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HEPATOKIN1 is a biochemistry-based model
of liver metabolism for applications in medicine
and pharmacology
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David Meierhofer 5 & Hermann-Georg Holzhütter1

The epidemic increase of non-alcoholic fatty liver diseases (NAFLD) requires a deeper

understanding of the regulatory circuits controlling the response of liver metabolism to

nutritional challenges, medical drugs, and genetic enzyme variants. As in vivo studies of

human liver metabolism are encumbered with serious ethical and technical issues, we

developed a comprehensive biochemistry-based kinetic model of the central liver metabolism

including the regulation of enzyme activities by their reactants, allosteric effectors, and

hormone-dependent phosphorylation. The utility of the model for basic research and appli-

cations in medicine and pharmacology is illustrated by simulating diurnal variations of the

metabolic state of the liver at various perturbations caused by nutritional challenges (alco-

hol), drugs (valproate), and inherited enzyme disorders (galactosemia). Using proteomics

data to scale maximal enzyme activities, the model is used to highlight differences in the

metabolic functions of normal hepatocytes and malignant liver cells (adenoma and hepato-

cellular carcinoma).
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Inferring the response of a biological system to external or
internal perturbations from the properties and interactions of
its constituting molecules is a central goal of systems biology1.

With regard to metabolic systems, reaching this goal requires the
establishment of mathematical models enabling the computation
of metabolite concentrations and fluxes at given external condi-
tions (nutrients and hormones), gene expression level of meta-
bolic enzymes, and the systems history (e.g., current filling of
nutrient stores).

Chemical reactions and mass transport are the basic processes
in a metabolic network. They are catalyzed by specific enzymes
and transport proteins that are regulated in multiple ways by their
immediate ligands, allosteric effectors, hormone-dependent
reversible phosphorylation, and variable gene expression. Often,
a single specific regulatory enzyme feature is key for the regula-
tion of a complete metabolic pathway. For example, the strongest
regulator of the mitochondrial fatty acid transporter, carnitine
palmitoyltransferase (CPT), is the competitive inhibitor malonyl-
CoA. Decrease of malonyl-CoA concentration during the over-
night fast is lifesaving because activation of CPT enables the
enhanced oxidation of fatty acids to acetyl CoA and hence the
formation of glucose-sparing ketone bodies in the liver2. This
example underlines the importance of biochemistry-based kinetic
models that incorporate such important regulatory features of
enzymes.

The strong medical interest in a better understanding of the
molecular processes underlying the regulation of liver metabo-
lism arises from the fact that an ongoing metabolic imbalance of
the organ, e.g., due to excessive intake of drugs, alcohol or
fructose, may result in an abnormal accumulation of lipids
(steatosis) thereby increasing the risk of developing serious liver
diseases such as hepatitis, cirrhosis, and cancer3. Aiming at the
in vivo assessment of liver metabolism, we developed a kinetic
multi-pathway model of hepatocytes with hitherto unprece-
dented scope and level of detail. The model includes the
regulation of enzyme activities by allosteric effectors, hormone-
dependent reversible phosphorylation, and variable protein
abundances. For each enzyme, rate equations have been devel-
oped that take into account the enzyme’s kinetic and regulatory
features as revealed and quantified by means of in vitro assays.
In the following, we give an overview of the model while
referring the interested reader to the extensive Supplementary
material containing all technical details. We focus in the main
text on simulations of the dynamic metabolic output of the liver
at different plasma profiles of metabolites and hormones. Using
quantitative proteomics data for the scaling of maximal enzyme
activities, the model opens the goal for a quantitative functional
interpretation of gene expression changes. We applied this
approach to reveal the patient-specific metabolic profile of
adenoma and HCC. In summary, our model provides a powerful
tool for computational studies of liver metabolism in health and
disease.

Results
Model description. The metabolic part of the kinetic model
comprises the major cellular metabolic pathways of cellular car-
bohydrate, lipid, and amino acid metabolism of hepatocytes
(see Fig. 1). The model also contains key electrophysiological
processes at the inner mitochondrial membrane, including the
membrane transport of various ions, the mitochondrial mem-
brane potential, and the generation and utilization of the proton-
motive force. The time-dependent variations of model variables
(=concentration of metabolites and ions) are governed by first-
order differential equations. Time-variations of small ions were
modeled by kinetic equations of the Goldman–Hodgkin–Katz

type as used in our previous work4. The rate laws for enzymes
and membrane transporters were either taken from the literature
or constructed on the basis of published experimental data. The
mathematical form of the kinetic rate laws for enzymes and
membrane transporters was dictated by the reaction mechanism
and taken from enzymological in vitro studies, preferably for the
liver of the rat or, and if not available, in the order mice→
human→ bovine→ dog. The same ranking of species was
applied for the retrieval of numerical values for the kinetic
parameters. For every kinetic parameter we cite one experimental
reference. If several numerical values for the same kinetic para-
meter and the same species were reported, we used one repre-
sentative value that fits with the majority of the reported values
and that—whenever possible—was taken from an enzyme assay
that reported consistent values for other kinetic parameters.
Mathematical terms in the rate law related to allosteric enzyme
effectors, which are not included in the model were neglected.
Their average contribution is indirectly contained in the fitted
Vmax values. More than 90% of the parametric model input holds
for the rat liver. Supplementary Note 1 contains all kinetic
equations and model parameters sorted by individual pathways.
All model simulations were performed using MATLAB,
Release R2011b, The MathWorks, Inc., Natick, Massachusetts,
United States.

The regulation of key reaction steps in mutually opposing
pathways (e.g., glycolysis and gluconeogenesis, lipid synthesis,
and lipolysis) by hormone-sensitive reversible enzyme phosphor-
ylation represents an important regulatory principle to control
the direction of the net flux5. The signaling part of the model
comprises the insulin and glucagon dependent regulation of key
regulatory enzymes by reversible phosphorylation. The rate laws
for these enzymes take into account that the phosphorylated and
de-phosphorylated states of the enzyme possess differing maximal
activities and kinetic properties. As in our previous work6, we
used phenomenological mathematical functions to relate the
enzyme’s phosphorylation state to the plasma concentrations of
glucose (Supplementary Note 2)

The model boundaries are given by the metabolite and
hormone concentrations in the extracellular space. The flux
through reactions not considered in the model were put to zero,
i.e., carbon influx into and efflux from the modeled metabolic
subsystem is exclusively mediated by the exchange fluxes through
the plasma membrane.

Model calibration. Except for the Vmax values, which may vary
owing to variable gene expression, the numerical values for all
other model parameters were taken from reported kinetic studies
of the isolated enzyme. The Vmax values (Supplementary Table 1)
were estimated by fitting the model to 585 measurements of
exchange fluxes and internal metabolites obtained in 25 different
experiments carried out with perfused livers or isolated hepato-
cytes, covering a broad range of 21 important liver functions
(Supplementary Note 3). A description of each simulated
experiment, its physiological relevance, the initial conditions of
the simulation, and a comparative plot of measured and simu-
lated data is given in the Supplementary Note 3. For each of the
585 model simulations, we forced the concentration values of
170 internal metabolites to remain within the concentration
ranges defined on the basis of in vivo and in vitro measurements
(see Supplementary Data 1 and Supplementary Fig. 1). For more
details of the parameter fitting procedure see Methods.

An illustrative example of a calibration simulation is shown in
Fig. 2 depicting the relationship between the partial oxygen
pressure (pO2) and selected model variables. Under normoxic
conditions, ATP is almost exclusively generated by oxidative
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phosphorylation. If the external O2 level drops below critical
levels of about 15 mmHg, the cellular O2 level becomes too low to
saturate complex IV of the respiratory chain, which decreases the
flow of electrons, the proton-motive force, and thus the rate of
oxidative phosphorylation. The fall of ATP blocks ATP-
dependent reaction steps in anabolic metabolic pathways, such

as gluconeogenesis and urea synthesis. Therefore, these two
cardinal anabolic functions of the liver become severely restricted.

Inspection of the transition from the normoxic to the hypoxic
state elicited by a sudden drop of oxygen allows to trace back the
causal chain of molecular events underlying the relationship
between falling O2 levels and reduced rates of hepatic glucose and
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urea production. The experimentally observed deviation in the
cytochrome c reduction state from the expected thermodynamic
equilibrium at low O2 levels points to electron acceptors outside
the respiratory chain not considered by the model7.

Assessment of liver metabolism in vivo. The metabolic state of
the liver is mainly dictated by the plasma concentrations of
metabolites and hormones, which are continuously changing
depending on various factors such as the individual time regime
of eating and fasting, the amount and composition of the food,
physical activity or presence of systemic diseases like diabetes.

Our model offers the possibility to simulate these scenarios in a
quantitative manner by using the plasma profile of metabolites
and hormones as model input. Fig. 3. shows the simulated diurnal
variation of some key metabolic functions for a normal liver
(see Supplementary Fig. 2 for a larger set of 24 functions). The
effect of inter-individual variability of protein abundances on the
shape of the simulated trajectories was taken into account by
Monte–Carlo sampling, where the Vmax values of all enzymes
were randomly varied by ±10% in correspondence with reported
average inter-individual variation of 19% of the liver proteome8.

During the day and free access to nutrients, the liver takes up
glucose (Fig. 3q), and stores it in glycogen (peaking around 10 h)
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(Fig. 3t). Removal of excess carbohydrates from the plasma is a
vital liver function preventing violent oscillations in circulating
glucose after feeding. If, for example, 100 g of glucose were
delivered in its entirety into the extracellular fluid, plasma glucose
levels would rise by 37 mmol/l, whereas the measured rise is
rarely more than 10% of this9. During the night, i.e., without
intake of carbohydrates but ongoing glucose consumption
(predominantly by the brain), the liver stabilizes the plasma
glucose level by the export of glucose. Glucose release is
accompanied by a significant drop of the hepatic glycogen
reserve by about 80% and an increase of the rate of
gluconeogenesis (cf. red and green curves in Fig. 3q)10. The
hepatic uptake rate of fatty acids follows the plasma level of fatty
acids (Fig. 3p and Fig. 3e)11. Owing to the inhibitory effect of
insulin on Apo-B, the export rate of triglycerides to extra-hepatic
organs contained in very low density lipoprotein (VLDL) is low if
the glucose and insulin plasma levels are high and vice versa12.

Of notice, endogenous de novo synthesis of fatty acids is
inversely regulated against the import of fatty acids and the
export of VLDL (Fig. 3r, p, s). This is mainly accomplished by
regulation of the acetyl-CoA carboxylase by allosteric effectors
(e.g., fatty acids) and reversible phosphorylation13. Contrary to
the fast glycogen stores, hepatic triglyceride stores serve as long-
term fuel reserve and are almost unaffected during a normal
diurnal feeding cycle (Fig. 3y)14.

Notably, the model allows to monitor intracellular metabolic
changes, which are hardly accessible to direct experimentation.
For example, the model predicts diurnal changes of the ATP/ADP
ratio by a factor of about two. The relative share of glucose
and fatty acids in the oxidative ATP production of the liver
(quantified by the ratio of fluxes through the pyruvate dehydro-
genase and β-oxidation both yielding Acetyl-CoA) varies between
13:1 (at 10 h) and 2:1 (at 15 h), reflecting the adaptation in fuel
preference over the day. Counterintuitively, the energetically most
comfortable situation with a ratio ATP:ADP ≈ 6 is reached when
the uptake of fatty acids and their relative share in oxidative ATP
production is highest corresponding to times when the energetic
demand for VLDL synthesis and gluconeogenesis peaks. Impor-
tantly, the 24 h concentration changes of all internal metabolites
remained within experimentally overserved concentration ranges
(see Supplementary Data 1 and Supplementary Fig. 1).

Sensitivity analysis of the model. We performed a sensitivity
analysis of our model to figure out those parameters, which upon
changes of their numerical value have a large impact on the
computed network states and thus deserve special care in the
model parametrization procedure.

The sensitivity of stationary network states to changes
of enzyme parameters was evaluated by means of π-elasticity
coefficients, local response coefficients and global
response coefficients (defined in Methods). As reference state
we have chosen the steady-state that is adopted if the
concentrations of all external metabolites are put to their 24 h
mean values. All sensitivity measures are given in the Supple-
mentary Data 4.

The distribution of π-elasticity coefficients (EC), quantifying
the regulatory importance of an enzyme, reveals a balance
between activating and inhibitory regulatory effects (Fig. 4a).
Inspecting the occurrence of the four different parameter
categories (see Table 1) reveals that large negative ECs are
mainly accounted for by parameters of the category “N”, which
determine the deviation of the rate law from a hyperbolic shape
(e.g., the exponent n > 1 in a Hill equation). The large group of
parameters with EC= 1 is constituted by the Vmax values, which
commonly occur as pre-factor of the rate law. The balanced share

of the category “KM” in the fraction of positive and negative ECs
is due to the fact that increasing the Km value of a reaction
substrate lowers the affinity and thus the reaction rate whereas
increasing the Km value of a product (of a reversible reaction) has
the opposite effect.

Infinitesimal response coefficients (eR) of all model parameters
were computed with respect to 24 metabolic functions. For the
statistical evaluation we recorded all parameters and associated
metabolic functions meeting the condition eR�� �� � R� putting the
threshold R* to 0.1, 0.5, and 1.0, respectively. 181 (=17.4%), 79
(=7.6%), and 33 (=3.1%) parameters affected at least one
metabolic function (see Fig. 4b). Interestingly, there are some
parameters with a strong impact on multiple metabolic functions
(see Supplementary Fig. 5). Parameters affecting at least three
different metabolic functions with eR�� �� � 1 are shown in Fig. 4d.
They belong to processes located at the core of oxidative
phosphorylation (F0F1-ATPase, complex I of the respiratory
chain and mitochondrial uncoupling) or enzymes of the
glycolytic pathway (glucokinase and phosphofructokinase 1).

Finite response coefficients (R) may differ from the infinitesimal
ones owing to the non-linearity of rate laws. We calculated response
coefficients for a finite parameter change by 50% and repeated the
analysis shown in Fig. 4a, b (see Supplementary Figs. 3 and 4). A
comparison with infinitesimal response coefficients (see Fig. 4c)
shows, that the infinitesimal response coefficients have indeed the
tendency to underestimate the system’s response to finite parameter
changes.

Dynamic control analysis of liver metabolism. The abundance
of metabolic enzymes can be altered by regulated changes of
protein expression and degradation, but also by chemical mod-
ifications (i.e., adduct formation with acetaldehyde) or inhibition
by medical drugs. To check the functional consequences of such
changes of enzyme abundances, we performed a dynamic meta-
bolic control analysis (MCA), which differs from conventional
MCA in that changes of the time course of model variables rather
than changes of steady-state values are being calculated in
response to a small perturbation of model parameters. To this end,
we diminished the maximal activity of each of the
221 enzymes by 10% and computed the mean effect of this partial
inhibition on the 24 h profile of 24 metabolic functions. This
analysis revealed large differences in the capacity of individual
enzymes to control metabolic functions by changes of their pro-
tein abundance (see Fig. 5). About 30% of all enzymes catalysing
reactions that are close to the thermodynamic equilibrium have
virtually no impact on the metabolic response of the liver. By
contrast, about 10% of all enzymes exert significant control of
more than a single metabolic function. As expected, inhibition of
components of mitochondrial oxidative phosphorylation (e.g.,
reactions #38,39) influences almost all metabolic functions owing
to the central function of ATP. But also less prominent reactions
as the uptake of alanine (reaction #141) or the degradation of apo-
protein B (reaction #156) have control over several metabolic
functions. This kind of analysis can be used to identify potential
targets for the treatment of hepatic diseases like steatosis.
Such targets are indicated by red scores in column 17 of Fig. 5.
Among the top-ranking putative anti-steatotic enzymes are GPAT
(glycerol-P acyl transferase), mitochondrial uncoupling protein
UCP or ACC1/2 (acetyl-CoA carboxylase), which are all discussed
in the literature as potential targets for anti-steatotic drugs15.

Acute response of liver metabolism to a bolus of ethanol. This
example was chosen to illustrate how the model can be used to
check the feasibility of hypotheses about the molecular basis of
physiological or pathophysiological phenomena, in this case the
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interrelation between alcohol drinking and development of a fatty
liver. The main detoxification route of alcohol comprises the
subsequent action of the enzymes alcohol dehydrogenase (ADH)
and acetaldehyde dehydrogenase (ALDH) converting ethanol to

acetate via the intermediate acetaldehyde (pathway #16, Fig. 1).
Both reactions reduce NAD+ to NADH. It is commonly argued
that inhibition of fatty acid β-oxidation due to the lowered NAD+/
NADH ratio and the elevated de novo synthesis of fatty acids

Table 1 Model statistics

Model item Number Model item Number

Enzymes & transporters 209 Kinetic parameters (total) 1040
- Catalyzing a single reaction 189 Parameters of type “KM” affinity constants of reactants 604
- Catalyzing several reactions 20 Parameters of type “KA” affinity constants of allosteric effectors 139
Compartments 4 Parameters of type “VMAX” maximal activities 272a

Metabolites 274 Parameters of type “N” parameters determining the deviation from a hyperbolic rate law 27
Exchange fluxes with plasma 21

aNote that there are more parameters of type “VMAX” than enzymes/transporters because 20 enzymes catalyze more than a single reaction
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Fig. 4 Parameter sensitivity analysis. a Distribution of π-elasticity coefficients (see equation (3) in Methods) and the relative occurrence of the four
different parameter categories (see Table 1) and the category mean within the group of parameters with negative and positive ECs. Note that the total
number of ECs (947) is smaller than the total number of parameters because in the reference state some reactions are not operative (e.g., fructose
metabolism). b Frequency of parameters (y-axis) affecting a given number of metabolic functions (x-axis) with an infinitesimal response coefficient that is
larger than the threshold value R* (0.1, 0.5, and 1.0). The inserted Table shows the absolute and relative frequencies (in brackets) of parameter categories.
The relative frequency is given by the absolute frequency divided by the total frequency (see Table 1). c Relative differences D ¼ 100 ~R�R

R between
infinitesimal response coefficients (with R > 0.1) and finite response coefficients computed for a 50% parameter change. Blue bars: 50% parameter
reduction (p→ p/2). Red bars: 50% parameter increase (p→ 1.5p). d List of parameters affecting at least three different metabolic functions with an
infinitesimal response coefficients R≥ 1.0. Numbering of metabolic functions: (1) glucose exchange rate, (2) lactate exchange rate, (3) pyruvate exchange
rate, (4) glycerol exchange rate, (5) fatty acid uptake rate, (6) acetoacetate secretion rate, (7) β-hydroxybuterate secretion rate, (8) oxygen uptake rate,
(9) ammonia uptake rate, (10) glutamine exchange rate, (11) glutamate exchange rate, (12) serine exchange rate, (13) alanine exchange rate, (14) urea
secretion rate, (15) acetate exchange rate, (16) VLDL secretion rate, (17) glycogen storage, (18) cellular triglyceride concentration, (19) cholesterol
synthesis lrate, (20) fatty acid synthesis rate, (21) mitochondrial membrane potential, (22) ATP/ADP ratio, (23) NAD/NADH ratio (cytosolic), and
(24) NADP/NADPH ratio (cytosolic)
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from massively formed acetate are the key factors contributing to
the development of a fatty liver (see e.g.,16). We used our model
to check the soundness of this reasoning by simulating the effect
of a single bolus of ethanol added to the standard plasma profile
(see Fig. 6). A steep rise of the plasma alcohol level occurred if the
ethanol infusion rate approached 100 μM/g/h (red curves) indi-
cating saturation of ADH. The alcohol challenge induced a
transient increase of the cellular triglyceride content (Fig. 6d) that
was paralleled by an increased release of and lactate into the
plasma (Fig. 6b). However, up to high plasma peak values of
38 mM (corresponding to 1.75 per mille) these transient altera-
tions disappeared within a few hours after cessation of the ethanol
bolus. The simulations reveal that lowered ratios of NAD+/
NADH and pyruvate/lactate decrease the availability of pyruvate
for the carboxylation to oxaloacetate and thus diminish the

formation of citrate by the citrate synthase. Hence, there is no
significant citrate-dependent activation of the acetyl-CoA syn-
thetase catalyzing the rate-limiting step of fatty acid synthesis.
Notably, these model-based findings are in concordance with
early experiments of Guynn17 who observed a decrease of mal-
onyl-CoA, citrate, and the activity of the acetyl-CoA carboxylase
in response to acute ethanol administration. Hence, long-term
changes in the expression of lipogenic enzymes remains the likely
mechanism accounting for the development of an alcoholic fatty
liver. Indeed, the transient increase of the toxic intermediate
acetaldehyde (Fig. 6c) can activate the pro-lipogenic transcription
factor SREB-118 and inhibit the transcription factor PPAR-α
controlling the expression of enzymes involved in the β-oxidation
of fatty acids19.
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Drug-induced steatosis by valproate. An important application
of the model consists in the quantitative investigation of meta-
bolic changes elicited by medical drugs or toxins acting on spe-
cific metabolic enzymes. We have chosen the anticonvulsive drug
valproic acid (VPA) as example. Clinical experience with VPA
therapy has shown a number of fatal cases of hyperammonemia20

and excessive triglyceride accumulation21. These adverse effects
can be attributed to the VPA-dependent inhibition of two key
enzymatic steps. Being chemically an analog of a medium-chain
fatty acid, VPA is activated to valproyl-CoA thus sequestering
CoA and acting as competitive inhibitor of the carnitin-
palmitoyl-transferase 1 (CPT1)22. VPA also inhibits the N-
acetyl-glutamate synthetase (AGS) and thus the formation of
acetyl glutamate, a strong activator of the urea cycle23. The
interactions of VPA with CPT1 and AGS have been kinetically
characterized and thus could be included in the model in detail.

Fig. 7 shows the diurnal metabolic profile of selected metabolic
functions in response to a single dose of VPA. At elevated plasma
levels of VPA, the synthesis of urea is reduced (mean rate within
2–12 h= 7.87 μmol/g/h vs. 8.21 μmol/g/h for the reference case).
However, across 1 day, the mean urea production rate is not
significantly altered (9.56 vs. 9.44 µmol/g/h). In contrast, the
triglyceride content is increased during the whole time span of
VPA metabolization. Intriguingly, the simulation predicts a
reduced synthesis rate of cholesterol. Such a cholesterol-depleting
effect of VPA in the liver has not been reported so far but may
account for a statistically significant drop of total serum choles-
terol in epileptic outpatients on anticonvulsant monotherapy with
VPA24.

Assessing the severity of inherited metabolic disorders. The
model offers the possibility to assess the severity of a hereditary
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metabolic liver disease just knowing the altered kinetic properties
of the defective enzyme. In this example, we focus on galactose-
mia, a rare genetic metabolic disorder that is caused by a defi-
ciency of one of the three enzymes GALK, GALT, and GALE (cf.
pathway #3, Fig. 1), which together constitute the so-called Leloir
pathway converting galactose to UDP-glucose. Galactose can also
be reduced to galactitol by the NADPH-dependent aldose
reductase. Galactitol is an osmotically active compound that is
considered a major factor in cataract formation if produced
excessively. Finally, galactose can be oxidized to galactonate by
the NAD-dependent galactose dehydrogenase. Galactonate is
either released into the plasma or further metabolized to xylulose.

The clinical manifestations of each enzyme deficiency differ
markedly. Patients with GALK deficiency (type II galactosemia)
may present cataracts only. In contrast, GALT deficiency (type I
classical galactosemia) is potentially lethal and demonstrates
long-term, organ-specific complications25. While the molecular
mechanisms underlying the pathogenesis of Type I galactosemia
are still poorly understood, it is generally accepted that the
intermediate galactose-1-phosphate (Gal1P) is the toxic metabo-
lite responsible for the galactosemia phenotype.

Fig. 8 shows simulated temporal changes of the hepatic
galactose metabolism elicited by a galactose challenge of a normal
subject and of three patients suffering from galactosemia of type I,
II, or III, respectively. Taking the area under the curves (AUC) of
gal1P and galactitol as risk markers for systemic clinical
complications and cataract, respectively, (Fig. 8c, d) the patient
with GALT deficiency has by far the highest risk of systemic
complications and an equally high risk of cataract than the
patient with GALK deficiency. It has to be noted that this is a
computational case study of individual patients. Note that kinetic
alterations of genetic GALE variants are a continuum entailing a
large scatter in the severity of galactosemia III26.

Metabolic phenotyping of liver tumors. The gene expression
profile of a tumor typically deviates strongly from that of the
corresponding normal tissue27 but the functional implications of
these deviations remain often elusive. The model offers the
opportunity to unravel the functional implications of changes in
the protein abundance of metabolic enzymes in patient-specific
liver tumors. To this end, we used the ratio of protein abun-
dances of enzymes measured in the tumor cell and the normal
hepatocyte by quantitative proteomics (Supplementary Data 3)
to scale the corresponding ratio of Vmax-values. As an example,
Fig. 9 shows diurnal variations of selected metabolic functions of
an adenoma and two hepatocellular carcinoma (HCC) resected
from the liver of three individual patients (Supplementary
Note 5). The simulations reveal remarkable differences between
the metabolic profiles of the adenoma and the two HCC.
Although the two HCC both display all metabolic features of the
Warburg effect as a high rate of glucose consumption and lactate
formation, depleted glycogen stores, reduced oxygen uptake,
and lowered ATP/ADP ratio, the adenoma shows an almost
normal glucose metabolism but severe alterations in the lipid
metabolism (e.g., lowered rates of fatty acid uptake and TAG
synthesis). The oxidative phosphorylation capacity is reduced in
the two HCC but increased in the adenoma. Comparing the
metabolic profiles of the two HCC, there is a high similarity with
respect to the glucose and energy metabolism but remarkable
heterogeneity in the lipid and amino acid/nitrogen metabolism.
For example, the uptake rates of glutamine, an important tumor
substrate with several pleiotropic effects28, differ by a factor of
about five. Taken together, this pilot study points to the exis-
tence of a unique, patient-specific metabolic profile of tumors
despite some basic metabolic communalities (e.g., Warburg
effect in the two HCC).
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Discussion
Our work was inspired by both medical and methodological
challenges. The bio-medical challenge was to establish a modeling
platform that enables in silico studies of the response of the liver
metabolism to variations of the external and internal conditions.

In order to illustrate the utility of the model for basic research
and a variety of medical applications, we simulated temporal
variations in the metabolic state of the liver in response to
diurnal changes in the plasma profile of metabolites and hor-
mones at normal conditions, nutritional challenges, drugs with
metabolic side effects, enzymopathies, and altered gene expres-
sion profiles in liver tumors. The value of such model simula-
tions consists in the ability to monitor simultaneously a
large array of metabolites and fluxes in vivo. This is an exquisite
situation, which can hardly be achieved in experiments because
of ethical, technical, and economical restrictions. Hypotheses on
molecular mechanisms underlying the system’s behavior are
commonly based on a restricted set of experimental observa-
tions of system variables and parameters. The presented model
provides a means to check the feasibility of such hypothesis by
filling the observational gaps by computation. The simulation of
metabolic effects elicited by an alcohol bolus may serve as

example for such model-based hypothesis testing. Our simula-
tions demonstrate the capability of liver metabolism to rapidly
return to the normal state even after pronounced ethanol
challenges, thus excluding alcohol-induced steatosis to result
merely from metabolic dysregulation.

Applying the model to physiological or pathological states of
the liver deviating from the reference state for a longer time
period, adaptive alterations of enzyme abundances have to be
taken into account. Hitherto, mechanistic models of the cellular
protein turnover including the regulation of gene expression and
proteolysis are not available yet. As an appropriate substitute, one
may take advantage of the ongoing progress in quantitative
proteomics by using experimentally determined changes of pro-
tein abundances to scale the maximal activities of enzymes and
membrane transporters6. We used this approach to study the
functional implications of altered enzyme levels in liver tumors.
Our preliminary results suggest the existence of patient-specific
metabolic profiles, which eventually may help to optimize indi-
vidualized drug therapies. This computational approach may
serve as an example for a proteome-based metabolic profiling of
other liver diseases, such as liver steatosis, liver fibrosis, or liver
cirrhosis.
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The methodological challenge was to provide a paradigm for
the feasibility of a large-scale kinetic modeling approach that
takes into account the biochemistry of the system. Most common
in the modeling of large metabolic networks is the application of
constraint-based optimization methods, also known as flux-
balance analysis (FBA)29. The applicability of this approach is
restricted to the calculation of stationary flux distributions, which
are obtained by optimizing a plausible objective function that
relates basic cellular functions as, for example, the production rate
of biomass or energy, to the fluxes through the constituting
biochemical reactions. Additionally, upper flux constraints have
to be imposed to assure a finite solution of the optimization
problem. See ref.30 for a review of the genome-wide metabolic
flux distributions for various cell types based on constraint-based
methods. For a more detailed review on current activities aiming
at the development of mathematical whole-cell models we refer
the reader to the report of the 2015 Whole-Cell Modeling Sum-
mer School31.

Another modeling approach to large systems consists in the
constructions of phenomenological kinetic models, where the
need for detailed enzyme characterization is bypassed by using
simplified rate laws, e.g., of the mass-action type or lin-log type.
Such rate laws have fewer free scalable parameters that can be
conveniently estimated by the ensemble modeling methods32. But
naturally, this comes at the price of limited predictive power and
ability to incorporate biochemical information. FBA models lack
time responses and metabolite concentrations, while simplified
rate laws lack the possibility to incorporate changes in kinetic
parameters (as in inherited genetic diseases), enzyme isoforms
(e.g., in cancer cells), and allosteric regulation.

The limitations of the above modeling techniques can be
overcome by kinetic models resting at the principles of chemical
kinetics and thermodynamics and including all (for the purpose
of the model) relevant molecular details of enzyme regulation33.
Hitherto, the development and validation of such biochemistry-
based kinetic models has been limited to small metabolic sub-
systems comprising 10–30 reactions (see e.g., the model
repositories34,35). Frequently quoted arguments for such a long
standstill in the development of larger kinetic models are the lack
of kinetic information on metabolic enzymes for most cell types
and the general perception that data from enzymatic assays do
not reflect the in vivo situation. The latter argument must be
doubted by noting that all well-validated and often cited fit-for-
purpose kinetic models of small metabolic systems—from the
Heinrich-Rapoport models of red cell metabolism36 to the model
of the mammalian methionine cycle37—are ultimately based on
in vitro enzyme parameters. There is simply no better informa-
tion source for enzyme regulation than in vitro assays. Taking
into account species-specific differences in kinetic constants and
critically checking the plausibility of reported values by bio-
chemical arguments (e.g., thermodynamic feasibility) may con-
siderably reduce the degree of uncertainty in the choice of kinetic
parameters. At the end, the decisive argument for the validity of
the chosen numerical values of enzymatic parameters is the
correct functioning of the network under a multitude of phy-
siological conditions.

Finally, we want to emphasize that the development of a kinetic
metabolic model of this complexity and detail was possible
because metabolism is the by far best investigated cellular sub-
system and, therefore, better accessible to mechanistic mathe-
matical modeling than signaling or gene-regulatory networks.
Our research was inspired by the vision that in the end all this
information on individual enzymes can be brought together in
large dynamic network models.

Methods
Model calibration. We used a constraint optimization procedure to estimate
numerical values for the Vmax values of all enzymes. For each of the 585 model
simulations, we forced the concentration values of 170 internal metabolites Mi (i=
1,…,170) to remain within the concentration ranges Mmin

i ;Mmax
i

� �
defined on the

basis of in vivo and in vitro measurements (see Supplementary Data 1). This
condition was implemented by introducing a penalty function H(Mi) punishing
calculated metabolite concentration falling out of the expected range:

H Mið Þ ¼
Mi �Mmax

i

� �2
if Mi>M

max
i

Mmin
i �Mi

� �2
if Mi<M

min
i

0 else

8><>: ð1Þ

With this setting, the constrained optimization problem can be converted into
an unconstrained optimization problem:

F ¼
X21
α¼1

1
�yexpα

� �2XNα

i¼1

yexpαi � ymod
αi

� �2 þ 1
�Mexp

� �2XNα

i¼1

XM
j¼1

H Mαij

	 
 !" #
! MINIMUM

ð2Þ

where the mean value of the observed variable in experiment (α), �yexpα ¼ 1=Nαð ÞPNα
i¼1 yαi ,

and the mean concentration value of all metabolites, �Mexp ( �Mexp ¼1.48 mM), were
used to deal with dimensionless variables and to properly scale the relative
contributions of the two additive terms.

Statistical measures. For the sensitivity and control analysis of the model we used
the following measures:

(i) The π-elasticity coefficient, which is defined as partial derivative of the rate v
of the isolated enzyme, i.e., at fixed values Ef g0of the enzyme’s effectors as
reactants, allosteric effectors, and hormones with respect to an (infinitesimal) small
perturbation of the parameter p,

π ¼ p
v
∂v
∂p E0f g

���� ð3Þ

(ii) The response coefficient, which is defined as change of the steady-state value
of an arbitrary model variable Yi (e.g., metabolite concentration, reaction rate, and
membrane potential) caused by a change of model parameter pj,

Rij ¼
pj
Δpj

ΔYi

Yi
¼ 1

λ� 1
Yi λpð Þ
Yi pð Þ � 1

� �
ð4Þ

whereby the second term on the right-hand side of relation (2) holds if the parameter
change is expressed as λ-fold change of the initial parameter value, pj→ λpj.

In the control theory of metabolism it is common to study the response of the
system to infinitesimal parameter changes,

~Rij ¼ lim
Δpj!0

pj
Δpj

ΔYi

Yi
¼ lim

λ!1

1
λ� 1

Yi λpð Þ
Yi pð Þ � 1

� �
¼ pj

Yi

∂Yi

∂pj
ð5Þ

We will refer to Rij and ~Rij as finite and infinitesimal response coefficients.
(iii) For the sensitivity analysis of non-stationary states, we defined the time-

averaged response coefficient

Rh iT¼
R T
0 Ypert � Yref

��� ��� dtR T
0 Yrefj j dt

ð6Þ

where Yref and Ypert denote the time-dependent changes of model variable Y in the
absence (ref) and presence (pert) of a perturbation and T is the time interval of
interest.

Code availability. An executable SBML file of the model is available from the
authors on request.

Data availability. All data and public data sources used for the development,
calibration, and exemplary model simulations are contained in the supplementary
information.
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