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Abstract

Genome-wide association studies are moving to genome-wide interaction studies, as the genetic background of many
diseases appears to be more complex than previously supposed. Thus, many statistical approaches have been proposed to
detect gene–gene (GxG) interactions, among them numerous information theory-based methods, inspired by the concept of
entropy. These are suggested as particularly powerful and, because of their nonlinearity, as better able to capture nonlinear
relationships between genetic variants and/or variables. However, the introduced entropy-based estimators differ to a
surprising extent in their construction and even with respect to the basic definition of interactions. Also, not every entropy-
based measure for interaction is accompanied by a proper statistical test. To shed light on this, a systematic review of the
literature is presented answering the following questions: (1) How are GxG interactions defined within the framework of
information theory? (2) Which entropy-based test statistics are available? (3) Which underlying distribution do the test
statistics follow? (4) What are the given strengths and limitations of these test statistics?
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Introduction

Genome-wide association studies are moving to genome-wide
interaction studies, as the genetic background of many diseases
appears to be more complex than previously supposed.
Specifically, complex diseases are not caused by one single but
by many genetic variants that potentially interact with each
other. Unless these variants also have strong main effects, they
are unlikely to be identified using standard single-locus tests.
Thus, many statistical approaches have been proposed to detect
gene–gene (GxG) interactions, or, more precisely, interactions
between genetic variants.

These include traditional approaches, such as regression
methods [1], and more novel approaches, such as multifactor
dimensionality reduction (MDR) [2, 3, 4] or random forest [5].
Moreover, information theory-based methods are emerging,
inspired by the concept of entropy and other therefrom derived
measures. While entropy and related measures have already been
introduced in the middle of the past century [6, 7], Jakulin and

coauthors applied these quantities to interactions studies in 2003
[8, 9], and Moore et al. [10] were the first to introduce entropy to
the realm of GxG interactions in 2006. The information
theory-based methods are suggested as particularly powerful and,
because of their nonlinearity, as better able to capture nonlinear
relationships between quantities. Generally, these approaches
enjoy a good reputation owing to their model freedom and their
capability to quantify or even amplify nonlinear relationships
through the basic function of entropy. However, the proposed
entropy-based estimators differ to a surprising extent—they even
disagree on the basic definitions of interactions from the informa-
tion theory point of view. Also, although entropy-based measures
for interactions are available, it is not always clear how to con-
struct a proper statistical test based on these measures, i.e. how a
test statistic can be defined and which distributions it follows
under the null and/or alternative hypothesis, respectively.

In summary, the following questions are open: (1) How are
GxG interactions defined within the framework of information
theory? (2) Which entropy-based test statistics are available?
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(3) Which underlying distributions do the test statistics follow?
(4) What are the given strengths and limitations of these test
statistics? In addition, for practical applications, it is important
to understand for which study designs a given entropy-based
estimator can be used, and for which test statistics computa-
tionally reasonable implementations are available.

To answer these questions, we performed a systematic review
of the literature. The results of the search motivate the following
article structure: First, in the ‘Definitions and methods’ section,
we summarize some fundamental definitions of genetic inter-
action and information theory, and describe in details our sys-
tematic search of the literature. The main results are listed in
Table 2, which tabulates a visual summary of all the results,
grouped by the underlying information theory-based quantity.
The ‘Results for studies on binary traits in unrelated individuals’
and ‘Results for specific study designs’ sections describe the main
results in detail. In particular, the ‘Results for studies on binary
traits in unrelated individuals’ section is devoted to information
theory estimators for the study of a binary trait in unrelated indi-
viduals. Here, entropy-based estimators are presented with their
strengths and limitations, with information about underlying dis-
tributions of test statistics and implemented software, if avail-
able. The ‘Results for specific study designs’ section introduces
further entropy-based estimators that were proposed for specific
study designs, such as family studies. Finally, the ‘Conclusions’
section gives a final evaluation of the methods and some general
suggestions on how to choose between the presented estimators
when searching for genetic interactions.

Definitions and methods
GxG interactions

We begin by specifying how GxG interactions may be defined. For
the general notation, we consider a diallelic genetic variant G
such as a single nucleotide polymorphism (SNP) coded as 0, 1 or 2
for the number of minor alleles. Throughout the following, gen-
etic variants are denoted by Gi; Gj; Gl; . . . ; where i; j; l take val-
ues in the total sample of the genetic variants.

Moreover, we mostly consider for simplicity a binary pheno-
type P coded as 0, 1 for controls and cases, respectively, so that
‘phenotype’ refers in the first instance to the presence or ab-
sence of disease. However, some results will also be shown for
the situation of quantitative traits (in the ‘Association with
quantitative traits’ section).

Throughout the literature, heterogeneous definitions of
interactions exist in the context of genetics in the fields of biol-
ogy, medicine, biochemistry and biostatistics. It is beyond the
scope of this work to detail these, for more information we refer
the reader to[1, 11]. For our aims, let a GxG interaction be pre-
sent as soon as a genetic variant influences the ‘effect’ that an-
other genetic variant has on a trait of interest. This approach
has not the ambition to be a precise definition of GxG inter-
action but to provide a general framework to comprehend many
different situations. In specific settings, the magnitude of an
interaction directly depends on how the effect is modeled, e.g.
using an additive or a multiplicative model. Moreover, to distin-
guish this from haplotype effects, we assume for the sake of
convenience that the two variants are located on different
chromosomes or at least are physically distant from each other.
Finally, let us assume throughout the whole article that Hardy–
Weinberg Equilibrium holds for the control population. Indeed,
in the searched literature this is not always specified.

Different study designs have been suggested to be used to
detect GxG interactions, which are reviewed in detail in the lit-
erature [11]. In a simplified way, we distinguish between the use
of data from family members and from independent individuals
such as in the classical case-control or cohort design. For inter-
actions, in some situations it may be possible to use a case-only
design in which the association between the two variants in
only the cases indicates GxG interaction.

Information theory definitions

In this section we summarize the fundamental definitions in in-
formation theory to prepare the subsequent definition of
entropy-based estimators. For this, we consider two discrete
random variables X1 and X2; with potential states i ¼ 1; . . . ;m

and j ¼ 1; . . . ;m0; respectively. The probability mass function of
one variable X is given by p, where pðxiÞ ¼ pi ¼ PfX ¼ xig; and the
joint probability of two variables is denoted by pij ¼ PfX1 ¼ xi;X2

¼ xjg: The marginal probabilities are pi� ¼ PfX1 ¼ xi�g and p�j ¼
PfX2 ¼ x�jg; for X1 and X2; respectively. Figures 1–6 illustrate six
fundamental definitions giving their formal mathematical ex-
pressions and visualizing them by Euler–Venn diagrams as es-
tablished procedure for illustration, see for instance [12].

The most fundamental concept is the ‘Shannon entropy’,
first introduced by Shannon [6], which aims to quantify the un-
certainty within a random variable (see Figure 1). Formally, it is
defined as minus the logarithm of the probability distribution of
this variable. This leads to the following properties (cf. [13]):

i. The entropy is zero when one outcome is certain.
ii. The larger the uncertainty about a variable, the larger the

entropy.
iii. Given two probability distributions defined over the same

range, the larger entropy will be assigned to the wider and
flatter distribution.

iv. For independent variants the definition of entropy by the
logarithm is especially convenient because in this case it is
additive.

While the ‘joint entropy’ (Figure 2) gives the uncertainty of two
random variables simultaneously, the ‘conditional entropy’
(Figure 3) of a random variable given another variable quantifies
the uncertainty of a random variable when the other variable is
known. Finally, the ‘mutual information’ (Figure 4) of two vari-
ables represents the reduction of uncertainty of one variable,
owing to knowledge of the other one. Similar as for entropy, the
mutual information can be conditioned on a third variable
yielding the conditional mutual information (CMI).

A slight modification of the Shannon entropy is given by the
so-called ‘Rényi entropy’ defined as

HkðX1Þ ¼ 1=ð1� kÞ log2

Xn

i¼1

pk
i�

 !
;

introduced first by Rényi [14]. It can be considered a generaliza-
tion of the Shannon entropy because they are equivalent in the
special case that k tends to 1. Of particular interest are the cases
of k! 0; 1; 1; with an explicit interpretation from the infor-
mation theory point of view, as de Andrade and Wang [15] point
out. Specifically, when k! 1 the Rényi entropy coincides with
the Shannon entropy; when k! 0 the Rényi entropy is the loga-
rithm of the size of the support of X1; when k!1 it is called
min-entropy, with the property that it is never larger than the
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Shannon one. For these special cases, many properties have
been derived in the information theory literature.

For three variables, it is necessary to distinguish between
the total extent of dependence among the three variables,
which is the so called ‘total correlation information’ (TCI;
Figure 5), and the amount of information common to all vari-
ables but not present in any subset alone, which is the ‘three-
way interaction information’ (3WII; Figure 6).

Both the TCI and the 3WII are generalizable to k-way inter-
action information (KWII) and the k-way TCI, respectively, and
these quantities were introduced by McGill [7]. The KWII repre-
sents the gain or loss of information owing to the inclusion of
additional variables in the model. It quantifies interactions by
representing the information that cannot be obtained without
observing all k variables at the same time. Different from the bi-
variate case in which the mutual information can be at most
nonnegative, the KWII can also become negative. A positive
value of the KWII is termed synergy between variables, while a
negative value is named redundancy. In this sense, a synergy

quantifies the positive gain in information of k – 1 variables
owing to the knowledge of the kth one, while a redundancy
means that the kth variable did not add information to the pre-
vious ones. However, synergy and redundancy do not have
unique definitions, as we specify again later in the ‘Synergy and
redundancy’ section.

Systematic search of the literature

In May 2015 different bibliographic databases were systematic-
ally reviewed drawing on the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) Statement
[16] to identify information theory-based quantities suggested
for detecting GxG interactions. Articles were selected that de-
scribe the development or methodologically discuss entropy-
based estimators to detect GxG interactions. Thus, we did not
consider articles

• in which entropy-based estimators were used to detect genetic

association, i.e. main effects of association between a single gen-

etic variant and a phenotype,
• or if they presented only an application of entropy-based estima-

tors on real data.

Moreover, because of the focus of this work we did not include
entropy-based strategies for other genetics topics, such as fea-
ture selection, gene clustering, gene regulatory network con-
struction or visualization. Also, publications were excluded if
they were not written in English.

The complete search process was documented, and Table 1
details the search strategy. Owing to the plurality of terms ad-
dressing GxG interactions, a number of searches with different
keywords were carried out in PubMed. On the other side, for the
search in Google Scholar we tried to limit the number of false-
positive findings by using only the most precise search terms.
In this case, the results were sorted by their relevance, and we
considered only the first 365 findings.

Results

In the search, 29 articles were identified as shown in Figure 7.
These may be grouped into the following sections with respect
to entropy-based definitions of interactions: Interactions

Figure 1. HðX1Þ: Entropy of a random variable X1 :¼ E log2
1

PðXÞ

� �h i
¼ �

Pm
i¼1 pi

log2 pið Þ

Figure 2. HðX1 ;X2Þ: Joint entropy of the two random variables X1 and X2

:¼ E log2
1

PðX1 ;X2 Þ

� �h i
¼ �

Pm
i¼1

Pm0
j¼1 pij log2 pij

� �

Figure 3. HðX1 jX2Þ: Conditional entropy of the variable X1 given the variable X2

:¼ E log2
PðX2 Þ

PðX1 ;X2 Þ

� �h i
¼ �

Pm
i¼1

Pm0

j¼1 pij log2
pij

p�j

� �
¼ HðX1 ;X2Þ � HðX2Þ

Figure 4. IðX1;X2Þ: Mutual information of the variables X1 and X2

:¼ E log2
PðX1 ;X2 Þ

PðX1 ÞPðX2 Þ

� �h i
¼
Pm

i¼1

Pm0

j¼1 pij log2
pij

pi�p�j

� �
¼ HðX2ÞHðX2 jX1Þ ¼ HðX1ÞHðX1 jX2Þ

Figure 5. TCIðX1;X2 ;X3Þ: Total correlation information of three random variables

HðX1Þ þ HðX2Þ þ HðX3Þ � HðX1;X2 ;X3Þ

Figure 6. 3WIIðX1 ;X2;X3Þ: Three-way interaction information of three random

variables HðX1;X2Þ þ HðX1 ;X3Þ þ HðX2;X3Þ � HðX1Þ � HðX2Þ � HðX3Þ � HðX1 ;X2 ;X3Þ
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defined with the help of mutual information (Figure 4) are illus-
trated in the ‘Pairwise interactions: Information gain’, ‘Pairwise
interactions: Relative information gain’ and ‘Synergy and re-
dundancy’ sections; interactions defined with the help of three/
k-way interactions (Figure 6) are described in the ‘Third order
interactions: 3WII, TCI and PAI’ and ‘Interactions of higher
order’ sections; finally, interactions defined with the help of
other approaches will be given in the ‘Rényi entropy’ and
‘Maximum entropy conditional probability modeling’ sections.
For an overview, Table 2 lists all findings giving the entropy-
based quantities with literature references, the entropy-based
definitions of interactions, the availability of a test statistic, of
simulation results as well as of an implementation. Specifically,

references are ordered in the table by appearance; estimators
used in more than one reference are listed repeatedly if avail-
ability of a test statistic, simulations or implementation differ in
the corresponding publications.

Results for studies on binary traits in unrelated
individuals

Pairwise interactions:information gain
Four of the 29 articles of the systematic search deal with estima-
tors to detect pairwise interactions that are based on a so-called
information gain (IG).

Table 1. Hits from the four systematic searches

Search Keywords combination Database Date Hits

1 (entropy AND genetic) AND interaction
(with activated filter limited to humans)

PubMed (www.ncbi.nlm.nih.gov/pubmed) 23 June 2015 51

2 entropy ‘gene-gene interactions’ (excluding
patents and citations)

Google Scholar (https://scholar.google.de/) 23 June 2015 680

3 epistasis entropy (limited to humans) PubMed 2 June 2015 18
4 (entropy AND gene) AND interaction (limited to humans) PubMed 28 May 2015 67

Figure 7. Flow diagram of the search process.
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Consider first the mutual information of two arbitrary gen-
etic variants, i.e. IðGi;GjÞ (the general definition was given in the
‘Information theory definitions’ section and Figure 4). In a case-
control setting, Fan et al. [17] subtracts the mutual information
of two genetic variants estimated in the cases from the same
quantities estimated in the controls. If the disease prevalence is
small, the mutual information of the controls will be a good ap-
proximation of the mutual information of the general popula-
tion. In this way, the IG of the two markers in the presence of a
disease is defined as

IGFan :¼ IcasesðGi;GjÞ � IðGi;GjÞ:

By estimating all probabilities emerging in IGFan by counts,
the corresponding final test statistic for testing for interactions
is defined as the estimated IGFan; normalized by a specific quan-
tity K; of variance type. The closed expression of the estimator
can be found in the Appendix. The test statistic is asymptotic-
ally centrally or non-centrally chi-square distributed under the
null or the alternative hypothesis, respectively, with one degree
of freedom.

The merit of this article lies not only in the clear definition
of second-order genetic interactions from the information the-
ory point of view, but also in the construction of a statistical test
complete with formulations of null and alternative hypotheses
and a proper test statistic with a corresponding distribution.
Since 2015, also an implementation of the estimator is available,
and the corresponding R code can be found on http://www.nichd.
nih.gov/about/org/diphr/bbb/software/fan/Pages/default.aspx

As a reviewer pointed out, the IGFan can be interpreted as
contrasting correlations between genetic predictors in cases
with those in controls. In this sense, it has a strong link with a
‘case-only’ design (compare also the ‘Case-only design’ section).

In an alternative approach, the information gain IGIGENT sug-
gested by Kwon et al. [20] for detecting interactions is defined as
the entropy of the phenotype minus the conditional entropy of
the phenotype, given two genetic variants, i.e.

IGIGENT :¼ HðPÞ � HðPjðGi;GjÞÞ:

A corresponding estimator with its asymptotic distribution
is given in Kwon et al. [20] citing results by Goebel et al. [41]. The
estimated IGIGENT asymptotically follows a gamma distribution
under the null hypothesis of independent variants. The most
important contribution of Kwon et al. [20] lies in the freely avail-
able and fast implementation called IGENT, which is written in
Cþþ (http://statgen.snu.ac.kr/software/igent/). IGENT can be used
for an exhaustive as well as for a stepwise search of interacting
pairs, depending on whether every possible pair is systematically
tested or whether a genetic variant is admitted for pair building
only if it shows a main effect. IGENT can be seen as an association
test while allowing for interactions, as it calculates the entropy of a
phenotype twice, first per se and second given an interacting pair.

The IG introduced by Su et al. [19] is inspired by Moore et al.
[10], and it is defined as the CMI of a pair of variants given the
phenotype minus the mutual information of this pair, i.e.

IGSu ¼ IðGi;GjjPÞ � IðGi;GjÞ:

This quantity there is called interaction gain rather than IG.
It has a similar structure as IGFan; where the idea is to evaluate
the correlation between genetic variants given (or not) the dis-
ease information. The authors emphasize that their estimate
requires neither main effects nor any specific genetic model (i.e.

additive, recessive, etc) to identify an effect. Moreover, for de-
tecting interactions, they follow neither an exhaustive nor a
stepwise approach, but rather they introduce a strategy for par-
allelization: First, genetic variants located on the same chromo-
some are divided into two groups depending on whether they
are in a gene or between genes. Then, chunks of SNP pairs are
formed by pairing SNPs within the same gene, pairing SNPs in
different genes, pairing SNPs in a gene with intragenic SNPs and
pairing intragenic SNPs on different chromosomes. These
chunks are then tested for interaction at the same time (paral-
lelization), estimating their interaction gain IGSu (replacing
probabilities by counts). After this, variants in linkage disequi-
librium are discarded, and the remaining pairs are reduced by
cutting at a given threshold value. By synchronous calculations
of many interaction gains in parallel, the entire test procedure
is speeded up, while maintaining accuracy.

Chen et al. [18] introduce the same IG as mentioned above,
i.e. IGChen ¼ IGSu: However, they do not explicitly describe the
estimation of this quantity. Instead, the main objective was a
comparison of the performance of different methods for detect-
ing interactions, including MDR, logistic regression (LR) and an
estimation based on IGChen. These competitors were evaluated
with regard to type I error rate, power and computational com-
plexity. For the IGChen-based estimates, the authors conclude
that they successfully detect interactions with strong main ef-
fects but miss many interacting variants at an acceptable rate of
false positives. However, this behavior is not significantly worse
than that of the other analyzed methods. Moreover, as ex-
pected, the power of the IGChen tests varies under different gen-
etic models as a function of penetrance, minor allele frequency,
linkage disequilibrium and marginal effects; again, the other
methods did not significantly differ in their behavior. In particu-
lar, the magnitude of the main effect influences the power of
the tests. In summary, the authors emphasize that the IGChen

estimate can detect some ground-truth SNPs but has only mod-
est power to detect the entire set of interacting SNPs.

With a similar idea, Zuo et al. [21] show that an estimator
simply based on IðGi;Gj; PÞ is not able to recognize interaction ef-
fects. In particular, when main effects at both markers are large,
then the inflation of type I error is unacceptably large with too
many false-positive results. To solve these problems, the au-
thors introduce a modification replacing mutual information by
CMI that yields the following quantity:

GenoCMI ¼
Xm
i¼1

Xm0
j¼1

X
P2f0;1g

PðGi;Gj; PÞ log
PðGi;GjjPÞ

PðGijPÞPðGjjPÞ

 !
;

which will be estimated with the help of the genotype frequen-
cies, penetrances and disease prevalence.

The authors argue that the inflation of the type I error was
considerably reduced by their strategy. Finally, the authors analyze
the type I error depending on the disease prevalence or the case/
control ratio, coming to the conclusion that neither the prevalence
nor the case/control ratio influence the type I error considerably.

Finally, we remark that many articles propose the calcula-
tion of information-gain-type quantities for feature selection
and other aspects in the context of genetic analyses; however,
these are beyond the topic of this review.

Pairwise interactions:relative information gain
Our literature search identified four articles that deal with pair-
wise interactions based on the so-called relative information
gain (RIG).
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For this, Yee et al. [23] proposed to normalize the IG (of type
IGIGENTÞwith regard to the overall entropy of the phenotype:

RIG ¼
HðPÞ � HðPjGi;GjÞ

HðPÞ :

This RIG, sometimes also called normalized mutual information
(NMI, see also [23]), quantifies the proportion of information
contained in the interacting variables Gi and Gj that influences
the phenotype P. Again, probabilities will be estimated by
counts leading to a test statistic of a log-likelihood ratio type
with asymptotical v2 distribution. Moreover, the authors gener-
ate new data sets by repeated shuffling of the phenotypes by
fixed genotypes. Using mean and sample standard deviation
from the permuted data sets, they standardize the RIG, thus
enabling a comparison of the results. The RIG is implemented
in the freely available software IGENT as well [20].

The RIG by Dong et al. [22] has a similar structure as the RIG
above. In particular, the ‘Entropy-based SNP–SNP interaction
method’ (ESNP2) is developed here to detect GxG interactions with
the help of the RIG, while the extension ESNP2-Mx enables in add-
ition a best fit to a genetic model. The program, implemented in
Java, is free for download (http://www.biosino.org/papers/esnp2/).

An extension of the ESNP2 method can be found in Li et al.
[42], which describes the ‘Gene-based Information Gain
Method’. This extension considers interactions between
grouped variants, typically grouped by genes, covering the case
that the two genes have different length.

A slightly different approach is taken by Chattopadhyay et al.
[24], where the strategy is a combination of different methods
for quantifying interactions, to take the advantages of every one
of them. The used methods are a Gini score (typically used in
Classification and Regression Trees [43]), the Absolute
Difference of genotype Probabilities from cases and controls
(APD) score (used in MDR, [44]) and an Entropy Score (ES).
Focusing here in particular on the entropy score, it is defined as

ESðGi;GjÞ :¼
minfHðGiÞ;HðGjÞg � HðGi;GjÞ

minfHðGiÞ;HðGjÞg

and will be estimated as usual by replacing probabilities by
counts. A standardized version is expressed by

ESðGi;GjÞ � �ES
rðESÞ ;

where �ES and rðESÞ are the mean and standard deviation of the
entropy score calculated over all ðm2 Þ possible pairwise inter-
actions for m genetic markers, respectively. Finally, the three
standardized scores (Gini, APD, entropy) are added to a so-called
Z-sum score, for that also the principal component is calculated
(the necessity of which is unfortunately not being made clear). The
Z-sum score as well as its principal component yield the quantity
for detecting disease-associated GxG interactions. The authors
evaluate the performance of this estimator under different genetic
scenarios and provide a user-friendly program named RASSUN
(RAnked Summarized Scores Using Nonparametric-methods).
RASSUN is written in R and free for download (http://www.csjfann.
ibms.sinica.edu.tw/eag/programlist/rassun/rassun.html).

Third-order interactions: 3WII, TCIand PAI
Estimators for third-order interactions are the topic of 9 of the
29 results from the systematic literature search.

As already described in the ‘Information theory definitions’
section (compare Figures 5 and 6), for up to three interacting
variants it is possible to distinguish between the amount of in-
formation common to all three attributes (TCI) and the total
amount of information common to all three attributes but not
present in any subset (3WII). The use of both of these quantities
to detect third-order interactions is therefore the natural exten-
sion of the use of the IG to detect pairwise interactions. In par-
ticular, for three genetic variants, one can express 3WII by

3WII :¼ �HðGiÞ �HðGjÞ �HðGlÞ þ HðGi;GjÞ

þHðGi;GlÞ þ HðGj;GlÞ �HðGi;Gj;GlÞ

and TCI by

TCI :¼ HðGiÞ þ HðGjÞ þ HðGlÞ �HðGi;Gj;GlÞ:

Fan et al. [17] consider the interaction or the total correlation
between three genetic variants, i.e. 3WIIFan ¼ 3WIIðGi;Gj;GlÞ or T
CIFan ¼ TCIðGi;Gj;GlÞ; respectively, and then express their effects
on a phenotype by the differences

3WIIðGi;Gj;GlÞcases � 3WIIðGi;Gj;GlÞ

or

TCIðGi;Gj;GlÞcases � TCIðGi;Gj;GlÞ

respectively. Similar to the situation of pairwise interactions,
these differences will be estimated in the cases and in the con-
trols and normalized by specific matrices of variance type. The
closed expression of the test statistics has a similar construc-
tion as TIG (see Appendix) and is therefore not shown. For de-
tails, we refer the reader to [17], pp. 12, 13.

Although most authors agree on the general structure of
3WII and TCI, but they disagree with respect to the variables to
choose in the general definition. In fact, 3WII and TCI as
described in [25, 26, 27, 28, 29, 30, 31], other than in [17], are
given by

3WIIChanda :¼ 3WIIðGi;Gj; PÞ

and

TCIChanda :¼ TCIðGi;Gj;PÞ;

where Chanda et al. [27] explain the TCIChanda as ‘the informa-
tion that cannot be obtained without observing all variables and
the phenotype at the same time’. Because the latter group treats
3WIIChanda and TCIChanda as measures for third-order inter-
actions, we list them in this section. However, although they in-
volve three variables, they quantify pairwise interactions with
respect to the genetic variants because the third variable is the
phenotype, and phenotype and the genetic variants are treated
interchangeably. Therefore, a more complex situation is
assumed, where not only a number of genetic variants but also
the genetic variants and the phenotype are interacting with
each other; this represents a crucial difference to the more clas-
sical model of genetic variants interacting in their effect on a
phenotype. If the phenotype represents the presence or absence
of a disease, the model would imply that the presence or ab-
sence of disease could affect the status of a genetic variant.
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A further expansion of the concept of TCI was given by the
same groups [25, 26, 27, 30, 31] in the form of the phenotype-
associated interaction information (PAI). Specifically, PAI is
given by the difference between the TCI including the pheno-
type as a variable and the TCI excluding the phenotype, i.e.

PAIðGi;Gj;Gl; PÞ ¼ TCIðGi;Gj;Gl; PÞ � TCIðGi;Gj;GlÞ:

Some theoretical properties of TCI and PAI are given by
Tritchler et al. [30]. Moreover, Chanda et al. [27] present an algo-
rithm, called CHORUS, based on PAI to detect the GxG inter-
actions on quantitative traits. This will be described in detail in
the ‘Association with quantitative traits’ section.

To guard against false-positive results, Hu et al. [32] suggest
a novel approach for measuring pure three-way interactions
after removing the one-way and two-way effects. All lower-
order effects are subtracted from the total IG, including the
main effects of the three attributes and all pairwise synergies
between them, leading to

IGstrictðGi;Gj;Gl; PÞ :¼ IðGi;Gj;Gl; PÞ �maxfIGðGi;Gl;PÞ; 0g

�maxfIGðGj;Gl; PÞ; 0g �maxfIGðGi;Gj; PÞ; 0g

�IðGi; PÞ � IðGj; PÞ � IðGl;PÞ;

where their IGðGi;Gl; PÞ is defined as IðGi;Gl; PÞ � IðGi;PÞ � IðGl; PÞ:

Interactions of higher order
Both 3WII and TCI can be extended to the KWII and total correl-
ation, respectively, which can be used to detect interactions of
higher than third order. Similar to the lower-order situations,
Fan et al. [17] compare the estimated KWII and total correlation
in the cases and in the general population, respectively, to de-
tect k interacting variants associated with a disease.

Furthermore, Chanda et al. [45] introduced a KWII initially as
a metric for visualizing GxG interactions. Owing to its specific
aim of visualization, that article is not directly relevant for this
review, but Chanda et al. [25] subsequently construct an algo-
rithm called AMBIENCE to detect higher order interactions by
using KWII and PAI. In particular, AMBIENCE requires as input
the number h of combinations retained in each search iteration
and the number of total iterations, s. To explain the algorithm
in a simplified example, suppose we have n¼ 10 genetic vari-
ants, and we fix h equal to 2 and s equal to 5. This means that
we are interested in interactions of fifth order, and we want to
retain maximally the two ‘relative best results’. AMBIENCE will
start by calculating the PAI for each of the 10 variants. Then, the
h¼ 2 best results (i.e. the two highest PAIs) will be retained, and
for these variants interactions of third, fourth until s¼ fifth
order will be calculated. AMBIENCE hence delivers h � s ¼ 2 � 5
combinations ranked by PAI.

Another algorithm, AMBROSIA ([29]), reuses the results from
AMBIENCE, i.e. the combinations with highest PAI, and tries to
decide which of these combinations essentially explain the
phenotype, discarding the redundant ones. Moreover,
Sucheston et al. [28] compare these results with other common
methods such as MDR, concluding that the information theory-
based methods have a considerably higher power. However, Lee
et al. [46] show recently that higher power often comes at the
cost of lower specificity, so that some signal is erroneously
identified. We address this problem again in the conclusions.

Based on KWII, Shang et al. [47] developed a software named
EpiMiner, which uses a three-stage approach for detecting and
also visualizing GxG interactions. This software is available on
https://sourceforge.net/projects/epiminer/files/. In its first
stage, KWII is calculated by supposedly replacing probabilities
by frequencies. A previously fixed number of variants is then
passed on to the second stage, either user-specified or based on
classification by support vector machines. In stage two, permu-
tation tests are conducted on the selected variants sequentially
to search for GxG interactions, and the results are ranked by the
P-values. The third stage is then reserved for a visualization of
the results.

Knights and Ramanathan [48] address the problem of over-
dispersed count data, translated in a Poisson-distributed pheno-
type. The authors use an estimator of KWII type and compare
its results with those from a Poisson regression. A Web site with
software written in Java is available (http://pharmsci.buffalo.
edu/computational_software/murali_1/download/). An estima-
tor is not given explicitly but only the definition of entropy for a
Poisson distributed phenotype.

Finally, Brunel et al. [40] consider interactions of higher order
by calculating the mutual information between a set of markers
with the phenotype, where the set of markers is determined by
the following algorithm. First, the set contains just one marker,
which is significantly associated with the phenotype, and then
a new marker is added to the set; the mutual information calcu-
lates whether the new marker adds new information. If yes, a
further marker is added to the set; if not, the marker is removed.
In this sense, the authors speak about forward and backward
steps, depending on whether any further marker is left in the
set of is removed.

Synergy and redundancy
Four of the 29 findings from the systematic search deal with es-
timators based on synergy and redundancy. As already stressed
in the ‘Information theory definitions’ section, other than the
mutual information the KWII can also become negative, so that
up to three variables one can consider synergy and redundancy
between variables. However, these concepts do not have a
unique definition and interpretation, which is described in the
following.

Anastassiou [33] introduces a synergy defined as

SynðGi;Gj; PÞ ¼ IðGi;Gj; PÞ � ½IðGi; PÞ þ IðGj; PÞ�:

Here, Syn quantifies the positive or negative ‘gain’ of two vari-
ables owing to the knowledge of a third one. In case of a posi-
tive gain of information, there is said to be a synergy between
the variants; in case of a loss of information, a redundancy.
Based on this definition, Anastassiou [33], Hu et al. [32] and
Moore and Hu [35] propose a generalization of the synergy to
three genetic variants. However, this generalization is neither
trivial nor unique, and various alternatives are proposed by
these authors.

Curk et al. [34] provide an algorithm and a software for detec-
tion of interactions by synergy based on SynðGi;Gj; PÞ. To save
computation time, an exhaustive approach is avoided in that a
heuristic is introduced that involves a threshold for identifica-
tion of the ‘best’ low-order interactions before searching for
interactions of higher order. The software tool can be found on
http://snpsyn.biolab.si.

Moore and Hu [35] use synergy and redundancy for summa-
rizing and visualizing interactions. The synergy of many genetic
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variants is used for building epistasis networks, and these net-
works are visualized by the open-source software ViSEN
(Visualization of Statistical Epistasis Networks) [49], following
Hu et al. [50], who were the first to introduce networks to visual-
ize entropy-based measures of GxG interactions.

Rényi entropy
A single article deals with estimators based on the Rényi en-
tropy [15]. In particular, a joint Rényi entropy of two genetic
variants taken together and the sum of two Rényi entropies of
the single genetic variants is considered, calculated on the basis
of their marginal probabilities:

SkðGi;GjÞ :¼ ðHkðGiÞ þ HkðGjÞÞ �HkðGi;GjÞ:

Under the null hypothesis of no interaction effect, the two
loci are independent and SkðGi;GjÞ equals zero. To include the
phenotype, SkðGi;GjÞ is calculated separately in the cases and in
the controls. In particular, the ratio

SkðGi;GjÞcases

SkðGi;GjÞcontrols

is expected to be close to zero if the interacting pair (Gi, Gj) and
the phenotype are independent. In this way, estimating the
Rényi entropies by replacing probabilities by frequencies, a ratio
test is used to test for association of the interacting genetic vari-
ants with the disease. The power of the ratio test is said to be
low, especially when the marginal effects are strong. For the
specific case-only study design, a similarly structured procedure
is given to obtain greater power, and this will be addressed in
the ‘Case-only design’ section. Another possibility to increase
power considered by the authors is to tune the Rényi entropy by
the parameter k: In fact, they show by simulations that an ap-
propriate choice of k could decidedly improve the power.
Because different choices of k are what distinguish the Rényi
from the Shannon entropy, it can be concluded that it is reason-
able not to restrict the investigations to the Shannon entropy.
In particular, the tuning of k should amplify the true difference
between two populations to make this true difference more de-
tectable. However, because the true difference between the
populations may depend on allele frequencies and other pos-
sibly unknown factors, this implies that the optimal k depends
also on partly unavailable information; it is therefore necessary
to test and identify the best k in every new situation.

Maximum entropy conditional probability modeling
Based on the principle of maximum entropy by Jaynes [51],
Maximum Entropy Conditional Probability Models (MECPM) is
described in its general form by Miller et al. [36], p. 2479: ‘When
building a probability model, one should agree with all known
information while remaining maximally uncertain with respect
to everything else’. Miller et al. [36] transfer this idea to genetics
replacing the ‘known information’ by the pairwise probability of
disease presence and a particular genotype for a given genetic
variant. Maximum uncertainty is obtained by selecting the
probability distribution of the phenotype that maximizes
Shannon’s entropy function but still ensures agreement with
the known information ([36], p. 2479).

Chen et al. [18] implemented MECPM as well as seven other
methods (including IG [10]) comparing their performances by
the number of truly and falsely discovered markers. They found
that MECPM performs well in particular by detecting

interactions with moderate effects and at an acceptable rate of
false positives. Moreover, the authors generally conclude that the
power of all the tests varies as a function of the penetrance, minor
allele frequency, linkage disequilibrium and marginal effects.

Results for specific study designs

As described above, the majority of entropy-based methods for
detecting interactions pertains to a specific study design,
namely, the analysis of unrelated individuals with regard to a
binary phenotype, and the phenotype is associated with geno-
types of diallelic genetic variants. In addition to that, a few art-
icles were concerned with deviations from this design, and
these will be described in the following.

Case-only design
Two of the 29 results of the systematic review deal explicitly
with estimators conceived for a case-only design. In this design,
an association between the two genetic variants within the
cases can be interpreted as a GxG interaction if the prevalence
of the disease is low and if the investigated genetic variants are
independent from each other in the general population. The
recognized advantages of a case-only design compared with the
more common case-control design are that (i) a smaller sample
size is required and (ii) it might be possible to eliminate selec-
tion bias by avoiding to select controls in the first place.

For this constellation, Kang et al. [37] generally express gen-
etic interactions by the difference between joint entropy and
entropy by the marginal probabilities under the assumption of
no interaction. In addition, they also present a generalization
for interactions of higher order as well as a modification to ex-
press the magnitude of interaction on a normalized scale, using
the ratio rather than the difference between entropies.

The main test for association between genetic variants and
phenotype they introduce is defined as follows. Let N be the
total sample size of cases, n the number of cases carrying a spe-
cific genotype combination h on the w loci of interest. W is the
total number of observed genotype combinations on these loci, i.e.
W � 3w. The entropy of the phenotype, bHðPÞ, is calculated by

bHðPÞ ¼ �PW
i¼1

n
N log n

N

�
PW

i¼1
1
W log 1

W

if W > 1; or bHðPÞ ¼ 0 if W ¼ 1:
As a simplified calculation example, consider that on three

loci of interest, we have a total sample size of 100 cases, of
whom 97 carry the genotype combination 2, 2, 2, and we have
three cases with the genotype combination 1, 2, 2. In this situ-
ation N¼ 100 and W ¼ 2: For w ¼ 1; n ¼ 97; and for w ¼ 2; n ¼ 3:
The entropy of the phenotype is therefore

bHðPÞ ¼ � 97
100 log 97

100� 3
100 log 3

100

�2 1
2 log 1

2

:

The corresponding test statistic is

2Nð1� bHðPÞÞ log ðWÞ;

which is asymptotically central v2 distributed under the null hy-
pothesis of no association with W – 1 degree of freedom. No
proof or citations of this asymptotic result is given, but exten-
sive simulations and real-data examples are presented.
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Generally, this approach is complete with a quantity to
measure interaction, hypotheses to be tested, corresponding
test statistics and asymptotic results. Furthermore, tests for
interactions and tests for association when allowing for inter-
actions are presented. However, the approach relies on strong
assumptions that may or may not be fulfilled. Moreover, the
case-only design can be highly sensitive in case of departure
from the independence assumption between genetic variants,
as e.g. pointed out in [52].

As mentioned in the ‘Rényi entropy’ section, de Andrade and
Wang [15] also propose a case-only design. In fact, the authors de-
scribe that their test statistic for the case-only design is the same as
in [37] as soon as k ¼ 1; i.e. when the Rényi entropy becomes equal
to the Shannon entropy. For k 6¼ 1 the asymptotical distribution of
the test statistic is not known and will be approximated by de
Andrade and Wang [15] with the help of Monte Carlo simulations.

Association with quantitative traits
We identified three articles that explicitly deal with estimators
conceived for association with quantitative traits instead of a
dichotomous phenotype. First, Chanda et al. [27] extended the
previously published algorithm AMBIENCE [25] to a new algo-
rithm called CHORUS, designed specifically for quantitative
traits that are normally distributed. Subsequently, CHORUS was
extended to the algorithm SYMPHONY in [31], which is designed
for vectors of quantitative traits. The principle of both algo-
rithms is the same: Calculate the first order PAI and retain the h

combinations with the highest PAI. For these h combinations,
then calculate the PAI of next order and repeat this procedure
up to order s: Finally, calculate the KWII for all these h � s win-
ning combinations, which render the test statistic. Thus,
CHORUS performs a stepwise search for interacting pairs asso-
ciated with a multivariate normally distributed phenotype in
the presence of main effects.

In a more general approach, Yee et al. [39] introduce non-
parametric entropy estimates that renounce any assumptions
about the distribution of the quantitative phenotype or about its
regularity. In particular, the entropy estimators are inspired by
sample-spacing techniques of Miller and Fisher [53], and they
were modified for specific challenges with small samples in
specific combinations, which may occur in the situation of com-
bining loci with small minor allele frequencies.

Analogously to the approach for a binary phenotype [23] that
was described above (section ‘Pairwise interactions: Relative in-
formation gain’), the difference between the entropy and the
conditional entropy yields an IG of type IGIGENT, which is then
modified and standardized to a RIG. Finally, replacing the en-
tropy and the conditional entropy by their sample-spacing esti-
mates, a test statistic is given for interacting variants associated
with a quantitative phenotype. The plausibility of the proposed
estimator was examined by simulations, where the phenotype
was simulated to follow nine different distributions. Moreover,
its performance was compared with two MDR variants, and it
was applied to real data. The results of MDR and of spacing en-
tropy were comparable.

Finally, in an approach that is applicable to both binary and
quantitative traits, Ignac et al. [38] propose an ‘information dis-
tance’ that is defined as

IDIgnac :¼
IðGi;GjjPÞ

maxfHðGijPÞ; HðGjjPÞg
�

IðGi;GjÞ
maxfHðGiÞ; HðGjÞg

using definition (4) and Equations (2) and (3) there, p. 2.

For this, first the conditional mutual information of two
genetic variants taken together given the phenotype is normal-
ized by the maximum between the two conditional entropies of
each genetic variant alone given the phenotype. Then a corre-
sponding normalized quantity is calculated for the mutual
information (without conditioning by the phenotype), and these
two NMI values are subtracted from each other. Thus, IDIgnac

takes on values between �1 and 1, where a negative value indi-
cates that the variants are redundant, whereas a positive value
indicates synergy. Three types of permutation tests are pre-
sented that test different hypotheses on the presence or ab-
sence of main effects together with interaction effects. Finally,
the optimal ratio of cases to controls for planning new studies
may be quantified based on simulation results, and commented
Matlab code is available.

Family studies
In the literature search, no article was identified that presents a
method to explicitly deals with family data. However, for the
study of sib-pairs, Brunel et al. [40] propose to associate the
phenotypic and genetic similarities in sib-pairs instead of
phenotypes and genotypes in unrelated individuals. While they
suggest this in the context of mutual information estimation in
the algorithm Mutual Information Statistical Significance, this
idea can be adopted in other methods readily.

Conclusion

The systematic literature search identified 29 relevant articles
that present mostly different information theory-based estima-
tors and tests. Given this large number, it is obvious that they
cannot be treated as a single method but fundamentally differ
from each other. In fact, in many cases the estimators are differ-
ent or even contradictory regarding the basic definition of gen-
etic interactions from the information theory point of view.
This raises the following aspects that should be tackled in near
future.

First, it would be desirable to find a harmonic definition of
interactions based on entropy leading to ‘sufficient’ estimators.
This might be possible by systematically identifying which def-
initions are redundant, overlapping or contradicting. The first
steps in this direction have been made by Lee et al. [46] who the-
oretically compared the relationship between four IG quantities
and the interactions detected by a LR model.

Second, the systematic literature search showed that in
many cases it is not clear how to construct a proper statistical
test based on the proposed measures. A simple replacement of
probabilities by frequencies often yields biased or even incon-
sistent estimators, or extremely slowly converging ones.
Therefore, estimators should be sought that are both ‘consist-
ent’ and if possible ‘unbiased’ (see also [54]).

Third, the systematic literature search showed that often
the underlying distributions of the test statistics under the null
or the alternative hypothesis are unknown. Thus, estimators
whose ‘asymptotic behaviors’ are investigated are required.

Finally, the estimators have in many instances still to be
adapted to the practical situation of genetic studies.
Specifically, extensions remain necessary to account for geno-
typing errors, missing genotypes, phenocopies or genetic het-
erogeneity, as already pointed out in 2011 by Fan et al. [17].

Thus, we still agree with Fan et al. [17], even after 5 years,
that a lot of work still needs to be done to understand high order
interactions. Bearing these aspects in mind, we tentatively give
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the following recommendations, when working with an infor-
mation theory-based estimator.

First, clarify which types of interactions are defined by the
chosen estimators. Consider that stepwise searches (i.e. search
for interactions only when main effects have been identified)
are computationally much simpler but leave open the question
about the genuinity of the signal as well as the possibility of
interactions without main effects. Be aware that some inter-
actions could be described completely also by a classical regres-

sion model or identified by a classical v2-independent test.
Second, because replacement of probabilities by frequencies

represents often just a first ‘naive’ approach, choose estimators
for which a test statistic is already derived or at least simulated
(compare Table 2).

Third, consider that some estimators require a new imple-
mentation if they are used for genome-wide data or for inter-
actions of higher order, to obtain an estimation in reasonable
time. Also, consider that not every implemented estimator is
usable for working with high-dimensional data.

Fourth, because of all these previous considerations, it
seems pragmatic to first obtain estimators for interactions of se-
cond order, before trying to estimate interactions of third or
even of higher order.

Funding
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Key Points

• For detection of GxG interactions, numerous informa-
tion theory-based methods have been proposed.

• However, these do not agree on the basic definitions
of interactions and differ to a surprising extent in their
construction or aims.

• Hence, different estimators may serve different pur-
poses, and the selection of a suitable method is sup-
ported by this review.
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Appendix

Estimation of IGFan proposed by Fan et al. [17]

In a case-control design with M controls and N cases, Xij and Yij

denote the count of controls and of cases whose genotypes are
ðGA ¼ i; GB ¼ jÞ; respectively, where i; j ¼ 0; 1; 2.

Define bpij ¼
Xij

M and bqij ¼
Yij

N : Then

fij ¼ pij log
pij

pi�p�j

 !
; bf ij ¼ bpij log

bpijbpi�bp �j
 !

gij ¼ qij log
qij

qi�q�j

 !
and bgij ¼ bqij log

bqijbqi�bq �j
 !

with obvious meaning of qi�; q�j; and with M and N large enough
to enable large sample theory and application of central limit
theorem. With this,

IGFan :¼ IcasesðGi;GjÞ � IðGi;GjÞ ¼ g� f ¼
X2

i¼0

X2

j¼0

ðgij � fijÞ and

bg � bf ¼X2

i¼0

X2

j¼0

ðbgij � bf ijÞ:

Moreover, define

bK :¼ 1
M
dVarcontrols

� �
þ 1

N
dVarcases

� �
where dVarcases and dVarcontrols are estimators of the asymptotic
variances of the random variablesffiffiffiffiffi

M
p
ðbf � f Þ

and ffiffiffiffi
N
p
ðbg � gÞ;

respectively. With this, the test statistic for estimating IGFan pro-
posed by Fan et al. [17] is defined as:

TIG :¼ ðbg � bf Þ2=bK
TIG is an overall test statistic to test the association between

the markers A and B and the disease. Therefore, the null hy-
pothesis is that the two markers are independent of the disease.
It is asymptotically centrally or non-centrally chi-square distrib-
uted under the null or the alternative hypothesis, respectively,
with one degree of freedom. The non-centrality parameter is
kIG ¼ ðg� f Þ2=K:
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