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Abstract

Cod liver oil is a popular dietary supplement marketed as a rich source of omega-3 fatty acids as well as vitamins A and D. Due to
its high market price, cod liver oil is vulnerable to adulteration with lower priced vegetable oils. In this study, "H and '*C nuclear
magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and gas chromatography (coupled to a flame ioni-
zation detector) were used in combination with multivariate statistics to determine cod liver oil adulteration with common
vegetable oils (sunflower and canola oils). Artificial neural networks (ANN) were able to differentiate adulteration levels based
on infrared spectra with a detection limit of 0.22% and a root mean square error of prediction (RMSEP) of 0.86%. ANN models
using "H NMR and '*C NMR data yielded detection limits of 3.0% and 1.8% and RMSEPs of 2.7% and 1.1%, respectively. In
comparison, the ANN model based on fatty acid profiles determined by gas chromatography achieved a detection limit of 0.81%
and an RMSEP of 1.1%. The approach of using spectroscopic techniques in combination with multivariate statistics can be
regarded as a promising tool for the authentication of cod liver oil and may pave the way for a holistic quality assessment of fish
oils.

Keywords Nuclear magnetic resonance spectroscopy - Infrared spectroscopy - Artificial neural networks - Authenticity - Fish oil -
Adulteration

Introduction it has become more visible because of an increase of global

commodity trade. The European Union (EU) regulation no.

Food authentication is the verification that a food complies
with its labeled information such as origin, production meth-
od, and composition. The labeling of high-value products is of
particular interest, as such products may become targets of
fraudulent activities [1]. Food fraud has been practiced in al-
most every period of human history. However, in recent years,
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882/2004, which lays down rules for the performance of offi-
cial food controls within the EU, has recently been replaced by
regulation 2017/625 [2]. This regulation introduced ““fraudu-
lent or deceptive practices” as a new key element in official
controls that must be taken into account by the competent
authorities and integrated into the risk-based approach for
the determination of the frequency of controls.

Although the majority of food fraud incidents do not pose a
health risk to the consumer, some cases can cause Serious
harm to human health, e.g., when expensive fish species are
substituted by species associated with certain types of food
poisoning or allergens [3]. However, even when it does not
entail any health implications, food fraud undermines con-
sumer confidence and may affect an entire food industry sec-
tor. As a result, the development of reliable, rapid, and cost-
effective analytical authentication methods is currently an area
of significant interest for the food industry as well as the food
retail sector and food authorities [3].

Traditionally, methods for fish oil authentication are based
on chromatography, mass spectrometry, or wet-chemical
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procedures [4-6], which are often laborious and time-consum-
ing. The Codex Standard for Fish Oils defines fish species—
specific ranges for individual fatty acids determined by gas
chromatography (GC) [7]. The European Pharmacopoeia
lays down the regiospecific distribution of DHA, EPA, and
stearidonic acid on the glycerol backbone of triacylglycerols
for the authentication of salmon oil [8]. Fatty acid and triac-
ylglycerol profiles have been successfully applied in combi-
nation with principal component analysis in order to distin-
guish between fish and marine mammal oils [4] as well as
authentic and adulterated cod liver oils [6]. On the other hand,
spectroscopic techniques, such as "H nuclear magnetic reso-
nance (NMR), >C NMR, and Fourier transform infrared (FT-
IR) spectroscopies, are known as fingerprint methods that are
suitable for non-targeted analyses, especially when they are
used in combination with chemometrics. They are considered
rapid and non-destructive methods that can provide compre-
hensive information in a single analysis. Various composition-
al edible oil quality parameters (e.g., acidity, iodine, peroxide,
and saponification values, trans fatty acid content, fatty acid
composition) can be determined from the spectra, which
makes spectroscopic fingerprint methods suitable for the de-
velopment of a holistic quality assessment approach [9, 10].

However, the vast amount of data acquired by spectroscop-
ic instruments is complex and difficult to interpret. Traditional
methods of calibration based on univariate analysis may not
yield satisfactory results. In this case, chemometrics can help
to extract the relevant information using mathematical and
statistical methods, e.g., machine learning [9]. Machine learn-
ing is the scientific discipline of the development and appli-
cation of algorithms designed to “learn” from training data to
create models that can be used to make predictions and/or
decisions. Supervised learning comprises classification and
regression analyses for qualitative and quantitative ap-
proaches, respectively. Linear methods such as partial least
squares regression (PLSR), principal component regression
(PCR), and linear discriminant analysis (LDA) are most com-
monly used in food applications [9]. Alternatively, more ad-
vanced techniques based on complex algorithms have increas-
ingly attracted attention. These include, e.g., artificial neural
networks (ANN), support vector machines, and genetic
algorithms [9]. PLSR is often combined with variable selec-
tion algorithms, which can be used to select the important
variables from the data prior to statistical modeling, such as
Monte Carlo uninformative variable elimination (MC-UVE)
[11], random frog [11], and competitive adaptive reweighted
sampling (CARS) [12].

With regard to food fraud incidences, cod liver oil seems to
be an attractive target due to its high nutritional (e.g., long-
chain omega-3 fatty acids docosahexaenoic acid (DHA) and
eicosapentaenoic acid (EPA) as well as vitamins A and D) and
economic values [5, 13]. Potential adulterants include vegeta-
ble oils, in particular those that cannot easily be distinguished
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visually from cod liver oil and are less expensive, e.g., sun-
flower and canola oil [14].

The literature contains a number of studies where NMR or
FT-IR spectroscopy was applied in combination with multi-
variate statistics to detect olive oil adulteration [15, 16]. 'H
and '>C NMR spectroscopies have been used to classify fish
(oil) samples according to species, geographical origin, or
farmed and wild status [17, 18]. Two studies using '*C
NMR spectroscopy investigated the adulteration of salmon
oil with mixed fish oil [17] and the adulteration of vegetable
oils with animal oils [19]. Only Aursand et al. [17] applied
supervised learning to build a regression model for the predic-
tion of adulteration levels in the range 5—40%. A series of
studies on the determination of cod liver oil adulteration based
on FT-IR spectra were published by the same research group
[14,20-22]. They used various animal fats and vegetable oils
as adulterants and applied the linear methods PLSR, PCR,
LDA, and partial least squares discriminant analysis for
modeling. The adulteration levels with vegetable oils analyzed
in those studies ranged from 1 to 50% (v/v) [14, 20].

The present study investigated the following hypothesis:
The adulteration of cod liver oil with common vegetable oils
(here: sunflower and canola oils) can be detected at low levels
(<5%) and quantified by means of '"H NMR, '3C NMR, and
FT-IR spectroscopies in combination with multivariate statis-
tics. Confirming this hypothesis would suggest a potential of
the spectroscopic techniques to be used as alternative tools to
GC-based methods, which would be beneficial with regard to
analysis time, workload, the amounts of sample and chemicals
required, and the amount of additional information obtained in
the same analysis.

The specific objectives of the study were (a) to generate
regression and classification models using a variety of learn-
ing algorithms for the determination of cod liver oil adultera-
tion based on the spectroscopic data, (b) to compare the per-
formance of the various linear and non-linear models in order
to identify the most suitable statistical methods and the most
powerful spectroscopic technique for the issue investigated,
and (c) to evaluate the novel spectroscopic approaches against
models based on the fatty acid profiles determined by the
standard method GC-FID.

Materials and methods
Oil samples

A total of 28 different cod liver oils (marine fish family
Gadidae) were used in this study, of which 13 oils were crude,
ten were refined, and five had been filtrated by activated carbon
to remove dioxins (Table 1). Samples were provided by
Lipromar GmbH (Cuxhaven, Germany) and LYSI hf.
(Reykjavik, Iceland). For producing model blends, 27
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Table 1 Cod liver oils analyzed in this study

Raw material

Specification

Frozen liver from Gadus morhua
Frozen liver from Gadus morhua
Frozen liver from Gadus morhua
Fresh liver from Gadus morhua

Fresh liver from Gadus morhua

Fresh liver from Gadus morhua (2 different batches)

Fresh liver from Gadus morhua
Fresh liver from Gadus morhua
Fresh liver from Gadus morhua
Fresh liver from Gadus morhua
Fresh liver from Gadus morhua
Fresh liver from Gadus morhua
Fresh liver from Gadus morhua
Frozen liver from Gadus chalcogrammus

Fresh liver and flesh from Gadus morhua,
Melanogrammus aeglefinus, and Pollachius
virens (2 different batches)

Fresh liver from Gadus morhua,
Melanogrammus aeglefinus, and
Pollachius virens (2 different batches)

Fresh liver from Gadus morhua

Frozen liver from Gadus morhua, salted
Frozen liver from Gadus morhua, salted

Fresh liver and flesh from Gadus morhua,
Melanogrammus aeglefinus,
and Pollachius virens (3 different batches)

Fresh liver from Gadus morhua, Melanogrammus

North-East Atlantic, processed in 2013, crude

North-East Atlantic, processed on 30 April 2014, crude

North-East Atlantic, processed on 01 May 2014, crude

Barents Sea/Norwegian Sea, processed on 13 May 2014, crude

Norwegian Sea/Bering Sea, North-East Atlantic, processed on 05 March 2015, crude
Barents Sea, processed on 10 March 20135, filtrated by activated carbon

Barents Sea/Norwegian Sea, processed on 30 March 2015, crude

Barents Sea/Norwegian Sea, processed on 23 April 2015, crude

Barents Sea/Norwegian Sea, processed on 23 April 2015, filtrated by activated carbon
Barents Sea/Norwegian Sea, processed on 21 May 2015, filtrated by activated carbon
Barents Sea/Norwegian Sea, processed on 18 January 2016, crude

Processed on 24 March 2016, crude

Processed on 02 April 2016, filtrated by activated carbon

North-East Pacific, processed on 08 July 2016, crude

Iceland, processed in 2017, refined

Iceland, processed in 2017, refined

Greenland Sea, North-West Atlantic, processed on 07 June 2017, crude

Greenland Sea, North-West Atlantic, processed on 15 August 2017, crude, supernatant
Greenland Sea, North-West Atlantic, processed on 15 August 2017, crude

Iceland, processed on 30 October 2017, refined

Iceland, processed on 30 October 2017, refined

aeglefinus, and Pollachius virens (3 different batches)

commercial sunflower oils were used, of which 24 were refined,
two were cold-pressed, and one was crude. Seventeen canola
oils were used, including 14 refined and three cold-pressed oils.
Two of the sunflower oils and one of the canola oils were high-
oleic oils. Additionally, one refined, commercially available
mixed oil consisting of sunflower and canola was used.

Binary blends of sunflower/canola oil in cod liver oil were
prepared at concentrations of 1%, 5%, 10%, 20%, 30%, and
50% (v/v) by adding the respective volume of vegetable oil to
the cod liver oil and mixing the blend for 1 min using a vortex,
for 30 min using a laboratory shaker, and again for 1 min using
a vortex.

The pure cod liver oils, the blends, and two samples of pure
canola and sunflower oils (both refined) were analyzed by 'H
NMR, '*C NMR, and FT-IR spectroscopies as well as by GC-
FID.

Chemicals

Chloroform-d1 (99.8%, 0.03% TMS) was obtained from
Deutero GmbH (Kastellaun, Germany). FAME Mix C4-

C24, Supelco PUFA-1 Marine Source, cis-6,9,12,15-
octadecatetraenoic acid methyl ester (>97.0%), and cis-
7,10,13,16,19-docosapentaenoic acid methyl ester (>98.0%)
from Merck KGaA (Darmstadt, Germany) as well as cis-
8,11,14,17-eicosatetracnoic acid methyl ester (98%) from
Larodan AB (Solna, Sweden) were used as external standards
for GC analysis.

NMR spectroscopy

A total of 300 £2 mg oil was weighed into a 2-mL reaction
tube. After addition of 700 uL deuterated chloroform, the tube
was closed and vortexed, and 600 puL of this solution was
placed into a 5-mm-diameter NMR tube (Wilmad-LabGlass,
Vineland, USA). The tube was capped and analyzed by NMR
spectroscopy (Avance III HD 400 MHz, 5 mm BBI Probe,
Bruker BioSpin GmbH, Rheinstetten, Germany) in a one-
dimensional "H NMR and a one-dimensional '>*C NMR ex-
periment with '"H decoupling. Both experiments were carried
out at 300 K. The following experimental conditions were
applied in the '"H NMR experiment: spectral width

@ Springer



6934

Giese E. et al.

8223.7 Hz, relaxation delay 4 s, number of scans 16, acquisi-
tion time 3.9846 s, pulse width 90°, pulse sequence zg, zero
filling 64 k. The acquisition parameters of the '*C NMR ex-
periment were as follows: spectral width 24,038.5 Hz, relax-
ation delay 2 s, number of scans 512, acquisition time
1.3631 s, pulse width 90°, pulse sequence zgpg, zero filling
64 k.

The spectra were acquired using TopSpin 3.2 (Bruker
BioSpin GmbH, Rheinstetten, Germany), which performed
an automated phase correction. The first preprocessing of
the spectra was carried out in MestReNova 10.0 (Mestrelab
Research S.L., Santiago de Compostela, Spain). A baseline
correction (Bernstein polynomial fit, polynomial order 3)
was applied, and the spectra were binned (average sum) at
an interval of 0.002 ppm ("H NMR spectra) or 0.02 ppm
(!3C NMR spectra). The signals of chloroform (7.234—
7.328 ppm) and TMS (—0.049-0.054 ppm) including their
13C satellites (7.004—7.028 ppm and 7.526—7.552 ppm, —
0.154—0.144 ppm and 0.142-0.152 ppm) were cut out of
the "H NMR spectra, and the signals of deuterated chloroform
(76.673-77.563 ppm) were eliminated from the '*C NMR
spectra. Finally, the '"H NMR spectra consisted of 5617 and
the '>C NMR spectra of 9455 data points.

Signal allocation was performed using information from
scientific literature as well as the database SDBSWeb (http://
sdbs.db.aist.go.jp, National Institute of Advanced Industrial
Science and Technology, Tokyo, Japan).

FT-IR spectroscopy

An Agilent 5500t FT-IR spectrometer (Agilent Technologies
Inc., Santa Clara, USA) equipped with a detector of deuterated
triglycine sulfate was used to obtain FT-IR spectra. An oil
droplet was placed on a zinc selenide window, and absorbance
spectra were recorded in transmittance mode over a path
length of 100 pm. The samples were scanned at room temper-
ature at a resolution of 4 cm™ ' in the wavenumber range 4001—
649 cm™', whereby 898 data points were generated. The spec-
tra were averaged over 32 scans and ratioed against an air
background spectrum which was also averaged over 32 scans.
A new background spectrum was obtained after each mea-
surement. The zinc selenide window was cleaned with toluol
before a new sample was applied. OPUS 7.2 (Bruker Optik
GmbH, Ettlingen, Germany) was used to acquire data and to
perform a rubberband baseline correction with 100 baseline
points. Average spectra of duplicate measurements were used
for statistical analysis.

Gas chromatographic analysis
Fatty acid methyl ester (FAME) composition (weight%) was

determined on a 6890N gas chromatograph (Agilent
Technologies Inc., Santa Clara, USA) equipped with an SP-
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2560 column (100 m x 0.25 mm internal diameter, 0.20 um
film) (Supelco Inc., Bellefonte, USA) and a flame ionization
detector (FID) according to the standard method C-VI 10a
(00) of the German Society for Fat Science (DGF) after alka-
line transesterification to FAME (C-VI 11d (98)) [23]. Gas
flows were as follows: carrier gas (Hy) 1.4 mL/min, make-
up gas (N,) 45 mL/min, detector flame 40 mL/min for H,
and 390 mL/min for synthetic air. The injected sample volume
was 1.0 uL at a 75:1 split ratio. Injector and detector temper-
atures were 250 °C. The chromatographic analysis time was
55 min. The oven temperature program comprised heating at
3 °C/min from 120 to 240 °C and holding 240 °C for 15 min.
FAME peaks were identified by comparison of their retention
times with the retention times of external analytical standards.
ChemStation Rev. B 03.02 (Agilent Technologies
Deutschland GmbH, Waldbronn, Germany) was used to de-
termine retention times and peak areas. Thirty-seven fatty
acids were identified in the analyzed samples. The average
values of duplicate measurements were used for statistical
analysis.

Statistical analysis

Various chemometric methods were used to generate models
that can determine the adulteration of cod liver oil based on 'H
NMR, 3¢ NMR, and FT-IR spectra as well as fatty acid
profiles determined by GC-FID. The data acquired by the
three spectroscopic techniques and the FAME composition
(weight%) calculated from the GC chromatograms served as
predictor variables, respectively, while the adulteration level
(vol.%) and the adulteration status (yes/no) were used as the
dependent variable for regression and classification models,
respectively.

Data preprocessing

Data preprocessing was carried out in MATLAB 9.0 (The
MathWorks®, Natick, USA). The data was transformed by
logarithmization, mean centering, autoscaling, standard nor-
mal variate correction, first and second derivative, smoothing,
multiplicative scatter correction, min—max normalization from
0 to 1, or combinations thereof. Outliers were detected by the
Monte Carlo sampling method [11] and removed from the
data sets. Two samples (the pure canola and sunflower oils)
were excluded as outliers. Subsequently, the data set was di-
vided into a calibration (70%), a test (15%), and a validation
(15%) set, which corresponds to the default data partition for
using ANN in MATLAB. Calibration samples were used to
train the models, while test samples served to optimize model
parameters, and validation samples were used for an external
validation of the final optimized models. Samples were only
eligible for the test and validation sets if the contained cod
liver oils were not present in any of the calibration samples.
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Additionally, samples in the validation set did not contain any
cod liver oils that had been used to produce the blends present
in the test set. Furthermore, the validation data set had to
comprise samples from six concentration categories (0%,
1%, 5%, 10%, 20%, 30%). An exception was the validation
set for the GC model, which did not contain any samples with
10% adulteration.

In most data mining applications, only a small fraction of
the large number of independent variables that have been
measured are indeed relevant for prediction [24]. This is par-
ticularly true for spectral data. Variable selection prior to sta-
tistical modeling may improve model performance and reduce
the computation time for modeling. Therefore, various statis-
tical methods were applied in order to select the most impor-
tant variables from the data. These methods included succes-
sive projections algorithm (SPA) [25], MC-UVE (elimination
of all variables with stability < 1), random firog (initially two
variables to sample, variable assessment by regression coeffi-
cient), CARS, and stepwise multiple linear regression [26].
Moreover, the attribute selection filter in Weka 3.8.2
(University of Waikato, Hamilton, New Zealand) was applied.
These methods used the adulteration level (vol.%) as the de-
pendent variable. PLSR (SIMPLS algorithm, mean centering
of dependent variable, 50 factors) was implemented in
MATLARB as an alternative to the variable selection methods
or as an additional tool applied after variable selection in order
to reduce the dimensionality of the data.

Regression models

The original as well as the preprocessed data served as pre-
dictors for various learning algorithms in Weka:

»  Support vector regression

* Linear regression

*  Multivariate adaptive regression splines (MARS)

* Two instance-based algorithms: K-nearest neighbors and
locally weighted regression

* Three decision tree—based algorithms: M5’ model tree,
random forest, and REPTree

* Two multilayer feed-forward ANN: Bayesian regularized
neural network and multilayer perceptron

* Three ensemble methods: bagging, stacking, and voting

The methods MARS and Bayesian regularized neural
network were implemented in R 3.5.0 (The R Foundation
for Statistical Computing, Vienna, Austria) and accessed via
Weka.

MARS is a technique which can model non-linearities by
building a piecewise linear model [24]. It partitions the range
of predictor values into a number of bins and creates a linear
regression model for each region. The individual regression
models are connected by knots so that the resulting model is

continuous. MARS is suitable for high-dimensional problems
with a large number of inputs and works very fast. On the
other hand, it may not be as accurate as more advanced non-
linear algorithms [24].

ANN are a set of mathematical methods mimicking the
functioning of the human brain [24]. They consist of artificial
neurons arranged in interconnected layers, an input and an
output layer, and, where appropriate, one or more hidden
layers. Depending on the type of network, they can be used
for regression or classification purposes. The major advantage
of ANN is that they are capable of both linear and non-linear
modeling and can be flexibly adapted to a specific problem in
terms of architecture, learning algorithm, activation functions,
cost function, etc. However, in cases where spectral data is
used as input, variable selection may be required prior to
modeling in order to reduce the time to train the network.
Furthermore, validation of the models using an external vali-
dation set is vital because ANN are prone to overfitting as the
ratio of training samples to the number of connection weights
is often considered too small. Another drawback is that ANN
models may be difficult to interpret, in particular when they
consist of many hidden neurons or even several hidden layers
[24].

The prediction models generated using different forms of
data preprocessing were optimized based on the root mean
square error (RMSE) obtained for the calibration and test data
sets. The optimized models were validated on the validation
data set. Eventually, the RMSE (in particular the root mean
square error of prediction (RMSEP) of the validation data),
the bias, the predictive coefficient of determination (Qz) of the
validation data, the limit of detection (LOD), and the limit of
quantification (LOQ) were used to evaluate model perfor-
mance. The LOD and the LOQ were determined in accor-
dance with the AOAC Guidelines for Single-Laboratory
Validation of Chemical Methods for Dietary Supplements
and Botanicals [27]. The LOD was defined as the blank value
plus three times the standard deviation of the blank, and the
LOQ as the blank value plus ten times its standard deviation.
The blank value was defined as the average of at least four
model predictions of the adulteration level of pure cod liver oil
samples.

Classification models

Prediction models were also built on the preprocessed and the
original data after conversion of the dependent variable to
binary level (adulteration—yes/no). The following classifiers
were used in Weka:

*  Naive Bayes

»  Support vector classification
* Logistic regression

@ Springer
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* Two instance-based classifiers: K-nearest neighbors and
locally weighted learning

*  Two rule-based classifiers: repeated incremental pruning
to produce error reduction (RIPPER) and PART, which
obtains rules from partial decision trees

* Three decision tree—based classifiers: C4.5, random
forest, and REPTree

*  Two multilayer feed-forward ANN: multilayer perceptron
and voted perceptron

* Two ensemble methods: Adaboost. M1 and bagging

Support vector machines try to find the hyperplane that
produces the largest margin between the training points of
two classes [24]. The position of this hyperplane is defined
by the support vectors, i.e., the data points that are closest to
the hyperplane. Using the kernel trick, they are also capable of
drawing non-linear boundaries between classes by mapping
the data into a higher-dimensional feature space where a linear
separation becomes possible. However, they are highly affect-
ed by outliers and difficult to interpret [24].

Rule learners are fast and usually generate sparse models
because they select only the most important variables.
Furthermore, decision rules are robust against outliers [28].

In addition to the aforementioned methods, flexible dis-
criminant analysis (FDA) using the MARS algorithm and
two multilayer feed-forward ANN (neuralnet and nnet) were
implemented in R and accessed via Weka. While LDA sepa-
rates two classes by a hyperplane, FDA uses MARS functions
to define the discriminant surface [24].

All of the abovementioned methods were also tested after
the application of a filter in Weka that discretizes a range of
numeric independent variables into nominal attributes using a
supervised discretization method (Fayyad & Irani’s MDL
method). The classification models generated using different
forms of data preprocessing were optimized based on the per-
centage of correct classification of the calibration and test set
samples with particular emphasis on samples with low adul-
teration levels.

Results and discussion

Rohman and Che Man presented three approaches for the
detection of adulterants in edible fats and oils [21]: (1) deter-
mining the ratios between chemical constituents, while assum-
ing that these ratios are constant for authentic fats and oils; (2)
identifying specific lipid markers (e.g., steroids, secondary
plant metabolites), which may be present in different concen-
trations in the pure oils; and (3) applying analytical methods
derived from physical analysis to determine the effects of
adulteration on the physicochemical properties of the fats
and oils. The present study applied the third approach; i.e., it
derived information on a potential adulteration from
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spectroscopic data by building regression (“Regression
models”) and classification (“Classification models”) models.
The Weka files containing the individual model configura-
tions can be obtained from the authors along with specifica-
tions of the PLS factors. These files allow anyone to apply
these models to unknown samples of cod liver oil in order to
decide whether and/or to which extent they are adulterated.

Regression models

The best regression models built on the four data types are
presented in Table 2. In all cases, ANN models displayed the
best performance. The model based on FT-IR spectra yielded
the lowest RMSEP in the validation and the lowest LOD
(0.86% and 0.22%, respectively), followed by the GC-FID
model (RMSEP =1.1%, LOD =0.81%) (Table 2). Figure 1
shows a plot of the adulteration level predicted in the valida-
tion by these models against the target value. The performance
of the GC-FID model might be further improved if more
(minor) fatty acids (e.g., fatty acid isomers) were identified
in the chromatograms and included in the model, such as
vaccenic, gadoleic, heneicosapentaenoic, and cis-7-
octadecenoic acid [4].

Table 3 describes the ANN models with regard to data pre-
processing as well as ANN architecture and training. PLS fac-
tors served as inputs to the ANN. The number of factors was
selected based on the lowest RMSE obtained for the calibration
and test data sets. The ANN models implemented sigmoid and
linear activation functions. While the '*C NMR model applied
Bayesian regularization in order to improve generalization, the
other three models were not regularized. Regularization is a
technique that reduces overfitting by preventing the model from
having large weights (or coefficients) [24].

Decision trees (M5’ model tree, random forest, REPTree) as
well as K-nearest neighbors produced the worst predictions
(data not shown). The application of ensemble learning
methods, which generate several individual models and com-
bine the results, did not improve the performance of the indi-
vidual methods.

Fang et al. [29] established PLSR models to determine
adulterations of canola oil with beef tallow or lard using 'H
NMR spectroscopy and GC-MS. Three different brands of
canola oil and animal fats were used in that study. The
PLSR models detected adulteration levels of as low as 5%
(w/w) at an RMSEP of 0.030% (beef tallow) and 0.016%
(lard) for the "H NMR model compared with 0.041% (beef
tallow) and 0.038% (lard) for the GC-MS model. Guyader
et al. [19] spiked vegetable oils with animal fats/oils compris-
ing butter, fish oils as well as chicken, duck, beef, lamb, pork,
and egg fats. They estimated the limit of detection of animal in
vegetable oil by '>*C NMR spectroscopy at around 2% by
comparing the spectra of adulterated samples with the vari-
ability of genuine spectra. Aursand et al. [17] obtained an
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Table2  Performance of the best regression models based on 'H NMR, '*C NMR, FT-IR spectroscopies, and fatty acid profiles determined by GC-FID

Calibration Test Validation

n RMSEC (%) R? n RMSEP (%) ©° n RMSEP (%) ©° Bias LOD (%) LOQ (%)
'"H NMR 67 0.46 0.999 14 15 0.987 14 27 0930 -0.77 3.0 7.7
BCNMR 67 0.30 1.000 14 074 0.993 14 1.1 0989 —-090 1.8 5.0
FT-IR 107 0.46 0999 23  0.59 0998 23  0.86 0991 035 0.22 2.5
GC-FID 57 0.52 0.998 18 0.52 0.996 15 1.1 0993  0.36 0.81 2.9

n number of samples
0? predictive coefficient of determination

R? coefficient of determination

RMSE of 1% and 1.8% using ANN and PCR, respectively, to
predict the adulteration of salmon oil with mixed fish oil based
on >C NMR spectra. The models of their study were trained
on three sets of samples prepared at four different adulteration
levels (5%, 10%, 20%, and 40%).

Rohman and Che Man [20] studied the adulteration of cod
liver oil with canola, corn, soybean, and walnut oils over the
range of 1-50% (v/v) using FT-IR spectroscopy in combina-
tion with PLSR and PCR. The best RMSEP they obtained for
their models (built for each adulterant individually) varied
between 1.35% (soybean oil) and 1.75% (canola oil).
Rohman et al. [14] analyzed binary mixtures of a (single)
cod liver oil with a sunflower, a corn, and a grape seed oil at
concentration ranges of 0-50% (v/v) using FT-IR spectrosco-
py. Their PLSR models yielded an RMSEC of 0.48% and an
RMSEP of 0.28% for the quantification of cod liver oil in

IS
o
Q

Fig. 1 Adulteration level
predicted in the validation by the
best regression models versus
target adulteration: a "H NMR
model; b '*C NMR model; ¢ FT-
IR model; d GC-FID model
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mixtures with corn oil and an RMSEC of 0.52% and an
RMSEP of 0.44% for the analysis of grape seed oil mixtures.
The model performance statistics for the sunflower oil mix-
tures were not reported.

The abovementioned models reported in the literature deliv-
ered promising results regarding the spectroscopy-based ap-
proach to authenticate edible oils. However, they exhibit certain
limitations in that their validation data sets consisted of blends
containing the same original oils that were used in the calibra-
tion sets or the number of different pure oils and their allocation
to calibration and validation sets was not reported.

Classification models

For the classification approach, three different classifiers
turned out to provide the best model for the four data types

. g40 b

.S 30 s
©
o

. 320 *
©
B .
B 10 .
el °
9 L]
cod

20 30 40 0 10 20 30 40

Target adulteration (%)

s4 d
c
: 230 !

o
k)

. 320 .
©
©
5 10
O
o .
o 0 e

20 30 40 0 10 20 30 40

Target adulteration (%)

@ Springer



Giese E. et al.

6938

USTd
— Suoyuad uroW — (S9[qE

-lea 7€) 1°0 < Anpiqeqoxd

10 uonI9[as :(Suone[nuiIs
(€0 = wmuowowr () Wwoy pazijew 000°0] ‘UONEPI[RA-SSOIO
€°0 = oye1 Jurured)) uondoorod -IOU Xew—uIu J10J S10J0€J ()] WNWIXEU)
00S - uoneedoidsoeg  Jeour] prowdig prowsig I S JoAemnin ‘s10)08] SId § 304/ wiopup.1 — ULIIUID UBIA ari-0o
ASTd

— SuLeIuRo uBOW — (SI[qeI
-TeA £17) S0°0 < Anpiqeqoid

10} uonod[as :(suone[nuuIs
(Z°0 = wmuawow () WoJJ pazijewr 000°0] ‘uonepI[BA-SSOID
g0 =oel Surured)) uondoorad -Iou Xew—urut J10J SI0)08J ()7 WINUIIXeUr)
00S - uvoneSedoxdsoeg  1eour] prowsSig  prowsig 9 €1 IoAemnn ‘s10)08] STd €1 304f wopup. — ULISIUID UBIIN A-LA

AST1d — SuLIRIULD UBdW —
(se[qeLteA /i) 10°0 < ANIq
-eqoid uornoo[as :(suonen
-wIs ) ‘UOnepIeA-SSOId

SHOMIOU [BINoU 10} SI0)0€J ()G WINWIXEUL)
pazien3al Ppaeosone So.af wopuv.1 — JuLIUD
0001 uersokeq uoneedoidyoeg prowdis prowdig prowsig 4 €1 uelsokeq ‘s10308 S1d €1 ueow ‘voneziuyeso]  YAN D el
10
(70 = wmuawow 0 WOy pazijew
€0 = 9ye1 SuruIed]) uondoorad -IOU Xew—UI
00S - uoneedoidyoeg  Ieour] prowdig prowsig S 6 IoAemnin ‘s10)0¢J SId 6 NST1d — SuLued uedN AN H,
10Ae] IoKe] 10Ae] SuoINAU SuoINAu
mding  uoppiy indup  woppryjo -oN  indur jo "oN
syooda
JO 'ON uonezuLe[n3ay wyjLoge Jurwea| uonouny UONBANOY IMOAIYOIE JTOMIIN odAy spomIaN NNV 03 sindug Suissaoodaid ereq

Ar1-09 £q pauruelep sopgord proe Aney pue ‘sordoosonoads YI-LA YN D¢, TN H, U0 paseq ( S[qEL) S[oPOW UOISSaIfor NNV JO Uonezuojoereq) € djqelL

pringer

Qs



Chemometric tools for the authentication of cod liver oil based on nuclear magnetic resonance and infrared... 6939

(Table 4). The best '"H NMR and FT-IR models applied sup-
port vector machines using a normalized polynomial kernel
and a linear kernel, respectively. Both models applied regular-
ization via the complexity parameter c. The best '*C NMR
model was generated by FDA using the MARS procedure.
Backward pruning served to prevent overfitting. Finally, the
best GC-FID model was built using RIPPER, which is a prop-
ositional rule learner that applies pruning to avoid overfitting.

In comparison, the '>*C NMR and the FT-IR models yielded
the highest accuracy, with 100% correct classification in the
calibration, test, and validation set (Table 5). The '"H NMR
and the GC-FID models misclassified one sample with 0 and
1% adulterant, respectively (Table 5).

Naive Bayes, K-nearest neighbors, C4.5, and PART pro-
vided the worst predictions (data not shown), and ensemble
learning methods did not perform better than individual
algorithms.

Interpretation of the models

Exemplary '"H NMR, "*C NMR, and FT-IR spectra of pure cod
liver and sunflower oils and their blends can be found in the
Electronic Supplementary Material (ESM) (Fig. S1). The clearest
differences between cod liver and sunflower oils that can be
identified with the naked eye are apparent in the '*C NMR spec-
tra in the regions 127-130 ppm and 172—173 ppm, correspond-
ing to the -C=C- and the —C=0 region, respectively [30].

The '"H NMR signals that are particularly important for the
prediction of cod liver oil adulteration can be identified by
analyzing the loadings of the PLS factors and their weights
in the ANN model. Large positive or negative weights imply a
high importance of the respective input variable (PLS factor)
for predictions, and large positive or negative factor loadings
correspond to a high correlation of the respective spectral
region with the PLS factor. Consequently, the first PLS factor

in the "H NMR regression model exhibited a strong positive
effect on the adulteration predicted by the ANN (data not
shown). The signals at 1.24-1.36 ppm, which belong to all
but C2 and C3 methylene protons in fatty acids that are not
directly adjacent to a methine group, showed highly positive
loadings on this factor (ESM Fig. S2a). They are present in all
fatty acids apart from DHA and EPA, which do not occur in
vegetable oils.

Likewise, the first PLS factor in the '*C NMR regression
model exhibited a strong positive effect on the adulteration
level predicted by the ANN (data not shown). This factor
was also among the four factors selected as predictors for
the classification model by MARS. The highest positive load-
ing on this factor was found at 29.16 ppm (ESM Fig. S2b) and
attributed to methylene resonances of oleic, linoleic, and -
linolenic acid [31]. The highest negative loading was present
at 29.28 ppm and assigned to methylene resonances of
docosapentaenoic, arachidonic, and gondoic acid [31, 32].
Further positive loadings occurred at 14.04 ppm (terminal
methyl group of polyunsaturated omega-6 fatty acids),
62.06 ppm (sn-1 and sn-3 glycerol carbons on triacylglycerols
and sn-1 glycerol carbon on 1,2-diacylglycerols), and
68.9 ppm (sn-2 glycerol carbon on triacylglycerols) [30, 33].
The resonance of the terminal methyl group of monounsatu-
rated and saturated fatty acids at 14.08 ppm [33] exhibited
another negative loading (ESM Fig. S2b).

In the FT-IR regression and classification models, the sec-
ond PLS factor had a high positive impact on the predictions
(data not shown). Two wavenumbers exhibited highly nega-
tive loadings on this factor: 1704 cm ™' and 3024 cm ™' (ESM
Fig. S2¢). The former is associated with —C=0 stretching vi-
brations in free fatty acids, aldehydes, and ketones [34, 35].
This finding was in agreement with the '>*C NMR models,
which determined a positive effect of the level of triacylglyc-
erols on the predicted adulteration. The signal at 3024 cm '

Table 4 Characterization of the best classification models based on 'H NMR, '*C NMR, FT-IR spectroscopies, and fatty acid profiles determined by

GC-FID
Data preprocessing Classifier
"H NMR Min—max normalization from 0 to 1 Support vector classification (sequential minimal
optimization, ¢ = 1, normalized quadratic kernel)
BC NMR Logarithmization, mean centering — random fiog FDA using MARS (backward pruning, no
(maximum 50 factors for cross-validation, 2000 interaction terms)
simulations): selection probability >0.01 (447 vari-
ables) — mean centering — PLSR 11 factors
FT-IR Mean centering: random frog (maximum 20 factors for Support vector classification (sequential minimal
cross-validation, 10,000 simulations): selection optimization, ¢ = 100, linear kernel)
probability > 0.05 (217 variables) — mean centering
—PLSR 11 factors — autoscaling
GC-FID Attribute selection by forward searching using greedy RIPPER (pruning, minimum total weight of the

hillclimbing augmented with a backtracking facility
and correlation-based feature subset selection

(Weka, 7 variables)

instances in a rule =2)
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Table 5 Confusion matrix for the
best classification models

Predicted class

(Table 4) based on 'H NMR, *C

NMR, FT-IR spectroscopies, and Calibration Test Validation
fatty acid profiles determined by Yes No Yes No Yes No
GC-FID TH NMR
Actual class Yes 57 0 12 0 10 0
No 0 10 1 1 0
BC NMR
Yes 57 0 12 0 10 0
No 0 10 0 2 0
FT-IR
Yes 56 0 16 0 17 0
No 0 51 0 7 0 6
GC-FID
Yes 29 0 15 8 1 [1%%*]
No 0 28 0 3 6

Yes: adulterated; no: not adulterated

*Adulteration level of incorrectly classified sample

corresponds to =C—H stretching vibrations of cis-double
bonds [35]. Differences in this region between cod liver/fish
oil and vegetable oils were also identified by Rohman et al.
[14], Rohman and Che Man [20], and Yadav and Patel [36].
Rohman et al. [22] constructed a PLSR model for the de-
termination of cod liver oil in binary mixtures with corn oil
using the IR region 1480-1375 cm '. They identified this
region as being particularly useful for modeling as they found
that only cod liver oil contained a band at 1397 cm™'. This
band is attributed to in-plane bending vibrations of =C—H cis-
olefinic groups [35] and also exhibited a negative loading on
the second PLS factor in the FT-IR-based ANN model gener-
ated in the present study. Rohman and Che Man [20] observed
differences between cod liver oil and vegetable oils not only at
3007 cm ™' but also at 2922 cm ™' and 2852 cm ™' (—-C—H asym-
metrical and symmetrical stretching in methylene groups) as
well as in the fingerprint region between 1300 cm ' and
1100 cm ™' (-C-O stretching and —CH,— bending) [20, 34].
In the present study, the region 30202820 cm™' was not in-
cluded in the models as random fiog, which was applied prior
to PLSR, did not select any variables from this range.
Finally, the first PLS factor carried the largest positive
weights in the ANN regression model based on the GC-FID
data (data not shown). This factor was characterized by highly
positive loadings for linoleic and oleic acid and highly nega-
tive loadings for gondoic acid, DHA, and palmitoleic acid
(ESM Table S1). In the classification approach, the RIPPER
algorithm built three rules based on the contents of linoleic
and oleic acid. When the linoleic acid content was no higher
than 2.005% or the oleic acid content was no higher than
14.205%, the oil was considered to be pure cod liver oil. In
all other cases, the oil was classified as a blend. These findings
were in agreement with the '*C NMR model of the present

@ Springer

study, as well as the study of Araujo et al. [4], who applied
principal component analysis to the fatty acid profiles of dif-
ferent marine and vegetable oils measured by GC-FID. Their
results showed that the vegetable oils (soybean, linseed, and
canola oils) were characterized by high contents of linoleic
and oleic acid, whereas high contents of palmitoleic and
gondoic acid were typical for marine oils (cod liver, salmon,
seal, and whale oils). However, the absolute values for the
upper limits of linoleic and oleic acid contents determined
by RIPPER in the present study differed from the ranges spec-
ified in the Codex Standard for Fish Oils, according to which
linoleic acid may be present in cod liver oil at levels of up to
3.0% and oleic acid contents may be as high as 21.0% [7].
This may indicate that the cod liver oils analyzed in this study
did not adequately cover the inherent variability.

Conclusion

This study investigated the hypothesis of whether '"H NMR,
3C NMR, and FT-IR spectroscopies were suitable to be used
in combination with multivariate statistics in order to detect
and quantify the adulteration of cod liver oil with vegetable
oils (sunflower and canola oils). It was found that artificial
neural networks were able to determine cod liver oil adulter-
ation based on FT-IR spectra with a detection limit of 0.22%
and a root mean square error of prediction (RMSEP) of
0.86%. In comparison, the best regression model based on
the fatty acid profiles determined by the standard GC method
achieved a detection limit of 0.81% and an RMSEP of 1.1%.
Moreover, support vector machines and flexible discriminant
analysis using multivariate adaptive regression splines were
able to achieve 100% correct classification of pure cod liver



Chemometric tools for the authentication of cod liver oil based on nuclear magnetic resonance and infrared...

6941

oils and samples adulterated in the range 1-50% using FT-IR
and '>C NMR spectra, respectively.

Depending on the desired detection limit and accuracy, the
spectroscopic techniques investigated can be regarded as al-
ternative tools to GC-FID in the determination of cod liver oil
adulteration, when applied in combination with
chemometrics. Moreover, these techniques can be used for a
holistic quality assessment of fish oils, as they are able to
provide information on various quality aspects and research
questions. However, before they can be widely used by fish oil
manufacturers and food control authorities, the models should
be further validated by incorporating more cod liver oil
samples of different geographical origins, seasons, production
years, and qualities as well as vegetable oils of more than two
botanical origins (including, e.g., soybean and corn oils). This
will increase their robustness and their scope of application.
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