P169

Carcinogenicity of red meat: the genotoxic and mutagenic potential of nitrosyl heme

T. Kostka¹, J. Fohrer², C. Guigas³, K. Briviba⁴, P. Steinberg⁵, M. T. Empl¹

¹University of Veterinary Medicine Hannover, Foundation, Institute for Food Toxicology, Hannover, Germany

²Leibniz University Hannover, Institute of Organic Chemistry, Hannover, Germany ³Max Rubner-Institut, Department of Safety and Quality of Fruit and Vegetables, Karlsruhe, Germany

⁴Max Rubner-Institut, Department of Physiology and Biochemistry of Nutrition, Karlsruhe, Germany

⁵Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany

Question

Epidemiological studies infer that a high consumption of red meat is a factor driving intestinal carcinogenesis. Processing of meat through the addition of nitrite leads to the formation of nitrosyl heme (No-heme), which might induce gene mutations and thus play a role in colorectal tumor formation. NO-heme is not commercially available and all synthesis methods described so far yield a mixture containing toxic byproducts. Therefore, the aim of the present study was to generate pure NO-heme and determine potential genotoxic and mutagenic effects using various *in vitro* approaches.

Methods

NO-heme was firstly synthesized using a previously published protocol, followed by additional purification steps such as dialysis and centrifugal vacuum concentration. Then, the resulting purified compound was detected, quantified and characterized by UV-vis and FTIR spectroscopy.

Results

During synthesis, the concentration of mutagenic nitrite in NO-heme solutions could be reduced by a thousand-fold. When exposed to light and ambient air for two hours, pure NOheme decomposes to yield hemozoin and nitrogen dioxide. Nevertheless, it can be stored over months at -80 °C protected from air and light. Preliminary data show significant DNAdamaging and mutagenic effects caused by the NO-heme treatment of Caco-2 and CHO-K1 cells.

Conclusion

A new method for NO-heme purification was established and analytically verified. For the first time, pure NO-heme was investigated regarding its toxic potential, with preliminary data suggesting DNA-damaging and mutagenic effects emanating from this compound. This might constitute a possible explanation for the link between processed red meat and colorectal cancer.

GERMAN PHARM-TOX SUMMIT 2019

Abstracts

of the

85th Annual Meeting of the German Society for Experimental and Clinical Pharmacology and Toxicology (DGPT) and the 21st Annual Meeting of the Association of the Clinical Pharmacology Germany (VKliPha) With contribution of the Arbeitsgemeinschaft für Angewandte Humanpharmakologie e. V. (AGAH)

25 February-28 February 2019

Haus der Wirtschaft • Stuttgart

This supplement was not sponsored by outside commercial interests. It is funded entirely by the publisher.