Einfluss von Fasern unterschiedlicher Herkunft und Länge im Futter auf das Wachstum von Mastbroilern

I. Halle¹, L. Hüther¹, H. Sievers² und S. Dänicke¹

¹Institut für Tierernährung (FLI), Bundesallee 37, 38116 Braunschweig; ²TiHo, Hannover

Einleitung

Ein wichtiger Nährstoff im Geflügelfutter ist die Rohfaser. Sie umfasst die Strukturkomponenten der Pflanzenzellen und wird durch die Analyse der neutralen Detergentienfasern (NDF = Summe aus Lignin, Zellulose, Hemizellulose), der sauren Detergentienfaser und dem sauren Detergentienlignin näher charakterisiert. Die pflanzlichen Zellwandbestandteile beeinflussen die Verdauungs- und Absorptionsprozesse und nehmen Einfluss auf die Zusammensetzung der Mikrobiota im Darm des Tieres. Empfohlen werden Gehalte von 35 g Rohfaser pro kg Starterfutter und 40-45 g pro kg Futter für ältere Mastbroiler (Jeroch et al., 2013).

Das Ziel der beiden Untersuchungen bestand darin, aufbauend auf zwei vorherigen Versuchen zur Ermittlung der optimalen Konzentration an Rohfaser sowie der Herkunft und Länge der Faser (Halle, 2018 a, b), jetzt die beste Konzentration im Broilerfutter zu ermitteln.

Material und Methoden

Zu der Fragestellung wurden 2 Broilermastversuche über 34 (Versuch 1)/35 (Versuch 2) Tage durchgeführt. Im Versuch 1 wurden 8 Gruppen und im Versuch 6 Gruppen mit je 8 Abteile die mit 10 männlichen oder 10 weiblichen Tieren besetzt waren, geprüft (Tabelle 1). In den Versuchsdiäten wurden jeweils 10 g von den 40 g Grünmehl des Kontrollfutters gegen eine Haferfaser, die aus den Zellwänden der Haferspelze gewonnen wird (SANACEL® oat) und eine definierte Länge von 300 µm hat, in Mengen von 5/10/15 g/kg (Versuch 1) bzw. 10/20 g/kg (Versuch 2) ausgetauscht."

Das Kontrollfutter enthielt 30 g Rohfaser und in den Versuchsdiäten wurde eine Haferfaser, die aus den Zellwänden der Haferspelze gewonnen wird (SANACEL® oat) und eine definierte Länge von 300 µm hat, in Mengen von 5/10/15 g/kg (Versuch 1) bzw. 10/20 g/kg (Versuch 2) ausgetauscht gegen 10 g von insgesamt 40 g Grünmehl im Kontrollfutter. Das pelletierte Futter enthielt 21 % Rohprotein und 12,80 MJ ME pro kg und wurde ad libitum gefüttert.

Die Lebendmasse der einzelnen Tiere wurde erfasst und eine wöchentliche Futterrückwage in den Abteilen durchgeführt. Am Versuchsende wurde jeweils ein Broiler aus jedem Abteil geschlachtet und die Zusammensetzung des Schlachtköpers, Organ-, Darmgewicht und Darmlängen ermittelt. Die Tierverluste im Versuch 1/2 lagen bei 2,2/2,0 %.

Die Daten wurden mittels einer zweifachen Varianzanalyse (ANOVA) berechnet. Für die statistische Analyse stand das Programmpaket SAS (Version 9.4) zur Verfügung.

Tabelle1: Versuchsgruppen

Versuch	Geschlecht	Haferfaser, g/kg	Versuch	Geschlecht	Haferfaser, g/kg	
1		Kontrolle	2		Kontrolle	
	männlich	5		männlich	10	
		10			20	
		15			Kontrolle	
		Kontrolle		weiblich	10	
	weiblich	5			20	
		10		-	-	
	1	15		-	-	

Ergebnisse

Die Supplementierung von 15 g Haferfaser pro kg Futter führte im Versuch 1 bei den männlichen Tieren zu einer 2 % höheren Mastendmasse (2436 g/Tier) im Vergleich zur Kontrolle (2392 g) und einem statistisch gesichert niedrigeren Futteraufwand (1,36/1,39 kg/kg).

Bei den weiblichen Tieren war im Wachstum und der Futterverwertung kein gesicherter Unterschied zwischen Kontrolle und den Fasergruppen festzustellen (Tabelle 2).

Tabelle 2: Ergebnisse zum Wachstum der Broiler (Mittelwerte)

Versuch	Geschlecht	Haferfaser	Futteraufnahme	Lebendmasse	Futteraufwand	
		g/kg	g/Tier/Tag	34./35. Tag	g/g	
1	männlich	Kontrolle	96,3	2392	1,394	
		5	97,4	2445	1,380	
		10	97,0	2433	1,380	
		15	96,6	2436	1,359	
	weiblich	Kontrolle	85,1	2118	1,395	
		5	85,1	2100	1,406	
		10	86,6	2125	1,414	
		15	84,0	2074	1,407	
Standard	Standard Error		3,12	77,0	0,03	
Anova Geschlecht			<0,001	<0,001	< 0,001	
Haferfaser Konzentration			0,555	0,748	0,541	
Geschlecht x Haferfaser		0,732	0,377	0,145		
2	männlich	Kontrolle	94,0	2321	1,374	
		10	99,8	2541	1,308	
		20	100,0	2567	1,323	
	weiblich	Kontrolle	85,6	2098	1,378	
		10	90,1	2282	1,310	
		20	91,3	2303	1,347	
Standard Error		3,58	86,5	0,025		
Anova Geschlecht			<0,001	<0,001	0,176	
Haferfaser Konzentration			<0,001	<0,001	<0,001	
Geschlecht x Haferfaser			0,375	0,124	0,388	

Tabelle 3: Ergebnisse zur Ausschlachtung der Broiler am Versuchsende

Versuch	Geschlecht	Haferfaser	Schlacht-	Brust-	Schenkel	Muskel-	Caeca,
		g/kg	körper, %	fleisch, %	%	magen, %	g
1	männlich	Kontrolle	66,6	15,9	18,6	1,26	6,67
		5	66,2	15,1	19,7	1,31	7,52
		10	67,1	15,7	18,6	1,31	6,78
		15	68,8	17,0	19,1	1,12	7,76
	weiblich	Kontrolle	68,8	16,8	18,7	1,16	-
		5	68,6	16,4	18,6	1,27	-
		10	69,0	17,2	18,6	1,24	-
		15	68,4	16,7	18,8	1,39	-
Standard Error			2,21	1,40	1,05	0,232	0,209
Anova Geschlecht			0,006	0,014	0,749	0,786	-
Haferfaser Konzentration			0,400	0,139	0,810	0,778	0,209
Geschlecht x Haferfaser		0,224	0,247	0,935	0,078	-	
2 n	männlich	Kontrolle	69,6	16,0	19,7	1,54	7,48
		10	70,1	17,6	19,0	1,30	7,18
		20	72,0	18,5	19,6	1,14	8,06
V	weiblich	Kontrolle	70,9	18,0	18,9	1,43	-
		10	72,0	19,5	18,8	1,26	-
		20	70,7	19,8	17.8	1,12	-
Standard Error		1,49	1,83	0,902	0,215	0,971	
Anova Geschlecht			0,160	0,002	0,001	0,359	-
Haferfaser Konzentration			0,099	0,006	0,206	0,001	0,213
Geschlecht x Haferfaser			0,008	0,846	0,057	0,836	

Die Ausschlachtung der Broiler zum Versuchsabschluss zeigte einen signifkanten Unterschied zwischen den Geschlechtern im prozentualen Anteil am Schlachtkörper und Brustfleisch, weitere Unterschiede bei den Darmlängen oder Darmgewichten wurden nicht ermittelt (Tabelle 3).

Im Versuch 2 wurde neben dem Einfluss des Geschlechtes, ein signifkanter Effekt der zugesetzten Haferfaser auf die Futteraufnahme, die Mastendmasse und den Futteraufwand ermittelt. Die Supplementierung der Faser erhöhte die Futteraufnahme bei den Tieren, was zu einer besseren Mastendmasse im Vergleich zur Kontrolle führte und in den Gruppen mit 10 g Faser pro kg zum niedrigsten Futteraufwand (Tabelle 2).

Die Schlachtung der Broiler am 35. Lebenstag ergab für den Anteil an Brustfleisch und Muskelmagen einen statisch gesicherten Einfluss derKonzentration an Haferfaser im Futter. Auch in dieser Untersuchung wurde keine weiteren Unterschiede bei den Darmlängen oder Darmgewichten ermittelt (Tabelle 3).

Schlussfolgerungen

Die Ergebnisse der Untersuchung zeigten, dass die Supplementierung der Haferfaser mit einer definierten Länge von 300 µm bedeutend war für eine optimale Entwicklung der Mastbroiler. In dem Wachstumsversuch konnte nachgewiesen werden, dass die Anreicherung des Futters mit 10-15 g Haferfaser das Wachstum der männlichen und weiblichen Tiere unterstützte und die Futterverwertung positiv beeinflusste.

Literatur

- Halle, I., H. Sievers, L. Hüther, S. Dänicke (2018a) Influence of different sources and length of fibers in the diet on the growth of boiler chickens. Proceedings of the Society of Nutrition Physiology, Volume 27, p 134.
- Halle, I., H. Sievers, L. Hüther, S. Dänicke (2008b) Influence of different energy, protein and NDF contents in the diet on the growth of broiler chickens. Proceedings of the Society of Nutrition Physiology, Volume 27, p 154.
- Jeroch, H., A. Simon, J. Zentek (2013) Geflügelernährung, Verlag Eugen Ulmer KG, Stuttgart.