Extrusion texturisation of cricket flour and soy protein isolate: influence of insect content, cooking temperature and water-flow rate variation on textural properties and in vitro protein digestibility

Kiiru Samuel M. 1*, John N. Kinyuru1, Beatrice N. Kiage1, Anna-Kristina Marel2, Raffael Osen3, Anna Martin3 1 Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000- 00200, Nairobi, Kenya | 2 Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany

| 3 Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising,

Germany

Abstract

Rapid increase in global population and the unsustainable meat production have created demand for alternative animal-derived protein. Edible insects: as cricket flour (CF) is a promising future and unconventional protein source to be used in developing meat analogues. Soy protein isolate (SPI) was substituted with full-fat CF or low- fat CF at 0, 15, 30 and 45% and extruded on a laboratory co-rotating twin-screw extruder with a throughput of 1 kg/h at 150 rpm screw speed. Cooking temperature was set to 120, 140 and 160 °C and water flow rate (WFR) at 9 and 10 ml/min. Firmness (N) and stress anisotropy index (AI) were evaluated on all settings whereas in vitro crude protein digestibility (CPD) was done on extrudates at settings: 15 and 45% CF inclusions, 120 and 160 °C, 10 ml/min. All the treatments had a significant effect (P< 0.0001) on textural properties. Cooking temperature at 9 and 10 ml/min WFR positively correlated (r= 0.5728 and 0.5582) with firmness. However CF inclusion had a negative correlation (r=-0.3866 and -0.4841) with firmness; low-fat CF blends had relatively lower firmness than full-fat counterparts and control samples. Extrudates with higher AI of 2.15, 2.35 and 2.80 from 15% low and full-fat CF inclusions (140 °C, 9 ml/min), and 30% low-fat CF inclusion (160 °C, 10 ml/min) respectively, revealed a meat-like fibrous structures under scanning electron microscopy. High temperatures and 10 ml/min WFR displayed increased stress AI. Cooking temperatures negatively correlated (r=-0.0931) with the CPD whereas CF inclusion demonstrated a positive correlation (r= 0.9310). Highest CPD was obtained from 15% and 45% full-fat CF blends at 120°C; 47.37% and 50.21%, respectively. Thus, cricket-soy meat analogue with better CPD could be tailored by controlling the cooking temperature, cricket flours content and water flow rate during extrusion.

Key words: Acheta domesticus, high-moisture extrusion

BOOK OF ABSTRACTS African Conference on Edible Insects

SLU

African conference on edible insects Consolidating innovations, research and development on edible insects for transformation of livelihoods in Africa

Crowne Plaza Hotel Harare – Monomotapa 54 Park Lane, Avenues, Harare, Zimbabwe 14-16 August 2019

