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Abstract

Automatic pollen recognition has been developed based on so-
called gray-scale invariants, which characterise pollen grains in-
dependently from their position and orientation on the micro-
scopic sample. Thus, pollen features can be extracted from the
gray-scale images of transmitted light and fluorescence mi-
croscopy.

In a first step, this approach is demonstrated with Ambrosia
pollen of samples from a Burkard sampler, where pollen are col-
lected from ambient air on a sticky tape mounted on a slowly
rotating drum. Self-learning Support Vector Machines create a
classification model from the gray-scale invariants of the parti-
cles on three Burkard samples from Mezzana (Ticino), Switzer-
land. Automatic pattern recognition is tested with 13 other sam-
ples from the period between July, 20th and September, 9th 2004.
A recall of 77.3 % has been found for the automatic recognition
of Ambrosia pollen, together with a precision of 84.0 % for this
classification. Falsely negative classified objects can partly be
ascribed to agglomerated pollen, the number of falsely positive
classified objects can be reduced by a more specific classifica-
tion mode.

Automatic pollen recognition provides the basis for the devel-
opment of a fully automated system that combines sampling, par-
ticle deposition onto a surface suitable for optical analysis, auto-
matic preparation, microscopic imaging techniques, pattern
recognition and the hourly output of number concentration of air-
borne pollen.
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chines, pattern recognition, pollen monitor, Burkard sampler, on-
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Zusammenfassung

Die automatische Erkennung von Pollen wurde auf der Basis von
so genannten Grauwert-Invarianten entwickelt, die Pollen unab-
hängig von ihrer Position und Orientierung auf der mikroskopi-
schen Probe charakterisieren. Somit können Polleneigenschaften
aus den mikroskopischen Graustufen-Bildern (Durchlicht und
Fluoreszenz) abgeleitet werden.

Zunächst wird dieser Ansatz am Beispiel von Ambrosia-Pol-
len auf Proben aus Burkardfallen demonstriert, in denen Pollen
aus der Außenluft auf einem Klebeband gesammelt werden, das
auf einer langsam rotierenden Trommel befestigt ist. Selbstler-

nende Support-Vector-Machines erzeugen ein Klassifikations-
modell aus den Grauwert-Invarianten der Partikel von drei Bur-
kardproben aus Mezzana (Tessin), Schweiz. Die automatische
Mustererkennung wird an 13 weiteren Proben aus der Zeit zwi-
schen dem 20. Juli und dem 9. September 2004 getestet. Für die
automatische Erkennung von Ambrosia-Pollen ergibt sich eine
Erkennungsrate von 77,3 % bei einer Bestimmungsgenauigkeit
von 84,0 % für diese Klassifizierung. Falsch negativ klassifi-
zierte Objekte können teilweise auf agglomerierte Pollen zurück-
geführt werden, die Zahl falsch positiv klassifizierter Objekte
kann durch eine spezifischere Klassifikation reduziert werden.

Die automatische Pollenerkennung bildet die Basis der Ent-
wicklung eines voll automatisierten Systems, das Probenahme,
Partikelabscheidung auf einer mikroskopierfähigen Oberfläche,
automatische Präparation, mikroskopische Abbildungstechni-
ken, Mustererkennung und die stündliche Angabe der Anzahl-
konzentration luftgetragener Pollen vereint.

Stichwörter: Automatische Pollenerkenung, Ambrosia-Pollen,
Eigenfluoreszenz, Grauwert-Invarianten, Support-Vector-Ma-
chines, Mustererkennung, Pollenmonitor, Burkardfalle, Online-
Messung

1 Introduction

There is growing evidence that climate change might facilitate
the geographical spread of particular plant species to new areas
which become climatically suitable. But also effects of changes
in land use, socio-cultural changes as well as international trans-
port and tourism are obviously promoting the spread of plant
species. The occurrence of some invasive species can result in
particular risks for health and requires the control especially of
such pollen characterised by high allergic potential e.g. Cupres-
saceae, ragweed or mugwort, even at very low pollen concentra-
tions.

For conventional analysis, pollen are sampled from ambient
air with instruments like the Burkard sampler that provide sam-
ples for subsequent microscopic analysis of pollen deposited on
a sticky carrier. Pollen counting under the microscope is done by
eye. This work is a demanding and time consuming task even for
experienced microscopists. From the samples, daily average
pollen concentration is derived in routine measuring networks.

This method of pollen analysis includes some disadvantages
concerning sufferers from allergy:
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● There is a strong dependency of the pollen concentration on
the current meteorological situation (MAKRA, 2004). How-
ever, the daily pollen concentration data are not available ear-
lier than the day after sampling. Thus, the precision of the
pollen forecast is strongly limited.

● Because the capacity of visual pollen analysis is usually lim-
ited to a sampling area representing 1 m³ air volume/day, the
statistic error belonging to the determination of low pollen
concentrations (which are still relevant for species like Am-
brosia) is considerably high.

● The pollen concentration and thereby the allergic stress can
change significantly during the day. This temporal course is
usually not determined within routine analysis due to the high
effort in visual microscopy.

● Furthermore, the quality and reliability of routine data may
vary according to qualification and commitment of the pollen
counters.

Thus, there is a strong public demand to improve the pollen fore-
cast by using pollen concentration data that exhibit the following
features:
● real-time information,
● higher temporal resolution and
● high quality, specified by reproducibility, measurement un-

certainty, detection limit, recall and precision.

Automatic pollen recognition is the first step towards an online
pollen information service and an objective pollen forecast. This
recognition method will be explained in chapter 2 and demon-
strated with Ambrosia pollen in section 3.1. In the following sec-
tion 3.2, the integration of pollen sampling, sample preparation,
automated microscopic analysis and pollen recognition into an
online-monitor will be described that can work as a stand-alone-
system for field measurements providing hourly online pollen
data (SCHARRING, 2006).

2 Methods

2.1. Fluorescence microscopy

Pollen grains are rather translucent and unobtrusive among the
variety of aerosol particles, e.g., mineral dust, tire abrasion, plant
fragments and fungal spores that can be found in an aerosol sam-
ple. For the visual determination and counting of pollen a special
staining like safranin or fuchsin is used to highlight the pollen
from the background and to facilitate pollen counting.

Automatic pollen analysis is capable to set the staining proce-
dure aside by using the primary fluorescence of pollen: If pollen
grains are excited with ultraviolet light they emit green fluores-
cence light, cf. Fig. 1 (TAYLOR, 1989). This specific property can
be used to separate the pollen from the background (segmenta-
tion).

Fig. 1. Pollen grains are rather translucent and difficult to detect on an aerosol sample without specific staining (left). In the case of automatic
pollen recognition the primary fluorescence light of pollen is used for their detection (right).

Fig. 2. Calculation of a 2D gray-scale invariant: (a) Selection of a non-linear kernel function for combining some neighboring pixels, in this ex-
ample the combination of two gray values of distance 3. (b) This kernel function is evaluated for all angles and the results are summed up, to
become invariant to rotations of the object. (c) This set of rotated kernel functions is evaluated at all possible positions of the image and the re-
sults are summed up, to become invariant to translations of the object. The result obtained is independent from the angle and position of the
object in the image.

a b c
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2.2. Pattern recognition

While conventional methods of pattern recognition focus on
morphologic features and try to imitate the human recognition
process, the method developed for pollen recognition employs a
special feature of digitised images, the lightness of each pixel,
described by its gray-value (0 to 255). This method is explained
in Figure 2 (BURKHARDT, 2001; RONNEBERGER, 2002).

The kernel function that links the gray-values of each two pix-
els determines the resulting value of the invariant. As an exam-
ple, the multiplication of the gray-values of each two pixels ac-
cording to Figure 2 will usually lead to a different result than their
addition. Hence, depending on the choice of the kernel function,
different invariants can be derived from the image data that char-
acterise the unknown object. A set of n invariants of an object can
be regarded as a feature vector in the n-dimensional feature
space. Feature vectors of similar objects form a cluster in the fea-
ture space, e.g. an Ambrosia cluster and a cluster of other aerosol
particles, because the resulting values of the corresponding in-
variants are similar. Support Vector Machines can determine the
interfaces that separate these clusters from each other and can be
used as a self-learning tool for the classification of unknown ob-
jects (VAPNIK, 1995).

3 Results

3.1. Laboratory analysis

In this section, the automatic pollen analysis of Burkard samples
is described. The sampler was located in Mezzana, Switzerland,
in the vicinity of the Italian border. A period with high concen-

trations of Ambrosia pollen has been investigated (August, 27th

to September, 9th 2004). Additionally, two samples from days
with low concentrations of Ambrosia pollen have been selected
(July, 20th and August, 20th of 2004).

3 of these samples have been chosen to built up a reference for
the automatic recognition of the remaining 13 samples. On the
three reference samples all objects exhibiting fluorescence prop-
erties were segmented from the microscopic images. Overall
6347 objects have been found, among them 408 containing Am-
brosia pollen and 387 with different pollen, mostly Urtica pollen.
Many different objects with primary fluorescence have been
found like plant abrasion and a lot of particles showing poor flu-
orescence light. For classification purposes all objects have sim-
ply been divided in two classes: Ambrosia pollen and other ob-
jects, labelled by experienced microscopists, cf. Fig. 3.

Labelling the objects and the calculating their invariants en-
ables the Support Vector Machines to learn to distinguish be-
tween Ambrosia pollen and other objects. A classification model
has been derived from the clusters of the feature vectors belong-
ing to the objects within the reference. This model was applied
to classify the objects on the remaining 13 samples. The auto-
matic recognition was compared with human classification, the
results are shown in Table 1.

While pattern recognition of pollen is an ambitious task, deal-
ing with real world samples is the crucial challenge for a suc-
cessful pollen monitoring. Figure 4 depicts the main problems
that occur on real world samples.

Fig. 3. Screenshot of the pollen file manager software developed for
the labelling of pollen.

Table 1. Recognition results for Ambrosia pollen on Burkard sam-
ples.The percentage of falsely negative classified Ambrosia pol-
len is given by (1 – recall) whereas the percentage of objects clas-
sified falsely positive as Ambrosia pollen is given by (1 – preci-
sion)

Particle class Number Recall Precision

Ambrosia pollen 538 77.3 % 84.0 %
Other particles 44 083 99.8 % 99.7 %

Fig. 4. Microscopic images (20f. magnification) of Ambrosia pollen with
interfering dust (left, middle) and agglomerated Ambrosia pollen
(right).

Fig. 5. Microscopic images (40f. magnification) of Ambrosia pollen
(left) and Artemisia pollen (right).

Table 2. Occurrence and classification of other pollen on the Bur-
kard samples

Pollen species Number Classified as Ambrosia

Urtica 325 0
Graminae/Poaceae 71 0
Chenopodium 67 1
Castanea 53 0
Humulus 37 1
Artemisia 26 13
Plantago 21 0
Rumex 13 1
Compositae 12 7
Others 1084 8
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Pollen grains are mostly located close to other atmospheric
dust particles on the sample. These particles comprise a great
morphologic variety and may disturb the automatic pollen
recognition.

Furthermore, 102 of 538 Ambrosia pollen were agglomerated
in pairs (82), triplets (12) or quadruplets (8) respectively. Only 3
of these 47 agglomerates have been recognised to be an object
containing Ambrosia pollen – without a specification of the num-
ber of pollen within the agglomerate. Therefore, it was calculated
how the recognition rate would increase if the agglomerated
pollen were neglected. In this case, the recall would increase
from 77.3 % up to 84.3 %. Thus it is obvious that the recognition
of Ambrosia can be optimised by improvements in segmentation
of the agglomerates by the means of image analysis.

Furthermore, a more specific classification of other pollen
would lead to a more precise recognition, cf. Tab. 2 and Fig. 5. If
all other pollen were identified correctly and did not interfere
with the recognition of Ambrosia pollen, the precision would in-
crease from 84.0 % up to 89.3 %.

Nevertheless, the combination of falsely negative classified
Ambrosia pollen and objects falsely positive classified as Am-
brosia may lead to a classification result that is closer to the re-

ality in the end. In this case, the overall number of objects clas-
sified as Ambrosia pollen amounts 91.8 % of the total number of
Ambrosia pollen.

Figure 6 shows the classification results of the two period (in-
cluding samples from the reference).

Because the drum inside the Burkard sampler slowly rotates,
the location of the particle on the sample allows a rough estima-
tion about its sampling time. Automated microscopic analysis
provides an easy access to these data and delivers results with
higher temporal resolution (Fig. 7).

3.2. Online-monitor

The main disadvantage of laboratory analysis of pollen is the late
availability of pollen data due to the time consuming process of
sampling, transport, manual preparation, sample analysis. In-situ
measurements providing online-analysis could give the chance
to allow a more accurate pollen forecast considering the actual
meteorological situation.

In the year 2003 the OMNIBUSS project (online monitoring
of airborne allergenic particles) was raised. A demonstrator for
the online-monitor comprising automated sampling, preparation,
microscopic analysis and pattern recognition was presented in
March 2005, see Figure 8.

In the sampling unit, a relatively large stream of outside air
(Qin = 70 m³/h) is sucked in through an inlet system designed
for representative sampling also of the large particles up to an

Fig. 6. Temporal course of Ambrosia pollen concentration in Mezzana
(Ticino), Switzerland, results from visual counting vs. automatic pollen
recognition.

Fig. 7. Daily course of Ambrosia pollen concentration in Mezzana (Ti-
cino), Switzerland, results from visual counting vs.automatic pollen re-
cognition.

Fig. 9. Microscopic image (40f. magnification) of dried-out hazel pollen
(left) and hazel pollen after rehydration in a polar liquid (right) respec-
tively.

Fig. 8. Scheme of the steps from sampling to recognition within the
pollen monitor.
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aerodynamic diameter of 60 µm. Only a side stream of Qs = 6
m³/h, taken isokinetically from the overall sampling flow, is
further processed for particle identification and counting. This
is the relevant flow rate for the determination of the pollen
concentration. The flow Qs , however, can still be much larger
than the maximum flow rate Qd of the final step of particle de-
position. This requires an additional conditioning unit (virtual
impaction) in which the flow rate is sufficiently reduced with-
out decreasing at the same time the flux of the relevant parti-
cles to be analysed. In the instrument Qd = 2 l/min was chosen
for the flow rate in the deposition unit. Hence, the impaction
velocity is quite low (1.7 m/s) compared with Burkard sam-
plers (6.0 m/s) providing a reduced mechanical stress for the
impacted particles.

The lower cut-off of the impactor is set to around 10 µm aero-
dynamic diameter. This is a significantly higher cut-off com-
pared with Burkard samplers (around 2.5 µm) and provides a
great advantage. Disturbances of the pattern recognition with
fine dust particles, as described above, can be avoided. Never-
theless, the lower cut-off can be set to 2.5 µm by the means of
electrostatic precipitation, e.g. if the analysis of airborne fungal
spores is required.

The sampling is followed by a short preparation process. As a
sample carrier, a metal plate with circular holes is used, covered
on its backside with a transparent cover slide for microscopic
analysis. The resulting shallow cavities are filled to a certain
level with a mixture of glycerine, gelatine, water and a surfac-
tant. This mixture serves as an adhesive for particle sampling. In-
stead of adding an additional embedding liquid after sampling,
the sampled particles are immersed by the same medium that
serves for deposition in the sampling unit. The immersion is
achieved by heating the sample to about 90 °C. At this tempera-
ture the medium is of lower viscosity so that the particles become
immersed. While airborne, pollen dry out and change their shape
and size due to the occurring water loss. Pollen recognition re-
quires the re-establishment of their original shape. This is
achieved by the up-take of a polar liquid like water or glycerine
that the pollen grains acquire from the embedding liquid, cf. Fig.
9. This process typically takes only a few seconds.

After the automatic preparation process particles are located in
quite different levels of the embedding medium. To obtain a full
3D volumetric data set of all particles image stacks for each con-
trasting technique steps of 2.5 µm distance are taken at each po-
sition of the sample area.

High power light emitting diodes (LED) are used for both
transmitted light as well as fluorescence imaging. They have sev-
eral advantages concerning lifetime, power consumption, heat
generation, power stability and spectral stability in comparison
to conventional used bulbs and high pressure arc lamps.

The system comprises sample carriers for a one week auto-
matic operation stored in a stacker. By means of a fully computer
controlled three axis motorised stage, carriers are transferred be-
tween the stacker and the sampling unit respectively the prepa-
ration unit and the specifically adapted microscopic unit. Al-
though using only one motorised stage the system allows a si-

multaneous sampling of particles onto one carrier and a micro-
scopic analysis at another, by which a nearly continuous collec-
tion and microscopic imaging of aerosol particles is possible with
only short interruptions during transfer of carriers. Transfer time
of the carriers is in the range of half a minute between the stacker
and the other units of the system. The sampling period is intended
to be one hour, resulting in one hour for subsequent sample
preparation, analysis and notification of recognition results.

Preliminary tests have been carried out to assess the automatic
pollen recognition with automatically prepared samples from the
online-monitor, cf. Tab. 3. In this case, pollen grains have been
added afterwards to aerosol samples of a period exhibiting very
low pollen concentrations. As shown in Table 3, good recogni-
tions rates can be achieved.

4 Discussion

A method for the automatic recognition of pollen was tested with
Burkard samples. The quality of the automatic recognition of
Ambrosia pollen can be characterised by recall (77.3 %), preci-
sion (84.0 %) and overall deviation from the true value (–8.2 %).
These results are promising and show the capability of the self-
learning pattern recognition.

The number of falsely negative classified objects can be re-
duced by using more specific algorithms for the segmentation
process especially of agglomerated pollen. These algorithms and
further tests with different invariants are subject to actual devel-
opments. On the other side, the number of falsely positive clas-
sified pollen can be reduced by taken more different pollen
species into account for the reference database.

Fig. 10. Sampling site at the German weather service in Freiburg with
the pollen monitor (left) and the Burkard sampler (right) for the field
test 2006.

Table 3. Recognition results for Alnus, Corylus, and Taxus pollen
on samples from the online-monitor

Particle class Number Recall Precision

Alnus pollen 122 92.6 % 85.0 %
Corylus pollen 199 88.4 % 98.9 %
Taxus pollen 338 86.4 % 98.6 %
Other particles 283 97.5 % 82.4 %
Total 942 91.0 % 91.0 %
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Automatic sampling, preparation, microscopy and recogni-
tion have been integrated in a system with the capacity
to stand-alone-operation and online-data transfer. The samples
of the pollen monitor from the sampling period 2005 are
now used to create a reference comprising at least 20 different
pollen species. This reference will be applied to the field
test of the monitor in Freiburg i.Br. taking place in 2006
(Fig. 10).

Following the field test, for the years from 2007–2010, a lim-
ited-lot production of the monitor and the set-up of a pollen
measurement network at meteorological stations of the German
Weather Service is planned.
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