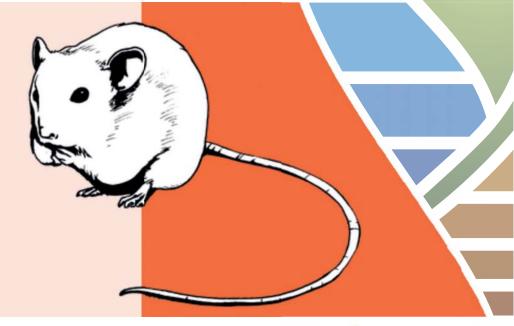
Form and Function

A morphometric mapping analysis of mice molar morphology Wataru Morita¹, Naoki Morimoto², Hayato Ohshima³, Jukka Jernvall¹

¹Centre of Excellence in Experimental and Computational Developmental Biology, Insitute of Biotechnology, University of Helsinki, Helsinki, Finland, wataru.morita@helsinki.fi ²Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto, Japan ³Division of Anatomy & Cell Biology of Hard Tissue, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan

The mouse dentition has been extensively used as a model for the developmental genetic basis of dental morphology. Phenotypic change and malformation have been reported in a variety of mutant mouse strains. In the case of mutant mice showing drastic morphological change in cusp patterns, however, the conventional quantitative approaches, such as landmark-based methods, cannot be applicable due to the lack of biologically and/or geometrically homologous structures between specimens. Therefore, the phenotypegenotype relationship remains to be tested. Here, we applied a landmark-free approach, morphometric mapping (MM) to quantify mice lower first molars. The sample used in this study comprised two strains of wild type house mouse: ICR and BL6, and mice with either loss or gain of function of different developmental genes. Their lower molars were µCTscanned and three-dimensional surface models were reconstructed. These models were quantified by MM, using three morphometric parameters: the mean curvature on the crown surface, the height from the cervical plane, and the radius from the centroid of the cervical line. Principal Components Analysis (PCA) was performed in order to identify and visualize major patterns of shape variation in the morphospace. The MM could detect not only the morphological difference between mouse mutants, but also between two wild type strains. The MM method allowed us to quantify and visualize the complicated mice dental morphology precisely. Applying this method to various types of mice mutants that represent altered cusp patterning promises well for an elucidation of the genotypephenotype relationship.

Julius-Kühn-Archiv


Jens Jacob, Jana Eccard (Editors)

6th International Conference of Rodent Biology and Management and

16th Rodens et Spatium

Potsdam, Germany, 3-7 September 2018

Book of Abstracts

Julius - Kühn - Archiv

Jens Jacob, Jana Eccard (Editors)

6th International Conference of Rodent Biology and Management and

16th Rodens et Spatium

Potsdam, Germany, 3-7 September 2018

Book of Abstracts

Editors:

Jens Jacob¹ and Jana Eccard²
¹Julius Kuehn Institute, Federal Research Centre for Cultivated Plants,
Institute for Plant Protection in Horticulture and Forests, Vertebrate Research,
Toppheideweg 88, 48161 Münster, Germany
²University of Potsdam, Institute of Biochemistry and Biology,
Animal Ecology Group, Maulbeerallee 1,
14469 Potsdam, Germany

Local Organizing Committee:

Jana Eccard, University of Potsdam
Jens Jacob, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Münster
Daniela Reil, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Münster
Christiane Scheffler, University of Potsdam
Elke Seydewitz, University of Potsdam

Scientific organising committee:

Emil Tkadlec (Czech Republic); Frauke Ecke (Sweden); Grant Singleton (Philippines): Heikki Henttonen (Finland); Jana Eccard (Germany); Jens Jacob (Germany); Lyn Hinds (Australia); Prince Kaleme (Congo); Xavier Lambin (UK); Zhibin Zhang (China)

International Steering Committee Rodens et Spatium:

Abraham Haim (Israel); Alexey Surov (Russia); Ana Maria Benedek (Romania); Boris Krasnov (Israel); Emil Tkadlec (Czech Republic); Éric Le Boulengé (Belgium); Farida Khammar (Algeria); František Sedláček (Czech Republic); Gert Olsson (Sweden); Grant Singleton (Australia); Heikki Henttonen (Finland); Jan Zima (Czech Republic); Jean-François Cosson (France); Linas Balčiauskas (Lithuania); Maria da Luz Mathias (Portugal); Molly McDonough (USA); Mustafa Sözen (Turkey); Nigel Yoccoz (Norway); Olga Osipova (Russia); Takuya Shimada (Japan); Victor Sánchez Cordero (Mexico); Xavier Lambin (United Kingdom); Yasmina Dahmani (Algeria)

International Steering Committee

International Conference of Rodent Biology and Management:

Andrea Byrom (New Zealand); Charley Krebs (Canada); Grant Singleton (Philippines); Jens Jacob (Germany); Jiqi Lu (China); Lyn Hinds (Australia); Nico Avenant (South Africa); Peter Banks (Australia); Peter Brown (Australia); Regino Cavia (Argentina); Rhodes Makundi (Tanzania); Roger Pech (New Zealand); Steven Belmain (UK); Sudarmaji (Indonesia); Zhibin Zhang (China)

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation In der Deutschen Nationalbibliografie: detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

ISSN 1868-9892 ISBN 978-3-95547-059-3 DOI 10.5073/jka.2018.459.000

Alle Beiträge im Julius-Kühn-Archiv sind unter einer Creative Commons - Namensnennung - Weitergabe unter gleichen Bedingungen -4.0 Lizenz veröffentlicht.

Printed in Germany by Arno Brynda GmbH, Berlin.