>18 : 1<br>19 : 2<br>20 : 2<br>21 : 5<br>21 : 5 | 2,4(10)-Thujadiene<br>1,3-Octanol<br>Sabinene<br>$\beta$ -Pinene<br>Myrcene<br>3-Octanol<br>$\alpha$ -Phellandrene<br>$\delta$ -3-Carene<br>$\alpha$ -Terpinene<br>p-Cymene<br>Limonene<br>1,8-Cineole<br>$Z$ - $\beta$ -Ocimene<br>$\varepsilon$ - $\beta$ -Ocimene<br>$\gamma$ -Terpinene<br>Z-Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 960<br>969<br>979<br>983<br>995<br>997<br>1010<br>1015<br>1021<br>1030<br>1034<br>1037                      | 957<br>973<br>977<br>978<br>992<br>995<br>1005<br>1011<br>1019<br>1025                      | $\begin{array}{c} -\\ 0.07 \pm 0.01\\ 0.11 \pm 0.03\\ 0.65 \pm 0.28\\ 1.10 \pm 0.27\\ 0.18 \pm 0.10\\ 0.18 \pm 0.01\\ 0.03 \pm 0.01\\ 1.15 \pm 0.15 \end{array}$                                                                                                                                    | $\begin{array}{c} -\\ 0.15 \pm 0.01\\ 0.21 \pm 0.10\\ 0.56 \pm 0.30\\ 1.15 \pm 0.29\\ 0.13 \pm 0.10\\ 0.18 \pm 0.01\\ 0.02 \pm 0.01 \end{array}$                                                         | $\begin{array}{c} -\\ 0.16 \pm 0.24 \\ 0.10 \pm 0.01 \\ 0.51 \pm 0.04 \\ 0.94 \pm 0.11 \\ 0.04 \pm 0.01 \\ 0.13 \pm 0.01 \end{array}$                                                                                                               | $\begin{array}{c} -\\ 0.08 \pm 0.02\\ 0.10 \pm 0.02\\ 0.30 \pm 0.13\\ 2.34 \pm 0.76\\ 0.16 \pm 0.09\\ 0.34 \pm 0.11 \end{array}$                                                          | RI, MS<br>RI, MS<br>RI, MS<br>RI, MS<br>RI, MS<br>RI, MS                                |
| 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>11<br>15<br>16<br>21<br>17<br>18<br>19<br>20<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,3-Octanol<br>Sabinene<br>$\beta$ -Pinene<br>Myrcene<br>3-Octanol<br>$\alpha$ -Phellandrene<br>$\delta$ ·3-Carene<br>$\alpha$ -Terpinene<br>p-Cymene<br>Limonene<br>1,8-Cineole<br>$Z$ - $\beta$ -Ocimene<br>$E$ - $\beta$ -Ocimene<br>p-Cymene<br>$E$ - $\beta$ -Ocimene<br>$\gamma$ -Terpinene<br>Z-Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 969<br>979<br>983<br>995<br>997<br>1010<br>1015<br>1021<br>1030<br>1034<br>1037                             | 973<br>977<br>978<br>992<br>995<br>1005<br>1011<br>1019<br>1025                             | $\begin{array}{c} 0.07 \pm 0.01 \\ 0.11 \pm 0.03 \\ 0.65 \pm 0.28 \\ 1.10 \pm 0.27 \\ 0.18 \pm 0.10 \\ 0.18 \pm 0.01 \\ 0.03 \pm 0.01 \\ 1.15 \pm 0.15 \end{array}$                                                                                                                                 | $\begin{array}{c} 0.15 \pm 0.01 \\ 0.21 \pm 0.10 \\ 0.56 \pm 0.30 \\ 1.15 \pm 0.29 \\ 0.13 \pm 0.10 \\ 0.18 \pm 0.01 \\ 0.02 + 0.01 \end{array}$                                                         | $\begin{array}{c} 0.16 \pm 0.24 \\ 0.10 \pm 0.01 \\ 0.51 \pm 0.04 \\ 0.94 \pm 0.11 \\ 0.04 \pm 0.01 \\ 0.13 \pm 0.01 \end{array}$                                                                                                                   | $\begin{array}{c} 0.08 \pm 0.02 \\ 0.10 \pm 0.02 \\ 0.30 \pm 0.13 \\ 2.34 \pm 0.76 \\ 0.16 \pm 0.09 \\ 0.34 \pm 0.11 \end{array}$                                                         | RI, MS<br>RI, MS<br>RI, MS<br>RI, MS<br>RI, MS                                          |
| 6     3       7     8       9     3       10     4       11     4       12     4       13     4       14     1       15     3       16     2       17     4       18     3       19     2       20     2       21     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sabinene<br>$\beta$ -Pinene<br>Myrcene<br>3-Octanol<br>$\alpha$ -Phellandrene<br>$\delta$ ·3-Carene<br>$\alpha$ -Terpinene<br>p-Cymene<br>Limonene<br>1,8-Cineole<br>$Z$ - $\beta$ -Ocimene<br>$\varepsilon$ - $\beta$ -Ocimene<br>$\gamma$ -Terpinene<br>Z-Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 979<br>983<br>995<br>997<br>1010<br>1015<br>1021<br>1030<br>1034<br>1037                                    | 977<br>978<br>992<br>995<br>1005<br>1011<br>1019<br>1025                                    | $\begin{array}{c} 0.11 \pm 0.03 \\ 0.65 \pm 0.28 \\ 1.10 \pm 0.27 \\ 0.18 \pm 0.10 \\ 0.18 \pm 0.01 \\ 0.03 \pm 0.01 \\ 1.15 \pm 0.15 \end{array}$                                                                                                                                                  | $\begin{array}{c} 0.21 \pm 0.10 \\ 0.56 \pm 0.30 \\ 1.15 \pm 0.29 \\ 0.13 \pm 0.10 \\ 0.18 \pm 0.01 \\ 0.02 \pm 0.01 \end{array}$                                                                        | $0.10 \pm 0.01$<br>$0.51 \pm 0.04$<br>$0.94 \pm 0.11$<br>$0.04 \pm 0.01$<br>$0.13 \pm 0.01$                                                                                                                                                         | $0.10 \pm 0.02$<br>$0.30 \pm 0.13$<br>$2.34 \pm 0.76$<br>$0.16 \pm 0.09$<br>$0.34 \pm 0.11$                                                                                               | RI, MS<br>RI, MS<br>RI, MS<br>RI, MS                                                    |
| 7 7 9<br>9 10 11<br>12 12 11<br>13 11<br>14 1<br>15 16 2<br>17 11<br>18 19 2<br>20 2<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\beta$ -Pinene<br>Myrcene<br>3-Octanol<br>$\alpha$ -Phellandrene<br>$\delta$ -3-Carene<br>$\alpha$ -Terpinene<br>p-Cymene<br>Limonene<br>1,8-Cineole<br>$Z$ - $\beta$ -Ocimene<br>$\varepsilon$ - $\beta$ -Ocimene<br>$\gamma$ -Terpinene<br>Z-Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 983<br>995<br>997<br>1010<br>1015<br>1021<br>1030<br>1034<br>1037                                           | 978<br>992<br>995<br>1005<br>1011<br>1019<br>1025                                           | $\begin{array}{l} 0.65 \pm 0.28 \\ 1.10 \pm 0.27 \\ 0.18 \pm 0.10 \\ 0.18 \pm 0.01 \\ 0.03 \pm 0.01 \\ 1.15 \pm 0.15 \end{array}$                                                                                                                                                                   | $0.56 \pm 0.30 \\ 1.15 \pm 0.29 \\ 0.13 \pm 0.10 \\ 0.18 \pm 0.01 \\ 0.02 \pm 0.01$                                                                                                                      | $0.51 \pm 0.04$<br>$0.94 \pm 0.11$<br>$0.04 \pm 0.01$<br>$0.13 \pm 0.01$                                                                                                                                                                            | $0.30 \pm 0.13$<br>$2.34 \pm 0.76$<br>$0.16 \pm 0.09$<br>$0.34 \pm 0.11$                                                                                                                  | RI, MS<br>RI, MS<br>RI, MS                                                              |
| 8   9 ; 10 ; 11 ; 12 ; 13 ; 14 ; 11 ; 15 ; 16 ; 17 ; 17 ; 17 ; 17 ; 17 ; 17 ; 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Myroene<br>3-Octanol<br>$\alpha$ -Phellandrene<br>$\delta$ -3-Carene<br>$\alpha$ -Terpinene<br>p-Cymene<br>Limonene<br>1,8-Cineole<br>$Z$ - $\beta$ -Ocimene<br>$E$ - $\beta$ -Ocimene<br>$\gamma$ -Terpinene<br>Z-Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 995<br>997<br>1010<br>1015<br>1021<br>1030<br>1034<br>1037                                                  | 992<br>995<br>1005<br>1011<br>1019<br>1025                                                  | $\begin{array}{c} 1.10 \pm 0.27 \\ 0.18 \pm 0.10 \\ 0.18 \pm 0.01 \\ 0.03 \pm 0.01 \\ 1.15 \pm 0.15 \end{array}$                                                                                                                                                                                    | $1.15 \pm 0.29$<br>$0.13 \pm 0.10$<br>$0.18 \pm 0.01$                                                                                                                                                    | 0.94 ± 0.11<br>0.04 ± 0.01<br>0.13 ± 0.01                                                                                                                                                                                                           | 2.34 ± 0.76<br>0.16 ± 0.09<br>0.34 ± 0.11                                                                                                                                                 | RI, MS<br>RI, MS                                                                        |
| 9 : : : : : : : : : : : : : : : : : : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3-Octanol<br><i>α</i> -Phellandrene<br><i>δ</i> -3-Carene<br><i>α</i> -Terpinene<br><i>p</i> -Cymene<br>Limonene<br>1,8-Cineole<br><i>Z</i> - <i>β</i> -Ocimene<br><i>E</i> - <i>β</i> -Ocimene<br><i>γ</i> -Terpinene<br><i>Z</i> -Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 997<br>1010<br>1015<br>1021<br>1030<br>1034<br>1037                                                         | 995<br>1005<br>1011<br>1019<br>1025<br>1020                                                 | $0.18 \pm 0.10$<br>$0.18 \pm 0.01$<br>$0.03 \pm 0.01$<br>$1.15 \pm 0.15$                                                                                                                                                                                                                            | $0.13 \pm 0.10$<br>$0.18 \pm 0.01$                                                                                                                                                                       | $0.04 \pm 0.01$<br>$0.13 \pm 0.01$                                                                                                                                                                                                                  | 0.16 ± 0.09<br>0.34 ± 0.11                                                                                                                                                                | RI, MS                                                                                  |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>27<br>18<br>19<br>20<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\alpha$ -Phellandrene<br>$\delta$ -3-Carene<br>$\alpha$ -Terpinene<br>p-Cymene<br>Limonene<br>1,8-Cineole<br>$Z$ - $\beta$ -Ocimene<br>$E$ - $\beta$ -Ocimene<br>$\gamma$ -Terpinene<br>Z-Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1010<br>1015<br>1021<br>1030<br>1034<br>1037                                                                | 1005<br>1011<br>1019<br>1025                                                                | 0.18 ± 0.01<br>0.03 ± 0.01<br>1.15 ± 0.15                                                                                                                                                                                                                                                           | $0.18 \pm 0.01$                                                                                                                                                                                          | $0.13 \pm 0.01$                                                                                                                                                                                                                                     | 0.34 ± 0.11                                                                                                                                                                               |                                                                                         |
| 11       12       13       14       15       16       17       18       19       20       21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\delta^3$ -Carene<br>$\alpha$ -Terpinene<br>p-Cymene<br>Limonene<br>1,8-Cineole<br>$Z$ - $\beta$ -Ocimene<br>$E$ - $\beta$ -Ocimene<br>$\gamma$ -Terpinene<br>Z-Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1015<br>1021<br>1030<br>1034<br>1037<br>1020                                                                | 1011<br>1019<br>1025                                                                        | $0.03 \pm 0.01$<br>1.15 ± 0.15                                                                                                                                                                                                                                                                      | $0.02 \pm 0.01$                                                                                                                                                                                          |                                                                                                                                                                                                                                                     | -                                                                                                                                                                                         | RI, MS                                                                                  |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\alpha$ - lerpinene<br>p-Oymene<br>Limonene<br>1,8-Cineole<br>$Z$ - $\beta$ -Ocimene<br>$\epsilon$ - $\beta$ -Ocimene<br>$\gamma$ -Terpinene<br>Z-Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1021<br>1030<br>1034<br>1037                                                                                | 1019<br>1025                                                                                | $1.15 \pm 0.15$                                                                                                                                                                                                                                                                                     | 0.02 ± 0.01                                                                                                                                                                                              | -                                                                                                                                                                                                                                                   | -                                                                                                                                                                                         | RI, MS                                                                                  |
| 13     1       14     1       15     1       16     2       17     1       18     1       19     2       20     2       21     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | p-Cymene<br>Limonene<br>1,8-Cineole<br>$Z$ - $\beta$ -Ocimene<br>$E$ - $\beta$ -Ocimene<br>$\gamma$ -Terpinene<br>Z-Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1030<br>1034<br>1037                                                                                        | 1025                                                                                        |                                                                                                                                                                                                                                                                                                     | $1.25 \pm 0.25$                                                                                                                                                                                          | $1.04 \pm 0.06$                                                                                                                                                                                                                                     | $0.81 \pm 0.41$                                                                                                                                                                           | RI, MS                                                                                  |
| 14     1       15     1       16     2       17     1       18     2       19     2       20     2       21     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limonene<br>1,8-Cineole<br>$Z$ - $\beta$ -Ocimene<br>$E$ - $\beta$ -Ocimene<br>$\gamma$ -Terpinene<br>Z-Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1034<br>1037                                                                                                | 1020                                                                                        | $6.34 \pm 2.69$                                                                                                                                                                                                                                                                                     | $6.42 \pm 2.21$                                                                                                                                                                                          | $13.96 \pm 1.1$                                                                                                                                                                                                                                     | $4.33 \pm 2.76$                                                                                                                                                                           | RI, MS                                                                                  |
| 15       16       17       18       19       20       21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,8-Cineole<br><i>Z</i> -β-Ocimene<br><i>E</i> -β-Ocimene<br>γ-Terpinene<br><i>Z</i> -Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1037                                                                                                        | 1030                                                                                        | $0.58 \pm 0.27$                                                                                                                                                                                                                                                                                     | $0.58 \pm 0.27$                                                                                                                                                                                          | $0.61 \pm 0.09$                                                                                                                                                                                                                                     | $0.76 \pm 0.13$                                                                                                                                                                           | RI, MS                                                                                  |
| 16     17       17     1       18     1       19     2       20     2       21     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z-β-Ocimene<br>E-β-Ocimene<br>γ-Terpinene<br>Z-Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1020                                                                                                        | 1035                                                                                        | $0.06 \pm 0.01$                                                                                                                                                                                                                                                                                     | $0.06 \pm 0.01$                                                                                                                                                                                          | $0.07 \pm 0.05$                                                                                                                                                                                                                                     | $0.19 \pm 0.16$                                                                                                                                                                           | RI, MS                                                                                  |
| 17 1<br>18 1<br>19 2<br>20 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>E-β</i> -Ocimene<br>γ-Terpinene<br>Z-Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1039                                                                                                        | 1039                                                                                        | $0.52 \pm 0.30$                                                                                                                                                                                                                                                                                     | $0.59 \pm 0.33$                                                                                                                                                                                          | $0.45 \pm 0.04$                                                                                                                                                                                                                                     | $0.68 \pm 0.30$                                                                                                                                                                           | RI, MS                                                                                  |
| 18<br>19<br>20<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | γ-lerpinene<br>Z-Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1050                                                                                                        | 1050                                                                                        | $0.08 \pm 0.02$                                                                                                                                                                                                                                                                                     | $0.09 \pm 0.03$                                                                                                                                                                                          | $0.04 \pm 0.02$                                                                                                                                                                                                                                     | $0.94 \pm 0.50$                                                                                                                                                                           | RI, MS                                                                                  |
| 19 2<br>20 2<br>21 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ∠-Sabinene hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1063                                                                                                        | 1062                                                                                        | 4.73 ± 0.97                                                                                                                                                                                                                                                                                         | 4.79 ± 1.03                                                                                                                                                                                              | $2.93 \pm 0.24$                                                                                                                                                                                                                                     | $2.60 \pm 1.76$                                                                                                                                                                           | RI, MS                                                                                  |
| 20 2<br>21 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1071                                                                                                        | 1070                                                                                        | $0.20 \pm 0.04$                                                                                                                                                                                                                                                                                     | $0.25 \pm 0.05$                                                                                                                                                                                          | $0.21 \pm 0.01$                                                                                                                                                                                                                                     | $0.33 \pm 0.27$                                                                                                                                                                           | RI, MS                                                                                  |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z-Linalool oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1076                                                                                                        | 1074                                                                                        | $0.10 \pm 0.01$                                                                                                                                                                                                                                                                                     | $0.04 \pm 0.01$                                                                                                                                                                                          | $0.04 \pm 0.02$                                                                                                                                                                                                                                     | $0.45 \pm 0.30$                                                                                                                                                                           | RI, MS                                                                                  |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lerpinolene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1092                                                                                                        | 1089                                                                                        | $0.21 \pm 0.04$                                                                                                                                                                                                                                                                                     | $0.23 \pm 0.06$                                                                                                                                                                                          | $0.21 \pm 0.03$                                                                                                                                                                                                                                     | $0.78 \pm 0.28$                                                                                                                                                                           | RI, MS                                                                                  |
| 22 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Linalool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1103                                                                                                        | 1100                                                                                        | $1.25 \pm 0.70$                                                                                                                                                                                                                                                                                     | $1.73 \pm 1.10$                                                                                                                                                                                          | $1.69 \pm 0.97$                                                                                                                                                                                                                                     | $37.65 \pm 20.6$                                                                                                                                                                          | RI, MS                                                                                  |
| 23 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E-γ-Caryophyllene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1106                                                                                                        | 1106                                                                                        | $0.06 \pm 0.02$                                                                                                                                                                                                                                                                                     | $0.09 \pm 0.06$                                                                                                                                                                                          | $0.10 \pm 0.04$                                                                                                                                                                                                                                     | $0.93 \pm 0.50$                                                                                                                                                                           | RI, MS                                                                                  |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-Octenyl-3-acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1111                                                                                                        | 1113                                                                                        | $0.03 \pm 0.01$                                                                                                                                                                                                                                                                                     | $0.07 \pm 0.06$                                                                                                                                                                                          | -                                                                                                                                                                                                                                                   | $0.11 \pm 0.07$                                                                                                                                                                           | RI, MS                                                                                  |
| 25 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | p-Menth-2-en-1-ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1124                                                                                                        | 1122                                                                                        | $0.04 \pm 0.03$                                                                                                                                                                                                                                                                                     | tr                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                   | $0.16 \pm 0.10$                                                                                                                                                                           | RI, MS                                                                                  |
| 26 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | allo-Ocimene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1131                                                                                                        | 1132                                                                                        | -                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                   | $0.38 \pm 0.26$                                                                                                                                                                           | RI, MS                                                                                  |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,3,8-p-Menthatriene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1133                                                                                                        |                                                                                             | -                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                   | $0.10 \pm 0.08$                                                                                                                                                                           | MS                                                                                      |
| 28 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Borneol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11/2                                                                                                        | 11/1                                                                                        | -                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                   | $0.99 \pm 0.68$                                                                                                                                                                           | RI, MS                                                                                  |
| 29 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ∠-Linalool oxide (pyranoid)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1177                                                                                                        | 1173                                                                                        | -                                                                                                                                                                                                                                                                                                   | tr                                                                                                                                                                                                       | $0.12 \pm 0.02$                                                                                                                                                                                                                                     | $0.13 \pm 0.06$                                                                                                                                                                           | RI, MS                                                                                  |
| 30 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4-Terpineol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1183                                                                                                        | 1179                                                                                        | $0.19 \pm 0.04$                                                                                                                                                                                                                                                                                     | $0.16 \pm 0.05$                                                                                                                                                                                          | $0.18 \pm 0.02$                                                                                                                                                                                                                                     | $0.18 \pm 0.05$                                                                                                                                                                           | RI, MS                                                                                  |
| 31 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | p-Cymenol-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1188                                                                                                        | 1184                                                                                        | $0.48 \pm 0.07$                                                                                                                                                                                                                                                                                     | $0.48 \pm 0.05$                                                                                                                                                                                          | $0.59 \pm 0.03$                                                                                                                                                                                                                                     | $0.29 \pm 0.09$                                                                                                                                                                           | RI, MS                                                                                  |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1195                                                                                                        | 1190                                                                                        | $0.72 \pm 0.37$                                                                                                                                                                                                                                                                                     | $0.81 \pm 0.40$                                                                                                                                                                                          | $0.58 \pm 0.04$                                                                                                                                                                                                                                     | $0.60 \pm 0.09$                                                                                                                                                                           | RI, MS                                                                                  |
| 33 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ∠-Dinydro carvone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1202                                                                                                        | 1200                                                                                        | $0.19 \pm 0.04$                                                                                                                                                                                                                                                                                     | $0.17 \pm 0.08$                                                                                                                                                                                          | $0.03 \pm 0.02$                                                                                                                                                                                                                                     | $0.21 \pm 0.11$                                                                                                                                                                           | RI, MS                                                                                  |
| 34 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1234                                                                                                        | 1228                                                                                        | $0.02 \pm 0.01$                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                        | $0.02 \pm 0.01$                                                                                                                                                                                                                                     | $0.06 \pm 0.04$                                                                                                                                                                           | RI, MS                                                                                  |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I nymoi metnyi etner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1238                                                                                                        | 1237                                                                                        | $0.08 \pm 0.01$                                                                                                                                                                                                                                                                                     | $0.10 \pm 0.08$                                                                                                                                                                                          | $1.52 \pm 0.12$                                                                                                                                                                                                                                     | $0.59 \pm 0.50$                                                                                                                                                                           | RI, MS                                                                                  |
| 30 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Carvacrol methyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1248                                                                                                        | 1241                                                                                        | 3.71 ± 3.00                                                                                                                                                                                                                                                                                         | $3.23 \pm 3.00$                                                                                                                                                                                          | 1.62 ± 0.38                                                                                                                                                                                                                                         | $0.92 \pm 0.72$                                                                                                                                                                           | RI, MS                                                                                  |
| 37 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Geranio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1260                                                                                                        | 1263                                                                                        | tr                                                                                                                                                                                                                                                                                                  | $0.02 \pm 0.01$                                                                                                                                                                                          | tr                                                                                                                                                                                                                                                  | $0.60 \pm 0.28$                                                                                                                                                                           | RI, MS                                                                                  |
| 38 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1280                                                                                                        | 1273                                                                                        | -                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                   | -                                                                                                                                                                                         | RI, IVIS                                                                                |
| 39 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1280                                                                                                        | 1005                                                                                        | $0.09 \pm 0.05$                                                                                                                                                                                                                                                                                     | $0.07 \pm 0.01$                                                                                                                                                                                          | $0.22 \pm 0.03$                                                                                                                                                                                                                                     | $0.05 \pm 0.04$                                                                                                                                                                           |                                                                                         |
| 4U<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1295                                                                                                        | 1295                                                                                        | $3.20 \pm 3.85$                                                                                                                                                                                                                                                                                     | $0.00 \pm 0.30$                                                                                                                                                                                          | $41.01 \pm 4.14$                                                                                                                                                                                                                                    | $17.00 \pm 10.9$                                                                                                                                                                          |                                                                                         |
| 41 (<br>10 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1309                                                                                                        | 1300                                                                                        | $01.41 \pm 13.3$                                                                                                                                                                                                                                                                                    | $30.29 \pm 13.3$                                                                                                                                                                                         | $21.01 \pm 4.91$                                                                                                                                                                                                                                    | $10.74 \pm 12.9$                                                                                                                                                                          | RI, IVIS                                                                                |
| 42<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000                                                                                                        | 1369                                                                                        | $0.10 \pm 0.10$                                                                                                                                                                                                                                                                                     | $0.17 \pm 0.13$                                                                                                                                                                                          | $0.75 \pm 0.09$                                                                                                                                                                                                                                     | $0.21 \pm 0.13$                                                                                                                                                                           |                                                                                         |
| 40 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B Rourbonono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1201                                                                                                        | 1270                                                                                        | 1.12 ± U.01                                                                                                                                                                                                                                                                                         | 1.40 ± 1.23                                                                                                                                                                                              | $0.31 \pm 0.09$                                                                                                                                                                                                                                     | $0.20 \pm 0.09$                                                                                                                                                                           |                                                                                         |
| 44 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/25                                                                                                        | 1/07                                                                                        | 103-062                                                                                                                                                                                                                                                                                             | 1 50 - 0 26                                                                                                                                                                                              | 1 50 - 0 29                                                                                                                                                                                                                                         | $0.04 \pm 0.03$<br>1.710.62                                                                                                                                                               | RI, IVIS                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1455                                                                                                        | 1/26                                                                                        | $1.35 \pm 0.02$                                                                                                                                                                                                                                                                                     | 1.08 ± 0.00                                                                                                                                                                                              | $1.35 \pm 0.30$                                                                                                                                                                                                                                     | $1.71 \pm 0.02$<br>0.10.40.11                                                                                                                                                             |                                                                                         |
| 40 /<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/60                                                                                                        | 1450                                                                                        | $0.47 \pm 0.07$<br>0.14 $\pm 0.02$                                                                                                                                                                                                                                                                  | $0.00 \pm 0.10$<br>0.12 - 0.02                                                                                                                                                                           | $0.24 \pm 0.09$                                                                                                                                                                                                                                     | $0.15 \pm 0.11$<br>0.16 $\pm 0.04$                                                                                                                                                        |                                                                                         |
| -+ <i>i</i> (<br>/8 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/77                                                                                                        | 1402                                                                                        | $0.14 \pm 0.02$                                                                                                                                                                                                                                                                                     | $0.12 \pm 0.03$                                                                                                                                                                                          | 0.11 ± 0.02                                                                                                                                                                                                                                         | 0.10 ± 0.04                                                                                                                                                                               |                                                                                         |
| 0 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $F_{B}$ -Guaiane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1504                                                                                                        | 1/102                                                                                       | $0.03 \pm 0.01$<br>0.02 ± 0.01                                                                                                                                                                                                                                                                      | 0.00 ± 0.00<br>tr                                                                                                                                                                                        | _                                                                                                                                                                                                                                                   | u<br>                                                                                                                                                                                     |                                                                                         |
| -+3 L<br>50 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Viridifloropo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1510                                                                                                        | 1490                                                                                        | $0.02 \pm 0.01$                                                                                                                                                                                                                                                                                     | u<br>0 22 - 0 10                                                                                                                                                                                         | -                                                                                                                                                                                                                                                   | 0.26 - 0.15                                                                                                                                                                               |                                                                                         |
| 51 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Spathulanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1504                                                                                                        | 1579                                                                                        | $0.30 \pm 0.13$                                                                                                                                                                                                                                                                                     | $0.32 \pm 0.10$                                                                                                                                                                                          | $0.14 \pm 0.00$                                                                                                                                                                                                                                     | $0.30 \pm 0.13$<br>0.77 + 0.21                                                                                                                                                            |                                                                                         |
| 50 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | leoaromadandrene enovido                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1507                                                                                                        | 10/0                                                                                        | $0.40 \pm 0.24$                                                                                                                                                                                                                                                                                     | $0.44 \pm 0.24$                                                                                                                                                                                          | $0.00 \pm 0.00$                                                                                                                                                                                                                                     | $0.11 \pm 0.31$<br>0.27 $\pm 0.10$                                                                                                                                                        |                                                                                         |
| 52 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1601                                                                                                        | 1500                                                                                        | $0.10 \pm 0.03$                                                                                                                                                                                                                                                                                     | $0.09 \pm 0.04$                                                                                                                                                                                          | $0.21 \pm 0.02$                                                                                                                                                                                                                                     | $0.21 \pm 0.10$                                                                                                                                                                           |                                                                                         |
| 50 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Caryophylie (12) 9(12) dian 5 bets -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1001                                                                                                        | 1099                                                                                        | $0.21 \pm 0.04$                                                                                                                                                                                                                                                                                     | $0.20 \pm 0.07$                                                                                                                                                                                          | $0.33 \pm 0.03$                                                                                                                                                                                                                                     | $0.45 \pm 0.13$                                                                                                                                                                           | RI, MS                                                                                  |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1679                                                                                                        | 1660                                                                                        | $0.03 \pm 0.02$                                                                                                                                                                                                                                                                                     | $0.07 \pm 0.00$                                                                                                                                                                                          | $0.12 \pm 0.01$                                                                                                                                                                                                                                     | $0.21 \pm 0.00$                                                                                                                                                                           |                                                                                         |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | re-riyuroxy-e-epi-(E)-caryopnyllene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1606                                                                                                        | 1674                                                                                        | $0.07 \pm 0.03$                                                                                                                                                                                                                                                                                     | $0.03 \pm 0.04$                                                                                                                                                                                          | $0.13 \pm 0.01$                                                                                                                                                                                                                                     | $0.10 \pm 0.00$                                                                                                                                                                           |                                                                                         |
| 00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nilusiilloi<br>Monotorpono budrooorborg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0801                                                                                                        | 10/4                                                                                        | $0.00 \pm 0.02$                                                                                                                                                                                                                                                                                     | U.U0 ± U.U4                                                                                                                                                                                              | U. 12 ± U.U1                                                                                                                                                                                                                                        | 0.17 ± 0.00                                                                                                                                                                               | RI, MS                                                                                  |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                             |                                                                                             | 20.10                                                                                                                                                                                                                                                                                               | 19.90                                                                                                                                                                                                    | ∠4.U0<br>71.97                                                                                                                                                                                                                                      | 77.01                                                                                                                                                                                     |                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A THE AT A REAL AND A THE AT |                                                                                                             |                                                                                             | 70.00                                                                                                                                                                                                                                                                                               | 10.10                                                                                                                                                                                                    | 11.37                                                                                                                                                                                                                                               | 11.21                                                                                                                                                                                     |                                                                                         |

(Continued)

#### TABLE 3 | Continued

| N | Components                                             | RIª | RI <sup>b</sup> |                     |                     |                    |                     |         |  |
|---|--------------------------------------------------------|-----|-----------------|---------------------|---------------------|--------------------|---------------------|---------|--|
|   |                                                        |     |                 | Daarbast            | Konar Siah          | Darab              | Haneshk             | Methods |  |
|   | Oxygenated sesquiterpenes<br>Essential oil content (%) |     |                 | 1.03<br>5.58 ± 0.48 | 0.91<br>5.89 ± 0.24 | 1.28<br>3.3 ± 0.26 | 2.03<br>3.71 ± 0.41 |         |  |

tr, trace < 0.02%.

a: RI, linear retention indices on HP-5MS column, experimentally determined using homologue series of n-alkanes.

b: Relative retention indices taken from Adams and NIST.

Methods: MS, by comparison of the mass spectrum with those of the computer mass libraries Adams and NIST.

matter (OM) ranged from 4% to 10% (Haneshk and Darab regions, respectively). The soil of regions were rich in calcium (Ca), iron (Fe), potassium (K) and aluminum (Al) whereas nitrogen (N) and phosphor (P) were present in lower levels. Furthermore, *Z. multiflora* grows on soils with alkaline pH (7.60 to 7.90).

The volatile constituents were influenced by edaphic factors (**Table 4**). Carvacrol was significantly positively correlated with pH, Ca, and temperature [0.69 (p < 0.01), 0.62 and 0.54 (p < 0.05) respectively] and there was a highly negative correlation between carvacrol and Al, Fe, and K. The correlation analysis indicated that linalool was considerably positively correlated with Al, Fe, and K (p < 0.01). No statistically significant correlations were detected among N and EO content and phytochemical constituents.

The SEM approach was used to dissect the contribution of environmental factors on EO and EO constituent content. Significant SEMs for EO [APC = 0.641 (P < 0.001), ARS = 0.571 (P=0.002), AVIF = 1.001], thymol [APC = 0.874 (P < 0.001), ARS = 0.770 (P < 0.001), AVIF = 1.435], carvacrol [APC = 0.602 (P = 0.001), ARS = 0.560 (P = 0.002), AVIF = 1.536] and linalool [APC = 0.489 (P = 0.005), ARS = 0.655 (P=0.008), AVIF = 1.019] were obtained. The portion of clay and



based on phytochemical composition.

phosphor had a direct negative influence on EO content. The altitude had a positive effect on phosphor content while latitude had a negative effect on clay content in the soil (**Figure 4A**). Thymol content was positively affected by clay amount in the soil and indirect negatively via the negative effect of latitude on clay (**Figure 4B**). Carvacrol was directly positively influenced by silt content and pH-value in the soil, which was positively depended on the amount of sand in the soil (**Figure 4C**). Latitude had a negative effect on soil silt and a positive one on the soil sand portion. The linalool content was affected on the one hand, directly by longitude (positively) and on the other hand by silt (negatively) while silt content itself was negatively affected by latitude (**Figure 4D**).

# Quantitative Analysis of EO Composition by NIRS

The dried leaves of specimens of Z. multiflora from different regions were analyzed by near infrared spectroscopy and hierarchical cluster analysis (HCA, Wards Algorithm). The NIR spectra of Z. multiflora were characterized by combination, first and second overtone vibrations in the range of 4,000 to 12,000 cm<sup>-1</sup>. HCA was used to group samples according to their spectral appearance determined through their chemical profile. Figure 5 presents the appropriate HCA plot showing the separation of Z. multiflora populations into different clusters. In contrast to GC analysis, NIRS combines spectral features of chemically similar structures. Hence, carvacrol, thymol, and p-cymene, all characterized by an isopropyl- and methyl-substituted aromatic ring system, show all nearly identical NIRS absorption patterns. Therefore, for NIRS not only the quantity of individual EO components are relevant, but the amount of structurally related substances. As shown in Figure 5 HCA resulted on highest level of heterogeneity in the clustering of samples according to the ratio of aromatic EO compounds (thymol + carvacrol + pcymene) to aliphatic, isolated C=C structures (linalool). On the next level, types with a high content of aromatic structures are divided into sub-clusters with high amounts of carvacrol (cluster IIIB), high thymol, and high linalool or high *p*-cymene (cluster IIIA) or high carvacrol and high *p*-cymene (cluster II).

Chemometrics of superintended pattern identification based on PLS-DA of GC combined with NIR spectroscopy was endeavored to categorize fourteen populations of *Z. multiflora.* Quantification models for the EO content and for major compounds were developed by 10-fold cross-validation



**FIGURE 4** | Hypothetical structural equation models (SEMs) to describe the relationships between geographical and edaphic factors and (**A**) EO, (**B**) thymol, (**C**) carvacrol, and (**D**) linalool content of *Zataria multiflora*. The climatic factors, temperature, and rainfall were included in the full model but did not explain EO or EO constituent content. R<sup>2</sup>: coefficient of determination indicating the variability explained for each variable. β- values indicate the path coefficients, P: significance level for relationship.

procedure according to literature (Krähmer et al., 2013). Therefore, averaged spectra for each plant were correlated with GC reference data for carvacrol, thymol, and linalool as well as EO content. For all constituents, appropriate prediction models were achieved. Figure 6 shows the results of cross-validation according to plant wise averaged NIR spectra from all populations. Generally, coefficients of determination  $(R^2)$  were higher than 0.82 for individual components and EO content. As shown in Figure 6A, NIRS offers a fast tool for estimation of EO content with a coefficient of determination  $R^2 = 0.85$  and a root mean square error of prediction (RMESP) below 10% of mean EO content (the mean of EO content over all samples used in the model, according to Figure 6 something about 4 to 5 ml/100 g) (RMSEP = 0.431%). Furthermore, for major EO components, prediction quality was best for linalool ( $R^2 = 0.97$ ) followed by  $R^2 = 0.87$  and  $R^2 = 0.82$  for carvacrol and thymol (Figures 6B-D), respectively.

# DISCUSSION

This study investigated the effect of different environmental factors on EO production, the content of specific EO compounds as well as on chemotype of different *Z. multiflora* populations. The EO values (up to 5.89% dry weight) detected in 14 populations in Iran were higher than those reported previously in the literature including 1.2% to 3.4% (Hadian et al., 2011a), 2.91% to 4% (Sadeghi et al., 2015), and 1.93% to 2.22% (Golkar et al., 2020). The EO content can be affected by geological, climatic, and edaphic characteristics as well as harvesting time. Saei-Dehkordi et al. (2010) described that the largest quantity of the EO content of *Z. multiflora* was collected in mid-May with 1.57% (v/w). Thus, knowledge on the season, phenological stage, and harvesting time during the day is necessary to obtain high quantities of EO content. Of the chemical constituents detected, carvacrol, thymol, linalool, p-cymene, yterpinene, and  $\alpha$ -pinene were found as the main compounds of Z. multiflora. In other studies, the highest diversity was shown for the monoterpenes, including carvacrol, thymol, linalool, and pcymene (Shafiee and Javidnia, 1997; Abkenar et al., 2008; Mahboubi and Bidgoli, 2010; Ziaee et al., 2018). Carvacrol, the major compound of the Jandagh population, has been previously reported as one of the most important components of EO among various members of the Lamiaceae family (Ebrahimi et al., 2008; Hadian et al., 2011b; Stefanaki et al., 2018; Santos et al., 2019). The main component of Darab and Fasa populations was thymol (41.61% and 48.12% respectively), which is an isomer of carvacrol. Saei-Dehkordi et al. (2010) and Sharififar et al. (2007) had depicted thymol as the most abundant component in the essential oil profile of Z. multiflora from different areas in Iran. Contrariwise, two other studies showed carvacrol as the main constituent of Z. multiflora (Basti et al., 2007; Khosravi et al., 2009). Moreover, EO of Z. multiflora contains other important monoterpene constituents like linalool, p-cymene, y-terpinene, and  $\alpha$ -pinene. Siriz and Haneshk populations were rich in linalool (55.38% and 37.65% respectively) and p-cymene was one of the main components of Darab population (13.96%).

The positive and negative correlations between EO components indicate the presence of three different chemotypes: thymol, carvacrol, and linalool. Furthermore, they indicate which compounds are interlinked in a chain of monoterpene synthesis with certain branches in the predicted enzymatic pathway: while geranyl-diphosphate is the precursor of non-phenolic linalool and phenolic thymol and carvacrol, the latter are connected *via p*-cymene (Thompson, 2005). In agreement to our results, similar correlations between individual EO components were found in *Artemisia dracunculus*, where methyl chavicol as the main constituent of *A. dracunculus* was positively correlated with

| TABLE 4 | Pearson correlation | coefficients between | EO content, | major compone | nts and edaphic factors. |
|---------|---------------------|----------------------|-------------|---------------|--------------------------|
|---------|---------------------|----------------------|-------------|---------------|--------------------------|

| Edaphic factors | EO      | Linalool | Thymol | Carvacrol | <i>p</i> -Cymene |
|-----------------|---------|----------|--------|-----------|------------------|
| Altitude        | -0.73** | 0.53*    | 0.20   | -0.41     | -0.45            |
| Temperature     | 0.73**  | -0.59*   | -0.30  | 0.54*     | 0.37             |
| OM              | 0.13    | -0.55*   | 0.45   | 0.02      | 0.80**           |
| pН              | 0.67**  | -0.42    | -0.64* | 0.69**    | 0.01             |
| Sand            | 0.22    | 0.41     | -0.63* | 0.15      | -0.64*           |
| Silt            | -0.12   | -0.56*   | 0.50   | 0.06      | 0.64*            |
| Clay            | -0.30   | 0.14     | 0.53*  | -0.52     | 0.27             |
| Ν               | -0.31   | -0.04    | 0.47   | -0.27     | 0.49             |
| Р               | -0.56*  | 0.44     | 0.04   | -0.28     | -0.23            |
| К               | -0.73** | 0.57*    | 0.41   | -0.63*    | -0.25            |
| Ca              | 0.62*   | -0.65*   | -0.29  | 0.62*     | 0.23             |
| Fe              | -0.78** | 0.60*    | 0.50   | -0.72**   | -0.15            |
| Al              | -0.75** | 0.55*    | 0.49   | -0.68**   | -0.17            |

Significance: \*P < 0.05; \*\*P < 0.01.

terpinolene and methyl eugenol, and negatively correlated with  $\alpha$ pinene, limonene, (Z)- $\beta$ -ocimene, and (E)- $\beta$ -ocimene (Karimi et al., 2015). Hierarchical cluster analysis based on phytochemical components was proven to be a helpful tool to classify medicinal and aromatic plants accessions. For instance, cluster analysis on *Verbascum songaricum* resulted into nine groups (Selseleh et al., 2019) and for lemon balm populations three different chemotypes could be identified (Pouyanfar et al., 2018). Also grouping based on EO constituents of four *Vitex specimens* revealed different clusters (de Sena Filho et al., 2017). In the present study, the components of the EO measured at full flowering stage underpin the presence of the three chemotypes (carvacrol, thymol, linalool).

Rapid and reliable identification of medicinal plant species and chemotypes concerning authenticity and quality is crucial for pharmaceutical and food processing. Spectroscopy techniques as fast and easy handling technologies are nowadays widely applied directly on plant material for qualitative and semi-quantitative characterization. Different studies describe the application of NIRS, IRS, and Raman for differentiation of chemotypes and prediction of EO composition in various medicinal and aromatic plants (Seidler-Lozykowska et al., 2010; Gudi et al., 2014; Farag et al.,



2018). For Z. multiflora the presented quantification models are not accurate for exact determination at current state, since, e.g., for linalool, samples are very inhomogeneous distributed over the investigated range of concentration. Nevertheless, in combination with HCA, near infrared spectroscopy offers a fast method for chemotyping and EO estimation already on plant material. An improved prediction of EO content and main components with regard to cross-validation concerning averaged ATR-FTIR spectra can also be achieved for constituents with lower concentrations (Gudi et al., 2015). The high correlation between NIRS and GC data allows application of NIRS for authenticity and quality control directly on the plant material for the flavor and fragrance as well as pharmaceutical industries. NIR spectroscopy can be used to classify plants according to their chemotype as well as predict the content of valuable components such as carvacrol, thymol, and linalool as well as other terpenes, rapidly and accurately.

The effect of soil parameters and climatic condition on plant perfomance and EO content has been shown for many plant species. For example, *Kelussia odoratissima* Mozaff grows in dark soil, rich in mineral content (Raiesi et al., 2013) and growth habitats of Thymus pulegioides were characterized by high amount of Al, Ca, Fe, K, and Si, however, by low amount of P and Mn (Vaičiulytė et al., 2017). Mexican oregano populations grown in soil with high nitrogen and iron content, lower soil water availability, and higher pH values showed a higher EO yield (Martínez-Natarén et al., 2012). It is widely accepted that environmental conditions affect plant EO content and its components (Ormeño et al., 2008; Mansour et al., 2010). Several studies have revealed that the predominance of carvacrol or thymol in different Lamiaceae species is related to environmental factors (Boira and Blanquer, 1998; Economou et al., 2011). In Thymus vulgaris such phenolic chemotypes cope

better with summer drought, while non-phenolic (e.g., linalool) chemotypes cope better with early-winter freezing temperatures (Thompson et al., 2007). In our study the Pearson correlations revealed that altitude, K, Fe, and Al were significantly (p < 0.01)negatively correlated with EO content (Table 3). In agreement to our results, the lowest altitudes showed higher EO yield in Lavandula angustifolia (Demasi et al., 2018) and Satureja rechingeri (Hadian et al., 2014). Also, a correlation between higher EO vields at decreasing altitudes was found in Origanum vulgare (Giuliani et al., 2013). Notwithstanding the effect of geographical condition, EO content and EO constituents can be affected by edaphic factors and climatic conditions, for example, the soil type affects Origanum syriacum chemotype (El-Alam et al., 2019). In our study EO yield showed a highly significant positive correlation with temperature, pH value, and Ca. Former studies highlighted the same behavior in other aromatic plants and suggest that the wide variation in the chemical composition of the EO can be ascribed to habitat influences in Origanum compactum (Aboukhalid et al., 2017) and Origanum vulgare L. (De Falco et al., 2013). The influence of environmental conditions on EO of Origanum vulgare ssp. showed a negative correlation with altitude and a positive correlation with soil temperature and air temperature (Tuttolomondo et al., 2014). SEMs were applied to impute relationships between the different factors and revealed indirect geographic and direct edaphic effects on EO content and compounds, while climate factors do not have an influence. Chemotype and high amount of specific compounds can thus be predicted when looking for populations with specific features. Biotic factors like co-occuring vegetation (Wäschke et al., 2015) or herbivore activity (Dicke et al., 2009) can additionally influence the metabolome profile of plants and shall be considered in future studies.



FIGURE 6 | Results of 10-fold cross-validation of NIR and GC data for the (A) EO content, (B) carvacrol, (C) thymol, (D) linalool by correlation of averaged spectra for each population.

# CONCLUSIONS

Medicinal and aromatic plants play important roles all over the world because of their wide application due to pharmacological, therapeutic, industrial, and agricultural properties. The varying climate and environmental growth conditions lead to a huge phytochemical diversity of these resources. Zataria multiflora is a valuable medicinal plant with various pharmaceutical properties and has potential as source of compounds with agricultural relevance as plant protection agents. Ingredients such as carvacrol, thymol, and linalool are responsible for the respective effects and show a high variability among the investigated populations. Environmental conditions are affecting the EO content and its components. Hence, existing variability in the chemical profile of studied populations allow selection of populations with distinct scent or bioactive components for use in pertinent industries and breeding purposes. Our approach of identifying environmental predictors for EO content, chemotype or presence of high amounts of specific compounds can help to identify regions for sampling plant material with the desired chemical profile. Based on mobile NIRS devices, fast classification of yet undescribed populations and individual plants together with an EO profiling can be performed directly in the field.

# DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to the corresponding authors.

# REFERENCES

- Abkenar, S. D., Yamini, Y., Shemirani, F., and Assadi, Y. (2008). Headspace solid phase microextraction using a porous-layer activated charcoal coating fused silica fiber for identification of volatile organic compounds emitted by *Zataria multiflora* Boiss. *Chem. Anal-Warsaw* 53, 277–287.
- Aboukhalid, K., Al Faiz, C., Douaik, A., Bakha, M., Kursa, K., Agacka-Mołdoch, M., et al. (2017). Influence of environmental factors on essential oil variability in *Origanum compactum* Bent. *Chem. Biodivers.* 14, e1700158. doi: 10.1002/ cbdv.201700158
- Adams, R. P. (2014). Identification of essential oil components by gas chromatography/mass spectrometry Vol. 456 (Carol Stream, IL: Allured publishing corporation).
- Basti, A. A., Misaghi, A., and Khaschabi, D. (2007). Growth response and modelling of the effects of Zataria multiflora Boiss. essential oil, pH and temperature on Salmonella typhimurium and Staphylococcus aureus. LWT Food Sci. Technol. 40, 973–981. doi: 10.1016/j.lwt.2006.07.007
- Boira, H., and Blanquer, A. (1998). Environmental factors affecting chemical variability of essential oils in *Thymus piperella L. Biochem. Syst. Ecol.* 26, 811– 822. PII: S0305-1978(98)00047-7. doi: 10.1016/S0305-1978(98)00047-7
- Chin, W. W., and Newsted, P. R. (1999). Structural equation modeling analysis with small samples using partial least squares. *Stat. Strateg. Small Sample Res.* 1 (1), 307–341.
- De Falco, E., Roscigno, G., Iodice, C., and Senatore, F. (2013). Phytomorphological and Essential Oil Characterization *in situ* and ex situ of wild biotypes of *Oregano* collected in the Campania Region (Southern Italy). *Chem. Biodivers.* 10, 2078–2090. doi: 10.1002/cbdv.201300185
- de Sena Filho, J. G., Barreto, I. C., Soares Filho, A. O., Nogueira, P. C., Teodoro, A. V., Cruz da Silva, A. V., et al. (2017). Volatile metabolomic composition of Vitex

# **AUTHOR CONTRIBUTIONS**

TM, HS, and JH conceived and designed the project; AlK performed all sampling, extraction, and chemical analyses, except soil analysis which was performed by NH. Statistical analyses were performed by AlK, TM, and AnK. AlK and TM wrote the article with contributions from all other authors.

## **FUNDING**

The authors gratefully acknowledge the financial support obtained from the Federal Ministry of Food and Agriculture (BMEL) based on a decision of the Parliament of the Federal Republic of Germany *via* the Federal Office for Agriculture and Food (BLE) under the innovation support program (Project 2816DOKI06).

# ACKNOWLEDGMENTS

The authors thank Medicinal Plants and Drug Research Institute, Shahid Beheshti University for their contribution in the collection of plant materials. In addition, the authors would like to thank René Grünwald, Mario Harke, Roshanak Taghinia, and Catrin Vetter for lab assistance. AlK thanks Prof. Matthias F. Melzig for support. The authors thank three anonymous reviewers for their valuable comments on an earlier version of the manuscript.

species: chemodiversity insights and acaricidal activity. Front. Plant Sci. 8, 1931. doi: 10.3389/fpls.2017.01931

- Demasi, S., Caser, M., Lonati, M., Cioni, P. L., Pistelli, L., Najar, B., et al. (2018). Latitude and altitude influence secondary metabolite production in peripheral alpine populations of the Mediterranean species *Lavandula angustifolia* Mill. *Front. Plant Sci.* 9, 983. doi: 10.3389/fpls.2018.00983
- Dicke, M., Van Loon, J. J., and Soler, R. (2009). Chemical complexity of volatiles from plants induced by multiple attack. *Nat. Chem. Biol.* 5, 317. doi: 10.1038/ nchembio.169
- Ebrahimi, S. N., Hadian, J., Mirjalili, M., Sonboli, A., and Yousefzadi, M. (2008). Essential oil composition and antibacterial activity of *Thymus caramanicus* at different phenological stages. *Food Chem.* 110, 927–931. doi: 10.1016/ j.foodchem.2008.02.083
- Economou, G., Panagopoulos, G., Tarantilis, P., Kalivas, D., Kotoulas, V., Travlos, I. S., et al. (2011). Variability in essential oil content and composition of *Origanum hirtum L., Origanum onites L., Coridothymus capitatus* (L.) and *Satureja thymbra L.* populations from the Greek island Ikaria. *Ind. Crops Prod.* 33, 236–241. doi: 10.1016/j.indcrop.2010.10.021
- El-Alam, I., Zgheib, R., Iriti, M., El Beyrouthy, M., Hattouny, P., Verdin, A., et al. (2019). Origanum syriacum Essential Oil Chemical Polymorphism According to Soil Type. Foods 8, 90. doi: 10.3390/foods8030090
- Farag, N. F., El-Ahmady, S. H., Abdelrahman, E. H., Naumann, A., Schulz, H., Azzam, S. M., et al. (2018). Characterization of essential oils from Myrtaceae species using ATR-IR vibrational spectroscopy coupled to chemometrics. *Ind. Crops Prod.* 124, 870–877. doi: 10.1016/j.indcrop.2018.07.066
- Formisano, C., Delfine, S., Oliviero, F., Tenore, G. C., Rigano, D., and Senatore, F. (2015). Correlation among environmental factors, chemical composition and antioxidative properties of essential oil and extracts of chamomile (*Matricaria chamomilla* L.) collected in Molise (South-central Italy). Ind. Crops Prod. 63, 256–263. doi: 10.1016/j.indcrop.2014.09.042

- Giuliani, C., Maggi, F., Papa, F., and Maleci Bini, L. (2013). Congruence of phytochemical and morphological profiles along an altitudinal gradient in Origanum vulgare ssp. vulgare from Venetian Region (NE Italy). Chem. Biodivers. 10 (4), 569–583. doi: 10.1002/cbdv.201300019
- Golkar, P., Mosavat, N., and Jalali, S. A. H. (2020). Essential oils, chemical constituents, antioxidant, antibacterial and *in vitro* cytotoxic activity of different *Thymus* species and *Zataria multiflora* collected from Iran. S. Afr. J. Bot. 130, 250–258. doi: 10.1016/j.sajb.2019.12.005
- Gudi, G., Krähmer, A., Krüger, H., Hennig, L., and Schulz, H. (2014). Discrimination of fennel chemotypes applying IR and Raman spectroscopy: Discovery of a new γ-asarone chemotype. J. Agric. Food. Chem. 62, 3537–3547. doi: 10.1021/jf405752x
- Gudi, G., Krähmer, A., Krüger, H., and Schulz, H. (2015). Attenuated total reflectance–Fourier transform infrared spectroscopy on intact dried leaves of sage (*Salvia officinalis* L.): accelerated chemotaxonomic discrimination and analysis of essential oil composition. *J. Agric. Food. Chem.* 63, 8743–8750. doi: 10.1021/acs.jafc.5b03852
- Hadian, J., Ebrahimi, S. N., Mirjalili, M. H., Azizi, A., Ranjbar, H., and Friedt, W. (2011a). Chemical and genetic diversity of *Zataria multiflora* Boiss. accessions growing wild in Iran. *Chem. Biodivers.* 8, 176–188. doi: 10.1002/ cbdv.201000070
- Hadian, J., Hossein Mirjalili, M., Reza Kanani, M., Salehnia, A., and Ganjipoor, P. (2011b). Phytochemical and morphological characterization of *Satureja khuzistanica* Jamzad populations from Iran. *Chem. Biodivers.* 8 (5), 902–915. doi: 10.1002/cbdv.201000249
- Hadian, J., Esmaeili, H., Nadjafi, F., and Khadivi-Khub, A. (2014). Essential oil characterization of *Satureja rechingeri* in Iran. *Ind. Crops Prod.* 61, 403–409. doi: 10.1016/j.indcrop.2014.07.034
- Iranian Herbal Pharmacopoeia Committee (2002). *Iranian Herbal Pharmacopoeia*. (Tehran: Ministry of Health and Medical Education of Iran), 2, 40711.
- Karimi, A., Hadian, J., Farzaneh, M., and Khadivi-Khub, A. (2015). Phenotypic diversity and volatile composition of Iranian Artemisia dracunculus. Ind. Crops Prod. 65, 315–323. doi: 10.1016/j.indcrop.2014.12.003
- Khazdair, M. R., Ghorani, V., Alavinezhad, A., and Boskabady, M. H. (2018). Pharmacological effects of *Zataria multiflora* Boiss L. and its constituents focus on their anti-inflammatory, antioxidant, and immunomodulatory effects. *Fund. Clin. Pharmacol.* 32, 26–50. doi: 10.1111/fcp.12331
- Khosravi, A. R., Shokri, H., Tootian, Z., Alizadeh, M., and Yahyaraeyat, R. (2009). Comparative efficacies of *Zataria multiflora* essential oil and itraconazole against disseminated *Candida albicans* infection in BALB/c mice. *Braz. J. Microbiol.* 40, 439–445. doi: 10.1590/S1517-83822009000300003
- Kock, N., and Lynn, G. (2012). Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. *JAIS* 13 (7), 1–40. doi: 10.17705/1jais.00302
- Kock, N. (2010). Using WarpPLS in e-collaboration studies: An overview of five main analysis steps. *IJeC* 6, 1–11. doi: 10.4018/jec.2010100101
- Krähmer, A., Gudi, G., Weiher, N., Gierus, M., Schütze, W., and Schulz, H. (2013). Characterization and quantification of secondary metabolite profiles in leaves of red and white clover species by NIR and ATR-IR spectroscopy. *Vib. Spectrosc.* 68, 96–103. doi: 10.1016/j.vibspec.2013.05.012
- Mahboubi, M., and Bidgoli, F. G. (2010). Antistaphylococcal activity of Zataria multiflora essential oil and its synergy with vancomycin. *Phytomedicine* 17, 548–550. doi: 10.1016/j.phymed.2009.11.004
- Mahboubi, M. (2019). Therapeutic potential of Zataria multiflora Boiss. in treatment of irritable bowel syndrome (IBS). J. Diet. Suppl. 16, 119–128. doi: 10.1080/19390211.2017.1409852
- Mahmoudvand, H., Mirbadie, S. R., Sadooghian, S., Harandi, M. F., Jahanbakhsh, S., and Saedi Dezaki, E. (2017). Chemical composition and scolicidal activity of *Zataria multiflora* Boiss essential oil. J. Essent. Oil Res. 29, 42–47. doi: 10.1080/ 10412905.2016.1201546
- Mansour, A., Enayat, K., Neda, M. S., and Behzad, A. (2010). Antibacterial effect and physicochemical properties of essential oil of *Zataria multiflora* Boiss. *Asian Pac. J. Trop. Med.* 3 (6), 439–442. doi: 10.1016/S1995-7645(10)60105-8
- Martínez-Natarén, D. A., Parra-Tabla, V., Dzib, G., Acosta-Arriola, V., Canul-Puc, K. A., and Calvo-Irabién, L. M. (2012). Essential oil yield variation within and among wild populations of Mexican oregano (*Lippia graveolens* HBK-Verbenaceae), and its relation to climatic and edaphic conditions. J. Essent. Oil-Bear Plants 15, 589–601. doi: 10.1080/0972060X.2012.10644093

- Milos, M., Radonic, A., Bezic, N., and Dunkic, V. (2001). Localities and seasonal variations in the chemical composition of essential oils of *Satureja montana* L. and *S. cuneifolia* Ten. *Flavour Fragr. J.* 16, 157–160. doi: 10.1002/ffj.965
- Moazeni, M., Larki, S., Oryan, A., and Saharkhiz, M. J. (2014). Preventive and therapeutic effects of *Zataria multiflora* methanolic extract on hydatid cyst: An *in vivo* study. *Vet. Parasitol.* 205, 107–112. doi: 10.1016/j.vetpar.2014.07.006
- Mohajeri, F. A., Misaghi, A., Gheisari, H., Basti, A. A., Amiri, A., Ghalebi, S. R., et al. (2018). The effect of *Zataria multiflora* Boiss Essential oil on the growth and citrinin production of *Penicillium citrinum* in culture media and cheese. *Food Chem. Toxicol.* 118, 691–694. doi: 10.1016/j.fct.2018.06.021
- Morshedloo, M. R., Salami, S. A., Nazeri, V., Maggi, F., and Craker, L. (2018). Essential oil profile of oregano (*Origanum vulgare* L.) populations grown under similar soil and climate conditions. *Ind. Crops Prod.* 119, 183–190. doi: 10.1016/j.indcrop.2018.03.049
- Niczad, A., Sharafzadeh, S., Alizadeh, A., Amiri, B., and Bazrafshan, F. (2019). Variability in essential oil constituent, phenolic content, antioxidant and antimicrobial activities of different ecotypes of *Zataria multiflora* Boiss. from Iran. J. Essent. Oil Bear. Pl. 22, 1435–1449. doi: 10.1080/0972060X.2020.1713221
- NIST Chemistry WebBook, 69 (2002). *NIST Standard Reference Database Number* 69. P. J. Linstrom and W. G. Mallard Eds. (National Institute of Standards and Technology, Gaithersburg, USA). Available at: http://webbook.nist.gov.
- Ormeño, E., Baldy, V., Ballini, C., and Fernandez, C. (2008). Production and diversity of volatile terpenes from plants on calcareous and siliceous soils: effect of soil nutrients. J. Chem. Ecol. 34, 1219. doi: 10.1007/s10886-008-9515-2.
- Pavela, R., Žabka, M., Vrchotová, N., and Tříska, J. (2018). Effect of foliar nutrition on the essential oil yield of Thyme (Thymus vulgaris L.). *Ind. Crops Prod.* 112, 762–765. doi: 10.1016/j.indcrop.2018.05.048
- Pouyanfar, E., Hadian, J., Akbarzade, M., Hatami, M., Kanani, M. R., and Ghorbanpour, M. (2018). Analysis of phytochemical and morphological variability in different wild-and agro-ecotypic populations of *Melissa* officinalis L. growing in northern habitats of Iran. *Ind. Crops Prod.* 112, 262– 273. doi: 10.1016/j.indcrop.2017.12.008
- Raiesi, S., Nadjafi, F., Hadian, J., Kanani, M. R., and Ayyari, M. (2013). Autecological and phytochemical studies of Kelussia odoratissima Mozaff. an endangered ethnomedicinal plant of Iran. *JBAPN* 3, 285–294. doi: 10.1080/ 22311866.2013.782748
- Sadeghi, H., Robati, Z., and Saharkhiz, M. J. (2015). Variability in Zataria multiflora Bioss. essential oil of twelve populations from Fars province, Iran. Ind. Crops Prod. 67, 221–226. doi: 10.1016/j.indcrop.2015.01.021
- Saedi Dezaki, E., Mahmoudvand, H., Sharififar, F., Fallahi, S., Monzote, L., and Ezatkhah, F. (2016). Chemical composition along with anti-leishmanial and cytotoxic activity of *Zataria multiflora*. *Pharm. Biol.* 54, 752–758. doi: 10.3109/ 13880209.2015.1079223
- Saei-Dehkordi, S. S., Tajik, H., Moradi, M., and Khalighi-Sigaroodi, F. (2010). Chemical composition of essential oils in *Zataria multiflora* Boiss. from different parts of Iran and their radical scavenging and antimicrobial activity. *Food Chem. Toxicol.* 48, 1562–1567. doi: 10.1016/j.fct.2010.03.025
- Sajed, H., Sahebkar, A., and Iranshahi, M. (2013). Zataria multiflora Boiss. (Shirazi thyme) - an ancient condiment with modern pharmaceutical uses. J. Ethnopharmacol. 145, 686–698. doi: 10.1016/j.jep.2012.12.018
- Saleem, M., Nazli, R., Afza, N., Sami, A., and Shaiq Ali, M. (2004). Biological significance of essential oil of Zataria multiflora Boiss. Nat. Prod. Res. 18, 493– 497. doi: 10.1080/14786410310001608064
- Santos, J. D., Coelho, E., Silva, R., Passos, C. P., Teixeira, P., Henriques, I., et al. (2019). Chemical composition and antimicrobial activity of *Satureja montana* byproducts essential oils. *Ind. Crops Prod.* 137, 541–548. doi: 10.1016/j.indcrop.2019.05.058
- Schulz, H., Baranska, M., Belz, H. H., Rösch, P., Strehle, M. A., and Popp, J. (2004). Chemotaxonomic characterisation of essential oil plants by vibrational spectroscopy measurements. *Vib. Spectrosc.* 35, 81–86. doi: 10.1016/ j.vibspec.2003.12.014
- Schulz, H., Özkan, G., Baranska, M., Krüger, H., and Özcan, M. (2005). Characterisation of essential oil plants from Turkey by IR and Raman spectroscopy. *Vib. Spectrosc.* 39, 249–256. doi: 10.1016/j.vibspec.2005.04.009
- Seidler-Lozykowska, K., Baranska, M., Baranski, R., and Krol, D. (2010). Raman analysis of caraway (*Carum carvi* L.) single fruits. Evaluation of essential oil content and its composition. *J. Agric. Food. Chem.* 58, 5271–5275. doi: 10.1021/jf100298z
- Selseleh, M., Hadian, J., Ebrahimi, S. N., Sonboli, A., Georgiev, M.II, and Mirjalili, M. H. (2019). Metabolic diversity and genetic association between wild

populations of Verbascum songaricum (Scrophulariaceae). Ind. Crops Prod. 137, 112–125. doi: 10.1016/j.indcrop.2019.03.069

- Shafiee, A., and Javidnia, K. (1997). Composition of essential oil of Zataria multiflora. Planta Med. 63, 371–372. doi: 10.1055/s-2006-957707
- Sharififar, F., Moshafi, M. H., Mansouri, S. H., Khodashenas, M., and Khoshnoodi, M. (2007). In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora Boiss. Food Control 18, 800–805. doi: 10.1016/j.foodcont. 2006.04.002
- Simbar, M., Azarbad, Z., Mojab, F., and Majd, H. A. (2008). A comparative study of the therapeutic effects of the *Zataria multiflora* vaginal cream and metronidazole vaginal gel on bacterial vaginosis. *Phytomedicine* 15, 1025– 1031. doi: 10.1016/j.phymed.2008.08.004
- Stefanaki, A., Cook, C. M., Lanaras, T., and Kokkini, S. (2018). Essential oil variation of *Thymbra spicata* L. (Lamiaceae), an East Mediterranean "oregano" herb. *Biochem. Syst. Ecol.* 80, 63–69. doi: 10.1016/j.bse.2018.06.006
- Thompson, J. D., Gauthier, P., Amiot, J., Ehlers, B. K., Collin, C., Fossat, J., et al. (2007). Ongoing adaptation to Mediterranean climate extremes in a chemically polymorphic plant. *Ecol. Monogr.* 77, 421–439. doi: 10.1890/06-1973.1
- Thompson, J. D. (2005). *Plant evolution in the Mediterranean* (New York, United States: Oxford University Press Inc.).
- Tuttolomondo, T., Leto, C., Leone, R., Licata, M., Virga, G., Ruberto, G., et al. (2014). Essential oil characteristics of wild Sicilian oregano populations in relation to environmental conditions. J. Essent. Oil Res. 26, 210–220. doi: 10.1080/10412905.2014.882278

- Vaičiulytė, V., Ložienė, K., Taraškevičius, R., and Butkienė, R. (2017). Variation of essential oil composition of *Thymus pulegioides* in relation to soil chemistry. *Ind. Crops Prod.* 95, 422–433. doi: 10.1016/j.indcrop.2016.10.052
- Wäschke, N., Hancock, C., Hilker, M., Obermaier, E., and Meiners, T. (2015). Does vegetation complexity affect host plant chemistry, and thus multitrophic interactions, in a human-altered landscape? *Oecologia* 179, 281–292. doi: 10.1007/s00442-015-3347-x
- Zgheib, R., Chaillou, S., Ouaini, N., Kassouf, A., Rutledge, D., El Azzi, D., et al. (2016). Chemometric tools to highlight the variability of the chemical composition and yield of Lebanese *Origanum syriacum* L. essential oil. *Chem. Biodivers.* 13, 1326–1347. doi: 10.1002/cbdv.201600061
- Ziaee, E., Razmjooei, M., Shad, E., and Eskandari, M. H. (2018). Antibacterial mechanisms of *Zataria multiflora* Boiss. essential oil against *Lactobacillus curvatus*. *LWT* 87, 406–412. doi: 10.1016/j.lwt.2017.08.089

**Conflict of Interest:** The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Karimi, Krähmer, Herwig, Schulz, Hadian and Meiners. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.