6th International Conference of Rodent Biology and Management & 16th Rodens et Spatium, 2018, Potsdam

Conservation and Ecosystem Services

Estimation of benefits and losses of seed scatter hoarding behaviour by rodents in a subtropical forest: implications for the evolution of mutualism in seed-rodent systems

Haifeng Gu¹, Qingjian Zhao², Zhibin Zhang¹

¹Institute of Zoology, Chinese Academy of Sciences, Beijing, China, guhf@ioz.ac.cn ²University of Chinese Academy of Sciences, Beijing, China

Seed hoarding behaviour of rodents plays an important role in seed dispersal and seedling regeneration of trees, as well as for the evolution of mutualism between trees and rodents in forest ecosystems. There are two opposite views on why rodents adopt a scatterhoarding strategy: the pilferage avoidance hypothesis predicts that the cache pilferage rate should be very low to ensure benefits of cache owners, while the reciprocal pilferage hypothesis has an opposite prediction. Because it is difficult to identify seed hoarders and pilferers under field conditions by using traditional methods, the full costs incurred and benefits accrued by scatter-hoarding have not been fully evaluated in most seed-rodent systems. Our study aimed to test the two hypotheses at individual level under field conditions. By using infrared camera tracking and seed tagging methods, we investigated the comprehensive benefits and losses of scatter-hoarded Camellia oleifera seeds for three sympatric rodent species (Apodemus draco, Niviventer confucianus and Leopoldamys edwardsi) in a subtropical forest of Southwest China 2013-2015. We established the relationships between the rodents and the seeds at the individual level. For each rodent species, we calculated the cache recovery rate of cache owners, as well as conspecific and interspecific pilferage rates. We found all three sympatric rodent species had a cache recovery advantage (recovery rates > 50%) with rates that far exceeded average pilferage rates (<10%) over a 30-day tracking period. The smallest species (Apodemus draco) showed the highest rate of scatter-hoarding and the highest recovery advantage compared to the other two larger species. Across species, rates of scatter-hoarding and benefits were positively correlated with each other. Hence species having higher scatter-hoarding preference had higher competitive ability for seeds. Our results suggest that scatterhoarding benefits the cache owners more in food competition, not the cache pilfers, supporting the pilferage avoidance hypothesis.

Julius - Kühn - Archiv

Jens Jacob, Jana Eccard (Editors)

6th International Conference of Rodent Biology and Management and 16th Rodens et Spatium

Potsdam, Germany, 3-7 September 2018

Book of Abstracts

Julius Kühn-Institut Bundesforschungsinstitut für Kulturpflanzen

Julius - Kühn - Archiv

Jens Jacob, Jana Eccard (Editors)

6th International Conference of Rodent Biology and Management and 16th Rodens et Spatium

Potsdam, Germany, 3-7 September 2018

Book of Abstracts

Editors:

Jens Jacob¹ and Jana Eccard² ¹Julius Kuehn Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Toppheideweg 88, 48161 Münster, Germany ²University of Potsdam, Institute of Biochemistry and Biology, Animal Ecology Group, Maulbeerallee 1, 14469 Potsdam, Germany

Local Organizing Committee:

Jana Eccard, University of Potsdam Jens Jacob, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Münster Daniela Reil, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Münster Christiane Scheffler, University of Potsdam Elke Seydewitz, University of Potsdam

Scientific organising committee:

Emil Tkadlec (Czech Republic); Frauke Ecke (Sweden); Grant Singleton (Philippines): Heikki Henttonen (Finland); Jana Eccard (Germany); Jens Jacob (Germany); Lyn Hinds (Australia); Prince Kaleme (Congo); Xavier Lambin (UK); Zhibin Zhang (China)

International Steering Committee Rodens et Spatium:

Abraham Haim (Israel); Alexey Surov (Russia); Ana Maria Benedek (Romania); Boris Krasnov (Israel); Emil Tkadlec (Czech Republic); Éric Le Boulengé (Belgium); Farida Khammar (Algeria); František Sedláček (Czech Republic); Gert Olsson (Sweden); Grant Singleton (Australia); Heikki Henttonen (Finland); Jan Zima (Czech Republic); Jean-François Cosson (France); Linas Balčiauskas (Lithuania); Maria da Luz Mathias (Portugal); Molly McDonough (USA); Mustafa Sözen (Turkey); Nigel Yoccoz (Norway); Olga Osipova (Russia); Takuya Shimada (Japan); Victor Sánchez Cordero (Mexico); Xavier Lambin (United Kingdom); Yasmina Dahmani (Algeria)

International Steering Committee

International Conference of Rodent Biology and Management:

Andrea Byrom (New Zealand); Charley Krebs (Canada); Grant Singleton (Philippines); Jens Jacob (Germany); Jiqi Lu (China); Lyn Hinds (Australia); Nico Avenant (South Africa); Peter Banks (Australia); Peter Brown (Australia); Regino Cavia (Argentina); Rhodes Makundi (Tanzania); Roger Pech (New Zealand); Steven Belmain (UK); Sudarmaji (Indonesia); Zhibin Zhang (China)

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation In der Deutschen Nationalbibliografie: detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

ISSN 1868-9892 ISBN 978-3-95547-059-3 DOI 10.5073/jka.2018.459.000

Alle Beiträge im Julius-Kühn-Archiv sind unter einer Creative Commons - Namensnennung - Weitergabe unter gleichen Bedingungen -4.0 Lizenz veröffentlicht.

Printed in Germany by Arno Brynda GmbH, Berlin.