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Heterogeneous populations of myeloid regulatory cells (MRC), including monocytes, mac-
rophages, dendritic cells, and neutrophils, are found in cancer and infectious diseases. 
The inflammatory environment in solid tumors as well as infectious foci with persistent 
pathogens promotes the development and recruitment of MRC. These cells help to 
resolve inflammation and establish host immune homeostasis by restricting T lymphocyte 
function, inducing regulatory T cells and releasing immune suppressive cytokines and 
enzyme products. Monocytic MRC, also termed monocytic myeloid-derived suppressor 
cells (M-MDSC), are bona fide phagocytes, capable of pathogen internalization and 
persistence, while exerting localized suppressive activity. Here, we summarize molecular 
pathways controlling M-MDSC genesis and functions in microbial-induced non-resolved 
inflammation and immunopathology. We focus on the roles of M-MDSC in infections, 
including opportunistic extracellular bacteria and fungi as well as persistent intracellular 
pathogens, such as mycobacteria and certain viruses. Better understanding of M-MDSC 
biology in chronic infections and their role in antimicrobial immunity, will advance deve-
lopment of novel, more effective and broad-range anti-infective therapies.

Keywords: myeloid-derived suppressor cells, infection, inflammation, tuberculosis, human immunodeficiency 
virus, Staphylococcus, viral hepatitis

iNTRODUCTiON

Mononuclear myeloid cells encompass various phagocyte populations exerting distinct functions 
during infection. From progenitors and immature myeloid cells (IMC) to mature and polarized 
phagocytes, subsets of myeloid regulatory cells (MRC) have been described. These populations 
include regulatory dendritic cells (DCs), regulatory and alternatively activated macrophages 
(M2-like macrophages), tumor-associated macrophages (TAM), and a unique mixture of hetero-
geneous cells coined myeloid-derived suppressor cells (MDSC) (1). This nomenclature indicates 
their origin and ability to suppress T-cell immunity (2). MDSC comprise morphologically distinct 
subsets, monocyte-like [monocytic MDSC (M-MDSC)] and neutrophil-like (PMN-MDSC) 
cells. Phenotypically, M-MDSC are HLA-DR−/lowCD11b+CD33+/highCD14+CD15− in humans 
and Gr-1dim/+CD11b+Ly6C+Ly6G− in mice (2). Several studies report on CD11b+Ly6C+/dimLy6Gint 
murine M-MDSC, a phenotype that requires further validation in additional disease models and 
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BOx 1 | Chronic infections associated with monocytic myeloid-derived 
suppressor cells (M-MDSC).

Monocytic myeloid-derived suppressor cells have been reported in various 
infections caused by bacterial and viral agents, many of them causing 
diseases highly relevant for the public health. Key points about the pathogen 
and the respective disease are presented in the following. M. tuberculosis 
is a Gram-positive bacterium and represents the etiologic agent of human 
tuberculosis (TB). TB primarily affects the lungs of millions of people, and is 
among the top 10 causes of death worldwide (13). Infection with M. tuber-
culosis frequently leads to latent TB, bacteria being contained within tissue 
lesions, but not eliminated. Such individuals, estimated at one-third of global 
population, are at risk of developing active TB upon immune suppression.  
S. aureus is a Gram-positive bacterium that often colonizes the human 
skin and nose (14). It is the leading cause of skin and soft tissue infections, 
pneumonia, osteomyelitis, endocarditis, and septicemia. Such conditions can 
manifest as acute and often long-lasting, frequently nosocomial-associated 
diseases, which are often resistant to antibiotics. Increased antimicrobial resi-
stance characterizes current clinical isolates of M. tuberculosis and S. aureus. 
This results in significant therapy failures and economic burdens because 
of refractoriness to canonical chemotherapy (15). HCV and HBV are single-
stranded RNA (Flaviviridae) and double-stranded DNA (Hepatdnaviridae) 
viruses, respectively, which cause chronic infection of the liver leading to end-
stage liver disease in the absence of therapy. Prevalence of HCV and HBV in 
human population is high, reaching 70 million and 250 million chronic cases, 
respectively (16). HIV, encompassing HIV-1 and HIV-2, are lentiviruses belon-
ging to the Retroviridae family that cause the acquired-immune deficiency 
syndrome (AIDS). AIDS affects more than 35 million people worldwide and the 
virus causes lytic infection of immune cells, primarily CD4+ lymphocytes (17). 
Often AIDS leads to reactivation of latent TB and such a comorbidity results 
in high death tolls (13).
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in-depth characterization (3, 4). These cells have biochemical 
features characteristic of the myeloid lineage, notably abundance 
of products downstream of arginase 1 (ARG1), inducible nitric 
oxide synthase (iNOS), indoleamine dioxygenase (IDO), and 
cyclooxygenase (COX1) (2, 5). Unequivocal phenotypic markers 
for MDSC have not been identified so far, implying that cells 
can only be classified as MDSC upon demonstration of their 
lymphocyte suppressive function. This suggests that MDSC are 
likely underreported, particularly in conditions characterized by 
expansion of myeloid cells such as in infectious diseases.

Most of the information on MDSC emerges from cancer 
research where MDSC are associated with poor disease outcome. 
However, reports on myeloid suppressor cells in infection  
date back four decades. “Natural suppressor” cells were identi-
fied in spleens of experimentally infected animals following 
systemic delivery of mycobacteria, notably the vaccine strain  
Mycobacterium bovis Bacille Calmette–Guérin (BCG) (6). 
Although research on suppressor cells in cancers has flourished 
since then, studies in infectious diseases lagged behind. Cancer 
and infection share several pathophysiological features, including 
the non-resolving inflammation (7), which often triggers emer-
gency hematopoiesis and expansion of MDSC (8). Given such 
similarities and encouraged by progress made in cancer biology, 
recent investigations found MDSC in communicable diseases 
(9–12), uncovered their interactions with microbes and empha-
sized critical roles in disease pathogenesis. This review focuses 
on M-MDSC and discusses their genesis during infection as well 
as interactions with immune cells, elaborating on targets and 
mechanisms of suppression. We will mostly describe M-MDSC 
biology in infections caused by M. tuberculosis, Staphylococcus 
aureus, hepatitis viruses [hepatitis B virus (HBV), hepatitis C virus  
(HCV)], and human immunodeficiency viruses (HIV) and to a 
lesser extent fungi and parasites (Box 1). We will use the term 
MDSC to refer to the total MDSC population, without further 
subset phenotype characterization. For studies using mono-
cytic subsets, within the MDSC pool, we will use the acronym 
M-MDSC.

GeNeSiS OF M-MDSC iN iNFeCTiOUS 
DiSeASeS

Expansion of M-MDSC occurs in various infectious diseases. 
Accumulating evidence indicate that oncogenic viruses, includ-
ing HBV (18) and HCV (19–22), retroviruses, notably HIV  
(23, 24), simian immunodeficiency virus (SIV) (25, 26), and mouse 
immunodeficiency virus LP-BM (27), as well as Gram-positive 
bacteria, such as mycobacteria (28–30), staphylococci (31–33), 
enterotoxigenic bacilli (34), and Gram-negative pathogens, such 
as klebsiellae (35), trigger generation of M-MDSC. Fluctuation 
of this MDSC subset during anti-infective therapy was demon-
strated in patients undergoing canonical TB chemotherapy (29), 
further strengthening the notion that disease progression in 
chronic infections is associated with expansion of M-MDSC. For 
some microbes, precise microbial cues and corresponding host 
pathways triggering M-MDSC generation or reprogramming 
of monocytes into M-MDSC have been elucidated (Figure  1). 

However, to date, for most infections, expansion of M-MDSC is 
explained solely by generation of inflammatory mediators dur-
ing the course of the disease. Cytokines (IL-1 family members, 
IL-6, TNF, IL-10), lipid mediators (prostaglandin E2, PGE2), 
and growth factors (GM-CSF) foster generation of M-MDSC by 
promoting emergency myelopoiesis, skewing differentiation of 
progenitors into monocytes and DCs (STAT3/STAT5 activation) 
and promoting survival of M-MDSC (TGF-β, MCL-1-related anti-
apoptotic A1) (36–40) (Figure 1). Just like in cancer, M-MDSC 
and populations containing M-MDSC are detectable at the site 
of pathology; e.g., in infected lungs in TB (29, 30, 41), pneumo-
nia caused by Francisella tularensis (42), and influenza A virus  
(43, 44), in liver during HBV infection (45, 46), in skin and pros-
thetic bone implants during S. aureus colonization (32, 47, 48),  
and systemically in AIDS and sepsis (23, 24, 49). M-MDSC have 
also been detected in bone marrow and spleen, e.g., in TB (50), 
indicating their origin.

Microbial Signatures and Microbial 
Sensors Trigger M-MDSC Genesis
Pathogen Sensors Involved in Generation of 
M-MDSC
Microbial signatures are detected by non-clonally distributed 
innate receptors termed pattern recognition receptors (PRR). 
PRR are grouped in families and the founder toll-like receptors 
(TLR) have been best characterized so far. TLR are present on 
the plasma membrane and within endosomes and are activated 
by diverse microbial structures, including lipids [e.g., TLR-4 
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FiGURe 1 | Genesis of monocytic myeloid-derived suppressor cells (M-MDSC) during infectious diseases. Hypothetical models were derived from ex vivo results, 
correlative studies in animal models as well as clinical observations. Immature myeloid cells (IMC) are generated either in bone marrow or in spleen as a 
consequence of emergency myelopoiesis. Growth factors, cytokines, and lipids promote progression of hematopoietic stem cells (HSC) toward common myeloid 
progenitor (CMP) development and subsequent IMC genesis. Combination of cytokines as well as direct stimulation of selected microbial receptors by various 
microorganisms may activate or reprogram circulating monocytes toward M-MDSC. M-MDSC are recruited in various organs where they exert suppressive function 
and modulate manifestations and outcome of the disease. Abbreviations: AdV, adenovirus; AKT, protein kinase B; ERK, extracellular signal-regulated kinase; 
GM-CSF, granulocyte-macrophage colony stimulating factor; gp120, glycoprotein 120; HBV, hepatitis B virus; HBVsAg, HBV soluble antigen; HCV, hepatitis C virus; 
HIV, human immunodeficiency virus; IAV, influenza A virus; IFN-γ, interferon gamma; IL-6, interleukin 6; LPS, lipopolysaccharide; LP-BM5, virus murine acquired-
immune deficiency syndrome (AIDS); MHV-68, murine herpesvirus 68; MyD88, myeloid differentiation primary response gene 88; NF-κB, nuclear factor “kappa-light-
chain-enhancer” of activated B-cells; PI3K, phosphatidylinositide 3-kinase; PGE2, prostaglandin E2; STAT, signal transducer and activator of transcription; SIV, 
simian immunodeficiency virus; tat, trans-activator of transcription; TLR, toll-like receptor.
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senses lipopolysaccharide (LPS)], lipoproteins (e.g., TLR-2 senses 
acylated peptides) and proteins (e.g., TLR-5 senses flagellin). 
Generally, microbial-derived cognates of TLR-2 and -4 induce 
M-MDSC (20, 32, 51–53). LPS, which is the major cell wall com-
ponent of Gram-negative bacteria, triggers proliferation of HSC 
(40) and induces M-MDSC upon pulmonary instillation or sub-
sequent infection with Salmonella spp. or Klebsiella pneumonia 
(35, 51). Stimulation of human monocytes with TLR-4 agonists 
reprograms the cells into M-MDSC in a process dependent on 
STAT-3 activation (54). Crosstalk between TLR/MyD88 and 

JAK2/STAT5 pathways following receptor activation by LPS and 
GM-CSF is critical for M-MDSC generation (35, 51). The adap-
tor MyD88, which converges signals from multiple TLR, has also 
been implicated in generation of MDSC during polymicrobial 
sepsis (55). TLR-4 appears dispensable for sepsis-induced sup-
pression of T cells (55) thereby indicating that IL-1, which binds 
IL-1R upstream of MyD88, conditions MDSC differentiation.

Several bacterial and viral agonists of TLR-2 promote 
M-MDSC differentiation from monocytes and in certain 
instances precise signaling pathways have been identified. S. 
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aureus lipopeptides activate TLR2/6 dimers in skin cells for IL-6 
production which in turn promote local MDSC accumulation 
(32). HCV reprograms monocytes into M-MDSC by stimulating 
TLR-2. More precisely, HCV core proteins or HCV cell culture-
derived virions trigger TLR-2/PI3K/AKT/STAT3 pathway and 
this leads to cytokine production, notably IL-10 and TNF-α, and 
monocyte differentiation into MDSC (19–21). By contrast, TLR-3 
ligation restricts HCV and LPS-induced M-MDSC differentiation  
(19, 52). Nonetheless, vesicular stomatitis virus activation of 
TLR-3 induces MDSC expansion (56). Alike TLR-3, TLR-7 
activation by influenza virus blocks MDSC, including M-MDSC, 
accumulation in infected lungs (44). Both TLR-3 and -7 are 
located in endosomes. Whether signal compartmentalization, 
notably at the cell membrane or within endosomes, is critical 
for MDSC genesis remains to be established. Very little infor-
mation exists on the roles of cytosolic PRR, such as nod-like 
receptors and AIM-like receptors, in monocyte reprogramming 
or M-MDSC generation. Moreover, many pathogens, notably 
mycobacteria, simultaneously stimulate multiple PRR (57) and 
the net outcome of such innate recognition on M-MDSC in TB 
awaits clarification.

Host alarmins that activate PRR have also been implicated 
in MDSC generation. S100A proteins, high-mobility-group-
protein B1 and heat-shock proteins bind the receptor for 
advanced glycation products (RAGE), TLR-2, and TLR-4. In 
cancer and autoimmune diseases, these ligands have been asso-
ciated with increased dynamics of MDSC, including M-MDSC 
(58–60). Just like microbial-derived PRR agonists, alarmins may 
induce cytokine release, such as IL-6 and subsequent autocrine 
or paracrine differentiation of immature mononuclear cells 
toward MDSC (61). In chronic infections, for instance, in TB 
patients, S100A8/9 proteins are abundant in the lung (62). These 
alarmins besides driving recruitment of MDSC (63) bind RAGE 
and subsequently upregulate ARG1, a key suppressive enzyme in 
M-MDSC (2). Since tissue damage often occurs during micro-
bial insult, PRR stimulation by host-derived danger molecules 
along with microbial-derived agonists could contribute to the 
regulation of MRC. Similarly, synergy between microbial prod-
ucts, such as LPS, and inflammatory cytokines, notably IFN-γ, 
restricts differentiation of DCs and fosters genesis of M-MDSC 
in the bone marrow (64).

Microbial Factors Required for M-MDSC Genesis
For many microbes, the precise pathways required for M-MDSC 
genesis are not known. Mycobacteria induce accumulation 
of such cells irrespective of key virulence features, notably 
the type VII secretion system. M-MDSC have been reported 
for both M. tuberculosis and the vaccine BCG (29, 30, 50, 65). 
Mycobacterial glycolipids appear sufficient to induce these 
regulatory monocytes, as indicated by the presence of MDSC 
in animals inoculated with complete Freund’s adjuvant (66). In 
contrast to mycobacteria, non-colitogenic bacteria and onco-
genic gut species (Fusobacterium nucleatum, pks+ Escherichia 
coli) do not trigger M-MDSC, whereas enterotoxigenic Bacillus 
fragilis employs the toxin to prime epithelial cells for IL-17 
and M-MDSC expansion (34). HIV and SIV infection triggers 
accumulation of M-MDSC in the blood and their reduction 

in the bone marrow, which correlates with plasma viral loads 
and disease progression (25, 49). Several HIV viral factors 
promote expansion of the M-MDSC or reprogramming of 
monocytes. Human monocytes stimulated with HIV gp120 
(23, 24) and/or with Tat proteins (54) acquire T-cell suppres-
sive activity. This differentiation requires autocrine release of 
IL-6 and activation of STAT-3 (23, 54). HBV surface antigen 
similarly triggers differentiation of human monocytes toward 
M-MDSC in an autocrine manner depending on activation 
of the kinase ERK and the transcription factor STAT-3 (18). 
The necessity of specific kinases, such as ERK (18) and AKT  
(19, 20) for microbial-induced M-MDSC generation resembles 
kinase signatures of MDSC in cancer (67). Similarly, STAT-3 is 
required for M-MDSC in cancer (68) as well as during infection 
with HIV (23, 54), HCV (20, 22), and stimulation with bacterial 
LPS (54). For many bacterial (Mycobacterium spp., F. tularensis, 
Porphyromonas gingivalis) (29, 30, 42, 50, 69) and viral patho-
gens [vaccinia virus, lymphocoriomeningitis virus (LCMV), 
MCMV, murine gamma virus, LP-BM5] (70–72), and protozoa 
(Leishmania spp.)(73, 74), the host pathways or microbial signa-
tures required for M-MDSC genesis are still undefined.

inflammation Drives M-MDSC Generation 
during infection
A common denominator in infection and cancer biology is the 
inflammation. Whereas physiological inflammation protects the 
host and restores homeostasis, in exuberant acute infections and 
chronic processes, inflammation often becomes pathologic and 
leads to disease manifestation. In such a scenario, inflammation-
induced pathology becomes life-threatening. M-MDSC are 
primarily associated with chronic infections; however, they have 
been also reported in acute infectious diseases. Genesis of this 
myeloid regulatory subset is uncoupled from a specific phase of 
an infectious process. For instance, F. tularensis triggers IMC with 
M-MDSC features during acute, but not sub-acute, non-lethal 
infection (42). In polymicrobial sepsis M-MDSC are present early, 
as well as at late stages of sepsis, during the suppressive phase  
(55, 75). In infection with the LCMV, acute strains (Armstrong) 
do not induce M-MDSC, whereas chronic strains (Clone 13) 
induce suppressive myeloid cells (71).

Certain transcription factors and inflammatory mediators are 
critical for generation of MRC in infections. These requirements 
resemble those observed for MDSC in cancer (63). In sepsis, 
myeloid specific deletion of the myeloid differentiation-related 
transcription factor nuclear factor I-A, or deletion of the tran-
scription factor C/EBPβ, result in reduction of MDSC, including 
M-MDSC (76, 77). Pro-inflammatory cytokines, notably IL-6, 
TNF-α, and IL-1, drive generation of MDSC in various infec-
tion models. In viral infections, including HIV (23) and HBV 
(18), IL-6 reprograms monocytes into suppressor cells. The 
same cytokine drives accumulation of M-MDSC in S. aureus 
skin infection and into the lungs subsequent to LPS instillations  
(32, 35). TNF promotes differentiation of MDSC in chronic 
inflammation (37, 78), likely through membrane expression of 
TNFR2, as shown in sterile inflammation (79). TNF signaling 
contributes to M-MDSC generation in HCV infection (19) and 
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regulates M-MDSC dynamics and activity also in murine myco-
bacterial infection (80). Besides cytokines, pro-inflammatory 
lipids such as the eicosanoid PGE2 are highly abundant in the 
TB-susceptible mouse strain C3HeB/FeJ (81) and these animals 
also accumulate M-MDSC (41). Interestingly, application of a 
COX2 inhibitor which lowers PGE2 levels rescues C3HeB/FeJ 
from TB lethality (81), thereby suggesting that this lipid may be 
critical for genesis of host-detrimental MDSC in TB. In addition, 
PGE2 positively regulates enzymatic pathways critical for the 
suppressive function of the MDSC, including iNOS, IDO1, and 
IL-10. COX2 crosstalks with the IL-1/IL-1R pathway, as well 
as with IFN I pathway, which has been revealed in TB and flu  
(82, 83). The positive cross-regulation between COX2 and IL-1 
may affect M-MDSC genesis. IL-1/IL-1R pathway drives accumu-
lation of M-MDSC in BCG-vaccinated mice (65). IL-1β also regu-
lates PMN-MDSC generation by itself and during fungal disease 
(84). Activation of specific inflammasomes for release of bioactive 
IL-1β has not yet been related to MDSC induction during infec-
tious diseases. However, the NLRP3 inflammasome drives MDSC 
accumulation in cancer (85). To what extent key inflammatory 
molecules, including IL-1β and the downstream inflammasome 
platforms, may affect generation and accumulation of M-MDSC 
in other chronic infections than TB remains to be established.

As a corollary, various stimuli trigger M-MDSC generation 
and expansion during microbial insult. Additional pathways will 
likely be uncovered as the research into M-MDSC in infection 
expands. Recent studies indicate that GM-CSF licenses mono-
cytes for suppressive activity upon further stimulation with 
PRR agonists or cytokines (86). Such a two-step process likely 
occurs during infection. Furthermore, fate-mapping studies are 
imperative to elucidate whether bone marrow or extramedul-
lary myelopoiesis are unique sites for M-MDSC expansion or 
whether this myeloid subset can self-maintain in situ, at the site 
of the infection. Furthermore, the signals triggering recruit-
ment of M-MDSC at the site of the pathology require further 
elucidation. Panoply of chemokines and alarmins are generated 
during infection. These, along with factors known to drive MDSC 
accumulation in cancer may be essential for MDSC dynamics in 
infected tissue. For instance, both PGE2 and TGF-β upregulate 
CXCR2 and CXCR4 expression in M-MDSC in cancers and 
they may be critical for the accumulation of such cells toward 
CXCL12 or CCL2 gradients at the site of infection, as it has been 
demonstrated in tumors (63, 87–89).

M-MDSC iN PATHOPHYSiOLOGY OF 
CHRONiC iNFeCTiONS

M-MDSC immunosuppressive 
Mechanisms and Cellular interactions
Myeloid regulatory cells regulate host immunity through interac-
tion with immune and non-immune cells (90) (Figure 2). This 
link is typically bi-directional: e.g., T-cells also regulate MRC 
expansion and activity, to induce tissue healing and remodeling 
(91, 92). Here, we describe current information on monocytic 
MDSC immunosuppressive machinery and interaction with 
archetypal immune cells (Table 1).

T Cells
Immunosuppression by MDSC has the potential to inhibit 
innate and adaptive immune cell activation, proliferation, 
viability, trafficking, and cytokine production. M-MDSC utilize 
a variety of suppressive mechanisms and likely differ in their 
ability to initiate antigen-specific versus non-specific suppression  
(126, 127). Each immune suppressive function is determined by 
the type of MRC, the microenvironmental components and the 
state of T-cell activation, favoring the probability that non-specific 
and antigen-specific suppressive mechanisms may coincide. 
Although not the focus of this review, as an example, PMN-
MDSC can present peptides to T cells, but their low expression of 
major histocompatibility complex (MHC) II and costimulatory 
molecules, suggest they might only affect CD8 T-cell responses in 
an antigen-specific manner, as reported during retrovirus infec-
tion (128). This idea is supported by reports on MDSC-mediated 
inhibition of antigen-specific CD8 T-cell responses in tumors, 
likely due to the MHC I-restricted nature of cancer MDSC  
(2, 127, 129, 130). In infection, antigen-specific immunosuppres-
sion of CD8 T cells by M-MDSC is restricted to polymicrobial 
sepsis (131), HCV (21), HBV (46), murine encephalomyelitis 
virus (132), SIV and HIV infections (26), and LCMV infection 
(71). Data on the effect of MDSC on CD4 T helper cell (TH) 
subsets during infectious diseases are limited, but do exist as a 
result of the MHC-independent suppressive effects of MDSC 
in the context of HCV (21), HIV (24), and murine encephalo-
myelitis virus infection (132). During BCG-induced pleurisy, 
transmembrane TNF on M-MDSC restricts proliferation of 
CD4 T cells via interaction with lymphocyte-expressed TNFR2 
(80). Results on MDSC interaction with TH17 and TH2 polar-
ized CD4 T cells are contradictory and reports exist of mainly 
PMN-MDSC-mediated induction and suppression of TH17 
responses in cancer, autoimmunity and infection (133–138), 
likely indicating that the combination of mediators present in 
the microenvironment determines the final outcome. In turn, 
TH1 and TH2 are involved in the expansion and activation of 
MDSC in cancer and also hepatitis (137, 139). Interestingly, 
recent findings suggest that CD1d-restricted natural killer T cells 
can convert immunosuppressive murine-MDSC into immune 
stimulating APCs following influenza virus infection, via their 
interaction with CD40 (140).

Regulatory T cells (Treg) are equally important components 
of the host immunoregulatory network. Data suggest reciprocal 
regulation of MDSC and Treg through mechanisms involving 
presence of IL-10, TGF-β, IL-4Rα, p47phox, PD-L1, TGF-β, 
and CD40–CD40L interactions, ARG1 induction and CCR-5-
mediated recruitment (91, 126, 141–144). Interactions between 
total MDSC and Treg in cancer are well described (145, 146) with 
Treg depletion reducing MDSC immunosuppression by lowering 
their expression of PD-L1 and IL-10 production (147). Evidence 
of interaction in non-cancerous models, including type-1 diabe-
tes, cardiac allograft and airway hyper-responsiveness, also exist 
(148–150). More specifically, the induction of Treg by M-MDSC, 
has also been described during HIV infection and shown to con-
tribute to host immunosuppression (23, 49, 54). Data by O’Connor 
suggest reciprocal crosstalk between M-MDSC and Treg during 
LP-BM5-induced murine AIDS. Here, M-MDSC subsets display 
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FiGURe 2 | Features of monocytic myeloid-derived suppressor cells (M-MDSC) and their interactions with immune cells during infection. M-MDSC express 
membrane-bound inhibitory receptors and upregulate enzymatic pathways [inducible nitric oxide synthase (iNOS), ARG1, COX2, IDO] conferring suppressive activity 
toward multiple myeloid and lymphoid cell subsets. The key function of M-MDSC is suppression of T-cell immunity. M-MDSC restrict proliferation and release of 
cytokines by effector CD4 and CD8 lymphocytes and induce apoptotic cell death in these cells. In addition, these myeloid regulatory cells induce regulatory T and 
B cells, while limiting antibody release and proliferation of conventional B cells. M-MDSC alter activity of NK cells and antigen-presenting cells (APCs) and induce 
polarization of macrophages toward a regulatory phenotype. Color-coded arrows indicate induction/activation (green) or suppression (red), and molecules employed 
by M-MDSC for such effects are highlighted. Size- and color-coded arrows indicate gradient fluxes for selected essential amino acids. Boxes indicate cellular 
functions or pathways modulated by M-MDSC. Abbreviations: ADAM17, ADAM metallopeptidase domain 17; ARG1, arginase 1; CD, cluster of differentiation; 
COX2, cyclooxygenase 2; DC, dendritic cell; IDO1, indoleamine dioxygenase 1; IFN-γ, interferon gamma; IL-10, interleukin 10; iNOS, inducible nitric oxide synthase; 
Kyn, kynurenine; l-Arg, l-arginine; l-Cys, l-cysteine; MΦ, macrophage; NK, natural killer cell; NKGD2, killer cell lectin like receptor K1; NOX1, NADPH oxidase 1; 
PGE2, prostaglandin E2, PD-L1, programmed-death ligand 1; RNS, reactive nitrogen species; ROS, reactive oxygen species; STAT,  
signal transducer and activator of transcription; TGF-β, transforming growth factor beta; Trp, tryptophan; VISTA, V-domain Ig suppressor of T-cell Activation.
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differential suppression of T- and B-cells, thereby indicating 
functionally overlapping, but distinguishable, immunosuppres-
sive effects (27, 95). Incubation of M-MDSC from peripheral 
blood of HIV-1-infected individuals, even those on antiretroviral 
therapy with undetectable viremia, with CD4 T cells from healthy 
individuals, significantly increased differentiation of Foxp3 Treg, 
whereas depletion of MDSC significantly increased IFN-γ pro-
duction by CD4 T cells (54).

B Cells
Information on MDSC interaction with B-cells only recently 
started to accumulate. In autoimmune disease, M-MDSC inhibit 
B-cell proliferation and antibody production via an iNOS and a 
PGE2-induced pathway (151). However, opposing data demon-
strated that the total MDSC population promotes proliferation 
and differentiation of immunoglobulin-A-producing immu-
nosuppressive plasma B-cells via cell contact in mouse tumor 
models (152). In infectious diseases, M-MDSC suppressed B-cell 
responsiveness to retroviral infection in mice via iNOS and the 

negative immune checkpoint regulator V-domain Ig Suppressor 
of T-cell Activation (VISTA) (72, 93).

Myeloid Cells
Data on MDSC interaction with myeloid cells, such as DC, 
neutrophils, and macrophages in infectious diseases, are equally 
restricted, with reports mainly revealing that their inhibitory 
effects are exacerbated by cross-regulation with macrophages at 
tumor sites. In lung infections, such as Pneumocystis pneumonia 
(PcP), M-MDSC expressing PD-L1 are induced and impair 
alveolar macrophage (AM) phagocytic activity while increasing 
AM expression of PD-1 (153). MDSC interaction with neutro-
phils has been described in mice infected with K. pneumoniae 
or challenged with LPS, demonstrating that MDSC efferocytose 
infected, apoptotic neutrophils (35). Furthermore, M-MDSC 
suppress DC maturation, antigen uptake, migration, and TH1 
cytokine production following administration of a DC vaccine 
for malignant melanoma (154). Similar findings were reported 
following LPS stimulation and in hepatocellular carcinoma, 
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TABLe 1 | Impact of monocytic myeloid-derived suppressor cells (M-MDSC) on infectious disease outcome and their immunosuppressive effects.

Microbial organism Context of 
M-MDSC 
investigation

Major outcome; immunosuppressive effect Reference

viruses
Immunodeficiency virus 
[human immunodeficiency 
viruse (HIV), simian 
immunodeficiency  
virus, LP-BM5]

M-MDSC and total 
MDSC

Host detrimental; suppress T-cell and B-cell responses,  
express inducible nitric oxide synthase (iNOS), and produce  
reactive oxygen species (ROS), ARG-1, IL-10, induce Treg

Gama et al. (26); Vollbrecht et al. (49);  
Qin et al. (24); Green et al. (93); Garg and  
Spector (23); Sui et al. (94); Wang et al. (54); 
O’Connor et al. (95); du Plessis et al. (28);  
Sui et al. (25); Garg et al. (96); Dross et al. (97)

Cytomegalovirus (CMV) M-MDSC-like Host detrimental; impair T-cell expansion, slowing viral clearance Daley-Bauer et al. (70)

Hepatitis C virus (HCV) M-MDSC and total 
MDSC

Host detrimental; suppress CD4 T-cell and NK cell function, 
increase Treg

Tacke et al. (21); Salem et al. (98); Zeng et al. (99); 
Nonnenman et al. (100); Ning et al. (101);  
Goh et al. (102); Ren et al. (22); Lei et al. (103); 
Pang et al. (19); Ren et al. (104)

Hepatitis B virus (HBV) M-MDSC and total 
MDSC

Host detrimental; express IL-10, suppress T-cell function,  
promote disease chronicity

Chen et al. (45); Huang et al. (105);  
Kondo et al. (106)

Viral coinfection (HIV/CMV, 
HCV/HIV)

 Host detrimental; impair T-cell function, accelerate  
disease progression

Lei et al. (103); Garg et al. (96);  
Tumino et al. (107)

Bacteria
Staphylococcus aureus M-MDSC and 

PMN-MDSC 
Host detrimental; suppress T-cell function, express ARG-1,  
iNOS, IL-10, exacerbate disease, promote disease chronicity

Skabytska et al. (32); Heim et al. (108); Heim et al. 
(47, 48); Tebartz et al. (33); Peng et al. (31)

Francisella tularensis Total MDSC Host detrimental; reduced phagocytosis, reduced survival Periasamy et al. (42)

Mycobacteria spp. M-MDSC and total 
MDSC

Host beneficial/detrimental; suppress T-cell function;  
express ARG-1 and iNOS, impaired pathogen killing;  
TNF-dependent suppression of CD4 T cells

Dietlin et al. (109); Martino et al. (65); Obregón-
Henao et al. (41); Knaul et al. (30); Tsiganov et al. 
(50); Yang et al. (110); du Plessis et al. (28);  
Chavez-Galan et al. (80)

Klebsiella pneumoniae M-MDSC and 
PMN-MDSC 

Host beneficial/detrimental; pro-resolving, express  
ARG-1, IL-10/impair phagocytosis/killing

Poe et al. (35); Ahn et al. (3);  
Chakraborty et al. (4)

Helicobacter pylori M-MDSC Host detrimental; suppress protective TH1 development. Zhuang et al. (111)

Polymicrobial sepsis M-MDSC and total 
MDSC

Host beneficial/detrimental; suppress T-cell function, express  
nitric oxide and pro-inflammatory cytokines (early) and ARG-1, 
IL-10, and TGF-β (late)

Delano et al. (55); Sander et al. (112);  
Brudecki et al. (75); McPeak et al. (76, 77)

Escherichia coli M-MDSC Host detrimental; suppress T-cell activation, innate immunity, 
impair bacterial uptake and increase disease severity, infection 
susceptibility

Bernsmeier et al. (52)

Protozoa  
Leishmania spp. M-MDSC and total 

MDSC
Host beneficial/detrimental; species-specificity, suppress  
CD4 T-cell proliferation, improved killing of parasites

Pereira et al. (73); Schmid et al. (74);  
Ribeiro-Gomes et al. (113); Bandyopadhyay  
et al. (114); Hammami et al. (115)

Trypanosoma cruzi M-MDSC and 
PMN-MDSC

Host beneficial/detrimental; dependent on MDSC subset,  
express ROS, NO, suppress CD8 T-cell proliferation

Goni et al. (116); Cuervo et al. (117);  
Arocena et al. (118)

Toxoplasma gondii Total MDSC Host protective; express NO, control parasite replication Voisin et al. (119); Dunay et al. (120)

Helminths
Schistosoma spp. Total MDSC Not evaluated; express ROS, suppress T-cell responses Yang et al. (121)

Echinnococcus granulosus Total MDSC Not evaluated; association with increased Treg and impaired  
T-cell L-selectin

Pan et al. (122)

Nippostrongylus 
brasiliensis

M-MDSC and 
PMN-MDSC

Host beneficial/detrimental; dependent on MDSC subset,  
express TH2 cytokines, reduce parasite burden (PMN-MDSC)

Saleem et al. (123)

Heligmosomoides 
polygyrus bakeri

Total MDSC Host detrimental; suppress CD4 T-cell proliferation, increase 
parasite burden, and promote chronic infection

Valanparambil et al. (124, 125)

M-MDSC are studied as a purified cell population or as part of the total MDSC population to measure their impact on the host control of infectious pathogens.
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where both MDSC subsets reduced expression ofMHC II, stimu-
latory molecules on DC, and cytokine production (64, 155). 
It stands to reason that these MDSC-induced modifications, 

affecting DC-mediated activation of T cells and antigen uptake, 
could also be effective in infectious diseases and warrant further 
investigation.
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Natural Killer (NK) Cells
Reports on MDSC-mediated impairment of NK  cell function 
emanate mainly from the cancer field. NK cells are critical to the 
innate immune system, exhibit cytotoxic and cytolytic functions, 
and target pathogens and malignant cells. In tumors, M-MDSC 
and also a population containing M-MDSC, inhibit cytotoxic 
activity and cytokine production by NK cells through cell con-
tact-dependent mechanisms involving membrane-bound TGF-β 
and NKp30 ligand (156–158). NK cell-mediated suppression by 
total HLA-DRloCD33+CD11blo MDSC has also been reported in 
chronic HCV infection and it is mediated via an ARG1-dependent 
inhibition of mammalian target of rapamycin (102).

Kinetics, interference with immunity, and 
impact on Disease Outcome
The immune inhibitory functions of M-MDSC have extensive 
consequences on disease outcome (Table  1). According to 
current understanding, the class of pathogen and the immune 
mediators present, collectively determine pathogen persistence 
versus clearance. M-MDSC have versatile roles in infection, with 
either beneficial or detrimental outcomes for the host depending 
on the pathogen and the course of infection. During long-lasting 
infections, MDSC may even exhibit dual roles depending on 
the disease stage. E.g., M-MDSC are host-protective in certain 
fulminant acute infections by restricting immunopathology  
(35, 112, 159). During late sepsis, the immature total MDSC pop-
ulation aggravates disease (76, 77, 160). M-MDSC may, however, 
be harmful in acute infection with intracellular microbes, notably 
francisellae (42). Alternatively, M-MDSC may be detrimental to 
the host, irrespective of the phase of the disease, as reported in 
AIDS (25). By limiting anti-viral immunity early, these regulatory 
monocytes foster disease progression, while provoking disease 
exacerbation during the chronic HIV infection.

Viruses
Viral infections are known for their induction of pro- 
inflammatory mediators associated with the generation of MDSC. 
E.g., M-MDSC are increased in both clinical and experimental 
viral infections, such as HIV, SIV, and LP-BM5 (25–27, 49, 93, 94). 
During these retroviral infections, increased levels of M-MDSC 
are likely detrimental to disease outcome and facilitate pathogen 
survival, when considering the TH1 immunosuppressive effect 
and correlation to viral load and CD4 T-cell count (24, 49, 54, 95). 
Interestingly, HIV infection-mediated expansion of M-MDSC in 
peripheral blood mononuclear cells may also negatively affect 
containment of other concurrent infections, as reported for cyto-
megalovirus (CMV) infection (96). Recruitment of M-MDSC-
like cells were also reported for murine CMV mono-infection and 
shown to impair viral clearance (70). Information on MDSC in 
HCV infections has been variable, but largely provides evidence 
of unfavorable effects on host protective immunity (19, 22, 104).  
Increased MDSC frequencies positively correlate with HCV  
viral load and decreased CD8 T-cell function (21, 99). Reports  
show that elevated levels of immature Lin−HLA-DR−CD33+ 
CD11b+ MDSC, consisting of M-MDSC and PMN-MDSC, in 
chronic HCV-infected patients, decline following successful 
IFN-α treatment (98), while treatment-naive HCV-infected 

indi viduals show significantly increased liver- and circulating 
MDSC frequencies compared to treated and uninfected individuals  
(99, 161). Nonetheless, other in vivo investigations failed to show 
significant MDSC elevations or an association with viral load 
(100). Ning et al. also provided evidence of increased M-MDSC 
in HCV-infected patients; however, this was correlated with age 
and not viral load, suggesting that the immune response caused 
by viral replication, rather than the virus itself, is responsible for 
increased M-MDSC (101). HBV infections are also associated 
with induction of MDSC. HLA-DR−/lowCD14+ M-MDSC occur 
at higher frequency in peripheral blood of chronic HBV-infected 
patients and suppress HBV-specific CD8 T-cell cytotoxicity 
(105). Suppressive MDSC are also increased in murine HBV 
infection (45) and drive CD8 T-cell exhaustion via their crosstalk 
with γδT-cells (46). M-MDSC accumulate during viral coinfec-
tions, but frequencies appear to be similar with those observed 
in mono-infections (103). E.g., elevated number of MDSC were 
reported for HCV/HIV (103) and shown to regulate excessive 
IFN-γ production in HIV/CMV coinfected individuals (96).

Bacteria
Bacterial infections are often associated with excessive inflam-
mation or low-grade chronic production of pro-inflammatory 
cytokines and chemokines known to induce the expansion 
and activation of MDSC. E.g., chronic S. aureus infection in 
mice is sustained by M-MDSC and PMN-MDSC expressing  
ARG1, iNOS, and IL-10 which foster an immunosuppressive 
environment and impair monocyte/macrophage responsiveness  
(33, 47, 48, 108). Similarly, during infections with intracellular 
bacteria, such as F. tularensis, MDSC frequencies correlate with 
the extent of tissue pathology, loss of pulmonary function, and 
host mortality (42). Several reports demonstrate that inocula-
tion of mice with BCG or infection with M. tuberculosis induce 
M-MDSC that diminish pathogen control and promote disease 
lethality (50, 65, 109). Obregón-Henao provided new evidence, 
demonstrating accumulation of ARG1-producing MDSC in  
M. tuberculosis-infected mice (41). Similar findings were reported 
in human TB, with increased immunosuppressive M-MDSC in 
TB patients and individuals with recent exposure to TB patients 
(28, 110). More recently, a protective role of M-MDSC in early 
stages of BCG-induced pleurisy was reported (80). This effect 
has been linked to TNF-dependent suppression of CD4+ T-cell 
inflammation. MDSC were also highly induced following infec-
tion with a clinical isolate of multidrug-resistant K. pneumoniae. 
These M-MDSC express anti-inflammatory surface markers and 
displayed compromised phagocytic abilities (3). Impairment 
of IL-10 production from total MDSC inhibited resolution of 
K. pneumoniae-induced inflammation (4). H. pylori-mediated 
inflammation of the gastric mucosa also promoted an influx of 
M-MDSC that countered host protective TH1 immune responses 
(111). In addition, MDSC gradually increase after polymicrobial 
sepsis (75–77), with M-MDSC mainly promoting sepsis-induced 
mortality early during infection (75).

Fungi
TH17-polarized immunity is generally required for protec-
tion against fungal infections; however, fungi modulate host 
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immunity by inducing immunosuppressive MDSC which could 
also benefit the host by reducing hyperinflammatory responses 
(84). The majority of studies only report the induction of 
PMN-MDSC following infection with pathogenic fungi, such 
as Candida albicans and Aspergillus fumigatus (84, 162). In line 
with this, treatment of mice with yeast-derived antigens, such as 
β-glucan specific to dectin-1, reduced accumulation of PMN-
MDSC but not M-MDSC and significantly decreased tumor  
burden (163).

Protozoa
Induction of potent TH1 immunity is generally sufficient to 
protect the host against debilitating protozoal expansion and 
pathology. While MDSC are typically detrimental to diseases 
requiring a robust host protective TH1 response, MDSC induc-
tion could in fact be beneficial during infections triggering 
inflammation-mediated tissue damage. For example, chronic 
and acute protozoan infections with L. major or Trypanosoma 
cruzi, mediate induction of M-MDSC which protect against 
pathology and parasite load, despite suppression of T-cell prolif-
eration (73, 116, 118), although contradictory evidence have been 
reported (117). Similar results were shown in a mouse model of 
Toxoplasma gondii infection, where the total MDSC population 
induced hyporesponsiveness and were required for resistance 
against the pathogen (119). Corroborating work demonstrated 
that the absence of cells resembling total MDSC during acute  
T. gondii infection resulted in extensive intestinal necrosis due to 
the host TH1 inflammatory response (119, 120). More recent data 
on L. donovani provided evidence of the expansion of myeloid 
cells, likely a combination of M-MDSC and PMN-MDSC, in the 
spleens of infected BALB/c and C57BL/6 mice. These cells exhibit 
TH1 immunosuppressive features and their immunosuppressive 
capacity is reduced following soluble leishmanial antigen vac-
cination (114, 115).

Helminths
Helminths characteristically cause stable, long-term infections 
with severe host immunomodulatory consequences, such as trig-
gering TH2 host immune polarization. Several helminth species 
and their excretory/secretory products induce accumulation of 
M-MDSC, including Schistosoma spp. (121), Echinnococcus gran-
ulosus (122), and Nippostrongylus brasiliensis (123). Important  
work in a mouse model of Heligmosomoides polygyrus bakeri 
infection revealed the induction of a MDSC subset, likely com-
prising M-MDSC and PMN-MDSC, with TH2 immunosup-
pressive capabilities that exacerbate infection and worm burden 
(124, 125). Another important consideration during helminth 
infections is the host protective effect of MDSC-mediated sup-
pression of TH1 immunity and induction of TH2 immunity. 
E.g., MDSC mediate enhanced pathogen clearance in a model 
of N. brasiliensis infection, although this appears to be specific to 
the granulocytic subset and might increase host susceptibility to 
diseases requiring TH1 for protection (123).

Monocytic myeloid-derived suppressor cells have been inves-
tigated only in a number of infections. In some circumstances, 
this MRC subset emerges as a regulator of disease pathogenesis. 
Based on depletion studies in animal models and correlative 

studies in humans undergoing anti-infective therapy, M-MDSC 
have both host-destructive and -protective roles. They promote 
establishment and progression of HIV/SIV (24, 25, 49), LCMV 
(71), staphylococcal prosthetic complications (33, 48, 108), and 
TB (29, 30) (Table 1). On the contrary, several studies indicate 
that this MRC subset protects from immunopathology, particu-
larly in certain acute bacterial infections (35) and in protozoal 
infection (73), but also at distinct stages of viral infection with 
vaccinia virus (164). In such circumstances, M-MDSC contribute 
to resolution of inflammation or prevent disease flares. Such 
dual roles may correlate with biology of M-MDSC, notably their 
interaction with pathogens.

Phagocytic M-MDSC Harboring 
Pathogens
Subcellular compartmentalization of microbes within M-MDSC, 
as well as how pathogens modulate cell death patterns or meta-
bolic features of these monocytic cells have not been fully elu-
cidated. Since MDSC are phagocytes, an alternative function of 
M-MDSC is as a reservoir for invading pathogens. Initial evidence 
of impaired pathogen elimination came from a mouse model 
showing that mycobacteria, notably BCG, are phagocytosed by 
CD11b+Ly6CintLy6G− MDSC (65). Despite NO production, they 
were unable to kill M. bovis or the nonpathogenic M. smegmatis 
and suppressed T-cell activation. More recent data demonstrate 
that murine MDSC, induced following M. tuberculosis infection, 
display dose-dependent phagocytic and endocytic capabilities 
(30). Considering that M. tuberculosis survival in phagocytes is 
attributed to host-derived lipids, and since these serve as their 
primary carbon source via the glyoxylate shunt, it is tempting 
to speculate that MDSC provide niche for pathogen persistence. 
This assumption is supported by the finding that MDSC highly 
express complement receptor-3 CD11b and receptors for oxidized 
lipid (oxLDL)-uptake (CD36 and LOX-1) (165), which assist  
M. tuberculosis engulfment (166, 167). MDSC-resembling cells 
were shown to contain microbes, such as Escherichia coli and  
L. major (52, 55, 73, 113).

Other investigators report on defects in MDSC phagocytic 
potential under conditions of persistent stimulation or chronic 
inflammation (168). M-MDSC displayed reduced uptake of 
F. tularensis in comparison to naïve bone marrow-derived 
macrophages or AM (42) and poor phagocytic/killing potential 
of K. pneumoniae (3). MDSC may also impair the phagocytic 
potential of other innate cells. For example, the phagocytic ability 
of AM is significantly reduced in the presence of MDSC from 
PcP-infected mice. These adverse effects on AM are dependent 
on MDSC expressing PD-L1 and induction of PD-1 expression in 
AM during PcP infection (153, 169). Nonetheless, others failed to 
show any significant impact of MDSC on macrophage phagocytic 
potential (170).

Besides harboring bacterial pathogens, M-MDSC may support 
replication of viruses. Retroviruses, including SIV (25), LP-BM5 
(93), and HIV (24) have been detected within this monocytic 
subset in macaques, mice, and humans, respectively. M-MDSC 
may traffic and interact with lymphocytes and thereby contribute 
to viral spread, besides limiting functionality of T lymphocytes.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


10

Dorhoi and Du Plessis M-MDSC in Chronic Infections

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 8 | Article 1895

CONCLUSiON AND OUTLOOK

Many open questions and challenges for MDSC research remain. 
In particular, evidence on human MDSC subset characterization 
and their place in the spectrum of the myeloid lineage are still 
conflicting. In mice, TAM differentiation from M-MDSC may be 
accomplished to some extent based on positivity of TAM for F4/80 
and their low or negative expression of Ly6C along with higher 
transcript levels for IRF8, M-CSF, and reduced ER-stress markers 
(2, 36, 171, 172). A detailed comparison between activated tissue 
macrophages and M-MDSC has not been conclusively conducted 
in infection. Lineage-tagging studies and phenotype stability are 
currently lacking and, therefore, tracing M-MDSC development 
in infection is either hypothetical or based on ex vivo observa-
tions and extrapolations from cancer models. Furthermore, 
a detailed understanding of the pathogen- and host-derived 
signals modulating MDSC induction and function will assist in 
the development of their therapeutic application. Specifically, the 
factors mediating suppression of host immunity in an antigen-
specific manner need to be better understood to exploit drugs 
inhibiting MDSC in infections where these cells favor pathogen 
survival or limit optimal host responses. Moreover, pathogen 
responses, including stress and adaptation, to M-MDSC have not 
been investigated yet.

Although several therapeutic approaches involving re-
purposed agents, mostly all-trans retinoic acid, effectively reverse 

MDSC immunosuppressive features in murine infection models 
of TB (30) and sepsis (173) as well as in few ex vivo human studies 
in HBV (18), comprehensive human clinical studies are required 
to systematically assess the safety, efficacy, dose, and timing of 
such interventions. Same rationale may improve vaccination in 
case of live vaccine, notably BCG and viral vector-based vaccines 
against HIV, known to trigger M-MDSC (65, 94). Furthermore, 
considering the diagnostic and prognostic potential of MDSC 
in the cancer field, these myeloid regulatory subsets should be 
considered for their potential role in biomarker development for 
infectious diseases.
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