4.13 Synergistic effects between variety of insecticides and an EBI fungicide combinations on bumble bees (Bombus terrestris L.)

Risto Raimets, Marika Mänd, James E. Cresswell
Estonian University of Life Sciences, Institute of Agricultural and Environmental Sciences, Kreutzvaldi 5, Tartu, 51014, Estonia. E-mail: risto.raimets@emu.ee
DOI 10.5073/jka.2018.462.052

Abstract
In recent year’s severe decline in honey bees as well as in bumble bee populations have been observed all over the world. Pesticides have been proposed as one of the main cause of pollinators decline. Several studies show that variety of pesticides co-exist in environment and also in bee products at the same time and might therefore synergise.

Fipronil, cypermethrin, thiamethoxam and imidacloprid are agriculturally well known and used insecticides as well as fungicide imazalil. EBI fungicides like imazalil are functioning as detoxification inhibitor tools in insects. Thereby, the fungicide and insecticide co-occurrence might lead to synergy in bees. The cocktail-effects between insecticides and fungicides are still little studied. Aim of this study was to assess the impact of previously mentioned pesticides and their mixtures impact on bumble bee longevity and feeding rate. The bumblebee (Bombus terrestris L.) were fed with syrup containing different single pesticides and their combinations. Bees mortality and feeding rate was daily monitored.

Here we show that 3 of these insecticides are synergising with fungicide and due that causing significant decrease in bumble bees longevity and feeding rate. The results from this experiment allows us to suppose that EBI fungicide imazalil inhibits the detoxification processes in bees and due that toxicity of insecticides increases.

Although fungicides are considered as quite safe to bees when used appropriately and alone but in combination with insecticides might lead to faster individual death. Several studies have demonstrated impacts of single pesticides on bees, but yet there is a lack of data of synergistic effects. Future research should focus on synergistic effects of environmentally relevant doses of EBI fungicides and insecticides on pollinators longevity and physiology.

Reference
Published full text article can be found from journal Pest Management Science.

4.14 Developing methods for field experiments using commercially reared bumblebee colonies – initial colony strength and experimental duration as influential factors

Anke C. Dietzsch*, Malte Fromberger, Jens Pistorius
Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Messeweg 11-12, 38104 Braunschweig, Germany
*corresponding author: anke.dietzsch@julius-kuhn.de
DOI 10.5073/jka.2018.462.053

Keywords: Bombus terrestris, arable crops, colony development, queen production, experimental design

Summary
Semi-field and field experiments with commercially used bumblebees (e.g. Bombus terrestris) gain more and more importance for both ecological studies and trials on potential side effects of plant protection products. However, standardized, replicable experimental methods are lacking so far and need further development. For example, initial strength of bumblebee colonies may vary across experiments but may be a key factor in successful colony development under field conditions. Trial duration and termination may impact results on total reproductive output (e.g. number of newly produced queens). In this study commercially reared bumblebee colonies of different initial strengths (number of worker bees) were placed along the field margin of each of six field sites. Each site was nested within one of two seasons and planted with one of two arable crops (Brassica napus and Phacelia tanacetifolia). Each colony was spaced approx. 50 m apart from the next
Hazards of pesticides to bees
13th International Symposium of the
ICP-PR Bee Protection Group
18. - 20. October 2017, València (Spain)

- Proceedings -
History ICPPR-Bee Protection Group conferences
1st Symposium, Wageningen, the Netherlands, 1980
2nd Symposium, Hohenheim, Germany, 1982
3rd Symposium, Harpenden, UK, 1985
4th Symposium, Řež, Czech Republic, 1990
5th Symposium, Wageningen, the Netherlands, 1993
6th Symposium, Braunschweig, Germany, 1996
7th Symposium, Avignon, France, 1999
8th Symposium, Bologna, Italy, 2002
9th Symposium, York, UK, 2005
10th Symposium, Bucharest, Romania, 2008
11th Symposium, Wageningen, the Netherlands, 2011
12th Symposium, Ghent, Belgium, 2014
13th Symposium Valencia, Spain, 2017
14th Symposium scheduled, Bern, 2019

Organising committee 13th conference
Dr. Jens Pistorius (Julius Kühn-Institut, Germany)
Dr. Anne Alix (Dow Agrosciences, United Kingdom)
Dr. Carmen Gimeno (Triacamp, Spain), local organiser
Dr. Gavin Lewis (JSC, United Kingdom)
Dr. Pieter Oomen (Wageningen, The Netherlands)
Dr. Veronique Poulsen (ANSES, France)
Dr. Guy Smagghe (Ghent University, Belgium)
Dr. Thomas Steeger (US Environmental Protection Agency, USA)
Dr. Klaus Wallner (Hohenheim University, Germany)

Editors
Dr. Pieter A. Oomen, Wageningen, The Netherlands
Dr. Jens Pistorius, Braunschweig

Group photo of all symposium participants, standing in front, from left:
Thomas Steeger (new board member),
Jens Pistorius (new chairman),
Françoise & Pieter Oomen with award (editor & former chairman),
Guy Smagghe (organiser, symposium host and new board member),
Job & Margreet van Praagh with award,
Anne Alix (secretary of the board)

Foto
Pieter A. Oomen (Bumble bee *Bombus lapidarius* on thistle)

The proceedings of the symposia (such as these) are being published by the Julius Kühn Archive in Germany since the 2008 symposium in Bucharest, Romania. These proceedings are also accessible on internet, e.g. the former symposium proceedings published by JKI can be found on https://ojs.openagrar.de/index.php/JKA/issue/archive (Issues 423, 437, 450). Furthermore, proceedings of former meetings have meanwhile been digitalized and can be found on https://www.openagrar.de/receive/openagrar_mods_00032635.

Bibliografische Information der Deutschen Nationalbibliothek

ISSN 1868-9892
ISBN 978-3-95547-064-7
DOI 10.5073/jka.2018.462.000

Alle Beiträge im Julius-Kühn-Archiv sind unter einer Creative Commons - Namensnennung - Weitergabe unter gleichen Bedingungen - 4.0 Lizenz veröffentlicht.

Printed in Germany by Arno Brynda GmbH, Berlin.