

Back fat substitution in raw fermented sausage

I. A. Fedotenko, M. L. Andersen, A. Hanner, D. A. Brüggemann Department of Safety and Quality of Meat

Back fat substitution in raw fermented sausage

- Goals: innovative strategies for back fat substitution in raw fermented sausage
- Challenges by raw sausage:
 - traditional appearance (visible fat particles)
 - technological necessity during the production
 - sensory properties of end products such as texture or mouthfeel as well as taste delivery

Choice of back fat replacers - BFR

MRI

Experimental production

	BFR	acceptancy	TBARS mg MDA/kg	Perox. value	
1.	Control	Yes	0.145	0	
2.	50% Alginate (O/W 1/1)	No	-	-	
3.	100% Alginate (O/W 1/1)	No	0.208	0	
4.	50% Collagen hydrolysate (O/W1/1)	Yes	-	-	
5.	100% Collagen hydrolysate (O/W1/1)	No	-	-	

Dry edges at treatment 3 and considerable oxidation

Raw fermented sausage production according to producer's recommendations

	BFR	Acceptancy	рН	a _w -value
1.	Control	Yes	4.99	0.893
2.	50% Rapeseed oil as BFR	No	4.94	0.885
3.	50% Alginate 1 (water)	Yes	4.92	0.913
4.	50% Alginate 2 (W/O 11/9)	Yes	4.73	0.924
5.	50% Alginate 3 (water)	Yes	4.63	0.919

Choice of back fat replacers - BFR

Hard fats and oleogels

Production of novel oleogel emulsions

- 1. Oleogels were prepared from ethylcellulose (Dow Chemicals) 100 cP and 45 cP (7% and 10%) by heating above 130°C with rapeseed oil (*Zetzl 2013 Ph. D. thesis*)
- 2. The optimal emulsification of oleogels in TWEEN 80 phosphate buffer was reached by using high-speed homogenizer (Bühler)
- 3. The formed mixture of oleogel-in-water (OG/W) and water-in-oleogel (W/OG) emulsions has been separated. The emulsions are physically stable within months

Ready-to-use back fat replacer!

	Back fat (Wood et al. Livestock Prod Science 22 (1989) 351-362)	Oleogel emulsions (W/OG)
Water	14 - 22%	10 - 22%
Fibers	Collagen 2 – 4.5%	Ethylcellulose 5.5 - 9%
Lipids	69 - 82%	70 - 84%

	OG1 Em	OG2 Em	OG3 Em	OG4 Em
Oil	81%	83.7%	70.2%	72.5%
Ethylcellulose	9% 100 cP	6.3% 100 cP	7.8% 45 cP	5.5% 45 cP
Water	10%	10%	22%	22%

Oxidative stability of oleogel emulsions

spin-trapping method:

 Detection of primary oxidation products by detection of free radicals in the 1st oxidation phase

Oxidation of oleoegel emulsion with 22% water, 5.5% EC and 72.5% rapeseed oil

Oxidative stability of oleogel emulsions

spin-trapping method

Time, hours

Batch	OG1 Em	OG2 Em	OG3 Em	OG4 Em	Rapeseed oil	Water in rapeseed oil 10%	Water in rapeseed oil 20%
Rapeseed oil	81%	83,7%	70,2%	72,5%	100%	90%	80%
Ethylcellulose	9% 100 cP	6,3% 100 cP	7,8% 45 cP	5,5% 45 cP	0	0	0
Water	10%	10%	22%	22%	0	10%	20%

Physical stability and structure

W/OG emulsion OG1

Still to do's...

- Evaluation of oxidative stability of oleogels versus oleogel emulsions also after longer storage time:
 - Determination of vitamin E by HPLC
 - TBARS
- Application of antioxidants (with regard to the prooxidative ferrous compounds in meat)
- Production of raw fermented sausages containing oleogel emulsions as BFR for sensory evaluation

Acknowledgements

MRI of Safety and Quality of Meat

Dr. Dagmar Brüggemann Dr. Irina Dederer Dr. Siegfried Münch Dr. Lothar Kröckel

Enrico Schlimp Joseph Haida Marco Zäh Manfred Behrschmidt Siegmar Eckl

Ruth Kolb Monika Korpilla Dominik Künzel

With support from

Federal Ministry of Food and Agriculture

by decision of the German Bundestag MRI Institute of Food Technology and Bioprocess Engineering

Volker Gräf Fabian Mohr

Copenhagen University

Prof. Mogens L. Andersen Henriette R. Erichsen

Royal Institute of Technology (Stockholm)

Dr. Anna Hanner

Project sponsor Federal Agency for Agriculture and Food

MRI - Department of Safety and Quality of Meat