A03

Identification of extended-spectrum β -lactamase (ESBL)-producing Escherichia coli isolates in diseased food-producing animals from GERM-Vet 2008-2015

G. B. Michael^{1,2}, A. K. Siqueira³, H. Kaspar³, K. Kadlec², S. Schwarz^{1,2}

¹Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany; ²Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany; ³Universidade Federal da Fronteira Sul, UFFS, Laranjeiras do Sul, Brazil; ⁴Monitoring of Resistance to Antibiotics, Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany

Keywords: MRSA β-lactams, bla_{CTX-M-1}, multidrug-resistance

Background and objectives: Extended-spectrum β -lactamase (ESBL)-producing bacteria represent risks for public health. The aim of this study was to investigate ESBL-producing *Escherichia coli* isolates originating from diseased food-producing animals.

Materials and methods: A total of 7,810 *E. coli* collected from diseased cattle (n= 3,188), pigs (n= 1,834) or poultry (n= 2,788) in the GERM-Vet (2008-2015) were subjected to antimicrobial susceptibility testing and screened for ESBL phenotype. ESBL genes were investigated by PCR/sequencing. ESBL-producing isolates were further characterized by phylotyping.

Results: ESBL-producers were identified in 396 bovine, 95 swine and 24 avian isolates. The isolates were distributed among phylogenetic groups A (57.5%), D (23.7%), B1 (17.9%) and B2 (0.9%). The most common ESBL genes detected were: blaCTX-M-1 (68.1%), blaCTX-M-15 (15.0%) and blaCTX-M-14 (11.8%). Additional resistance to non- β -lactam antibiotics (especially sulphonamides/trimethoprim and tetracyclines) was seen in 488/515 of ESBL-producing isolates (94.8%) and 451/515 (87.6%) isolates were multidrug-resistant (resistant to at least three classes of antimicrobial agents).

Conclusion: The dominant ESBL gene among *E. coli* isolates from diseased food-producing animals over time is blaCTX-M-1. Additional resistance to non- β -lactam antibiotics may play an important role in the persistence and dissemination of ESBL genes.