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A B S T R A C T

Social interaction between animals may influence disease transmission paths. Therefore, the usage of real-time
location systems gains in importance for livestock farms and research institutes as this technology helps to
simultaneously obtain positions of a large number of animals and to evaluate them automatically. Thus, the aim
of the project was to specify the accuracy of the real-time location system under practical conditions with regard
to a possible future application. In practice, ear tags have proven their worth because pigs manipulate and
therefore destroy other objects applied to them in the long term. Therefore, a real-time location system was used
providing the sending unit integrated in an ear tag. Ear tags were tested in a sows’ gestation stall in static
positions. Measuring took place for 5 min per static position, whereas data was transmitted once per second
(1 Hz) which led to 300 data points per position. Metal pen equipment led to lost or noisy positions. On average,
9% of data losses occurred and were inserted for the following data evaluation. A Haar wavelet was applied to
reduce the noise. Filter settings were rated with the help of an error size consisting of the Euclidean error and an
error for the variance of the filtered signal. An optimal filter setting could be achieved when only the 29 largest
coefficients for the X axis and 20 largest coefficients for the Y axis were kept while all others were set to 0.
Additionally, a t-test was performed to test whether an averaged number of coefficients over all ear tags and an
optimal individual filtering of each single ear tag resulted in a significantly different filter result. P-values of the
t-test were 0.15 (X coordinate) and 0.18 (Y coordinate) and therefore not significant. Thus, an averaged filter
setting can be applied to all ear tags. The median accuracy of measured data described as Euclidean distance was
2.7 m before filtering and improved to 2.0 m after filtering. Considering the results of this system investigation, it
shows that the system may be helpful for ensuing studies regarding e.g. animal behaviour, movement profiles, or
social networks to uncover possible transmission paths for diseases.

1. Introduction

Infectious diseases in livestock spread on various pathways such as
animal trade (van Duijkeren et al., 2008) and direct contacts (Morris,
1993). Among other influencing factors, contact structures determine
the occurrence and dynamics of infectious diseases to a great extent.
Especially, network analysis (Newman, 2010) helped to uncover
transmission paths and advanced the development of adjusted epide-
miological models, which were used to improve disease management.
Patterns of pig trade have been widely analysed using network analysis
(Lentz et al., 2011, 2016; Büttner et al., 2013a, 2013b; Ciccolini et al.,
2012; Bigras-Poulin et al., 2007) but little is known about disease
spread at pen level. This may be due to the fact that the contact

structure of pigs is hard to capture. As a result, homogenous mixing is
still assumed to predict disease spreading on pen level. In order to aim
at an improvement of this situation, a real-time location system was
tested for its applicability to reflect locations of sows and subsequently
their proximity to each other.

Location systems have increasingly been gaining in importance for
farms (Banhazi et al., 2012; Wathes et al., 2008). Especially in animal
husbandry, technical solutions have become more meaningful due to
growing stock sizes and declining employment rates (Frost et al., 1997).
Matthews et al. (2016) gives an overview of automation in the pig in-
dustry. Of special interest are e.g. oestrus (Ostersen et al., 2010; Freson
et al., 1998; Bressers et al., 1993) and lameness detection (Scheel et al.,
2017; Traulsen et al., 2016; Pluym et al., 2013) as well as other health
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or welfare issues (Kruse et al., 2011; Reiner et al., 2009; Exadaktylos
et al., 2008; Ferrari et al., 2008). Also, scientists have demonstrated a
growing interest in this new technology as it may help to analyse e.g.
animal behaviour (Oberschätzl et al., 2015; Georg et al., 2012; Cornou
et al., 2011), animal networks on pen level (Büttner et al., 2015a,
2015b), and the spreading of diseases (Chen et al. 2014, 2013). Ad-
ditionally, technical solutions may be helpful to draw conclusions on
animal welfare (Reimert et al., 2013; Špinka, 2012). As stated by Gygax
et al. (2007), animals influence each other regarding their social in-
teractions. Samarakone and Gonyou (2009) pointed out that sows may
change their social behaviour according to group size. Hence, si-
multaneous recording of all herd members may be preferable but also
challenging (Gygax et al., 2007). Until now, studies applied video re-
cording and analysis or direct observations to obtain behavioural data.
These techniques are time-consuming, lavish, and costly and therefore
only practical for small herd sizes (up to 20 animals) (Gygax et al.,
2007) or short periods of time. This is why high numbers of animals or a
24 h observation period require technical solutions.

Location systems comprise receivers and senders. Most systems
work with senders attached to a neck collar (Ubisense, GEA, LPM). One
system, however, uses transponders included in ear tags (SmartBow
GmbH). Especially when working with swine, ear tags are more suitable
and the only practicable solution so far, as pigs are very curious and
show strong exploratory behaviour (Fraser et al., 1991). Practice has
shown that other objects such as neck collars attached to sows are more
likely to be chewed on and consequently are destroyed or lost more
often. A further advantage of ear tags is that they are securely fixed to
the ear of the animals so they cannot slip out of place like a transponder
worn around the neck (Gygax et al., 2007; Rose, 2015).

Currently, tracking systems are predominantly used in cattle stock
(Porto et al., 2014; Chen et al., 2013; Gygax et al., 2007; Pourvoyeur
et al., 2006). One study has focused on goats (Georg et al., 2012).

Studies with pigs are rare. Porto et al. (2012) investigated the technical
possibilities of localising pigs with an active RFID system. Scheel et al.
(2017) and Traulsen et al. (2016) worked with the acceleration data of
the Smartbow system to detect lameness. Studies with swine may be
rare because only ear tags can be used. Other transponders such as neck
collars get easily chewed on and destroyed by pigs due to their ex-
ploratory behaviour (Fraser et al., 1991). The advantages of the
Smartbow system compared to systems used earlier in pigs (Porto et al.,
2012) are the small ear tag size, the low weight, and the higher oper-
ating frequency band. Further, the system transmits the 2-D position as
well as the 3-D acceleration. This allows a wider range of application.

However, in practical application, technical solutions face some
challenges. For example, electric signals may suffer from distraction by
metal pen equipment and water (Deak et al., 2012; Maalek and
Sadeghpour, 2013; Rose, 2015). Water sources can be drinking troughs
or the animals themselves. This signal distraction is called noise and
might lead to a longer signal runtime due to signal reflection or position
losses due to signal absorption. The system interprets a longer runtime
as a position more distant from the receiver. This leads to jumpy po-
sition changes even if the animal does not move. Noise complicates the
correct detection of a target (Maalek and Sadeghpour, 2013) and
therefore must be reduced with an additional application of a filter.

Under practical conditions, accurate localisation is challenged by
this noise and signal absorption. This leads to the aim of the present
study which was to specify the accuracy of a real-time location system
under practical conditions to track group-housed sows in later epide-
miological and behavioural studies. Prior to system operation in sows,
the accuracy must be evaluated. Thus, the system was tested in a sows’
gestation stall of a conventional farm under practical conditions. The
ear tags were placed in static positions within the pen to obtain position
data for accuracy testing. Especially epidemiological studies consider
the contact intensity as it is an indicator for disease transmission. Sows

Fig. 1. Floor map of gestation stall in Futterkamp with receivers, points of data acquisition, drinkers, feeding stations, and resting areas (light grey areas). Points of data acquisition
according to the different test designs used (see Fig. 2): 1.1: positions P. 01 – P. 03; 1.2: positions P. 04 – P. 06; 1.3: positions P. 07 – P. 09; 2.1: positions P. 19 – P. 22; 2.2: positions: P. 23
– P. 26; 3.1: positions P. 27 – P. 30; 3.2: positions: P. 31 – P. 34; 4.1: positions: P. 10 – P. 12; 4.2: positions: P. 13 – P. 15; 4.3: positions: P. 16 – P. 18.
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rest 45–70% of the day (Maselyne et al., 2014; Rolandsdotter et al.,
2009) and, at the same time, have intensive contact to other sows. This
is why the accuracy of static positions is of special importance. A Haar
wavelet (Haar, 1910) with different filter settings was applied to the
dataset to find an appropriate filter setting. The task was, with the help
of an error size, to detect an averaged filter setting applicable to all ear
tags. Possible differences between individual and averaged filter set-
tings were tested for significance.

2. Material and methods

2.1. Animals and housing

The experiment was carried out in cooperation with the research
farm Futterkamp of the Chamber of Agriculture in Schleswig-Holstein,
Germany. The conventional pig production is divided into breeding and
fattening. In total, 400 sows and 1400 fattening pigs were kept.

The validation of the real-time location system took place in the
sow’s gestation stall (Fig. 1) in Futterkamp under production condi-
tions. The inner dimension of the stall measures 37 m × 19.5 m and is
divided into a larger pen for sows and a smaller one for gilts. Here, sows
are group-housed with a group size of around 220 animals. The group
of the gilts consisted of approximately 40 animals. Further, there was a
pen for a boar, two selection compartments and crates. Location mea-
surements were only performed in the area for the sows. This was
equipped with slatted floor, six water troughs, four freely suspended
nipple drinkers, and three feeding stations (Fig. 1). The sows had access
to nine separate resting areas with a size of 4 m× 5 m (Fig. 1, light
grey areas). Some areas were equipped with lying mats, others with
concrete floor. Further, they had access to manipulable materials (straw
in a rack, wooden bars, or brushes) and they had the possibility to
contact the boar.

2.2. Real-time location system

In the present study, the SMARTBOW® real-time location system
was used. This system comprises ear tags (dimensions:
52 mm× 36 mm× 17 mm; weight: 34 g) holding the sending unit and
receivers obtaining the 2-D position data from the ear tags. Besides the
2-D position data, ear tags also provide 3-D acceleration data. However,
information on acceleration of an animal was not used in the present
study. The system works with an operating frequency band of 2.4 GHz.
Power is supplied by an integrated 3 V battery. Battery runtime lasted
approximately 20 weeks and depends on the frequency at which ear
tags transmit their locations. In the present study, position transmission
occurred once per second (1 Hz). Other location systems transmit the
position with a frequency of less than 1 Hz (Porto et al., 2012) and up to
4 Hz (Arcidiacono et al., 2017a, 2017b). Chen et al. (2013, 2014) ag-
gregated the collected data over 10 s intervals. The frequency used in
the present study should be acceptable because sows walk 0.7–0.9 m

per second (Gregoire et al., 2013; Thorup et al., 2007) but on the other
hand also rest 45–70% of the day (Maselyne et al., 2014; Rolandsdotter
et al., 2009). Hence, 1 Hz position transmission can be considered to be
an appropriate compromise between data resolution and battery run-
time.

The position signals of the ear tags were transmitted once per
second to the 12 receivers installed along the walls and in the middle of
the stall. To locate a position, at least three receivers were required. A
central server analysed the received signals with trilateration algo-
rithms and stored the data. The system used the Time Difference of
Arrival (TDoA) technology for position determination. This means the
runtime of radio signals between the ear tag and the receivers was re-
cognised to determine the distance to the receiver. Additionally, the
time differences between the single signals were captured to calculate
the exact position of the sending unit (Zhang et al., 2010).

The number of required receivers is defined by the individual barn
size and geometry as the distance between receivers should not exceed
25 m to guarantee accurate positioning. Thus, 12 receivers were in-
stalled in the gestation stall (Fig. 1). This number is necessary as, ac-
cording to Langley (1999) and Mahfouz et al. (2008), non-geome-
trically sensor layouts may lead to an error referred to as Horizontal
Delusion of Precision (HDOP). This reflects the reduction of localisation
precision and thus describes the scattering of measured values. The
precision depends on the angle between the receiving units while a
higher number of receivers may reduce the error (Langley, 1999). To
reduce the error rate, the 12 receivers were evenly distributed around
the pen with a distance to each other of 10–19.5 m (Fig. 1). In this case,
a smaller distance between receivers is useful because it may support a
reduction in signal disturbance due to metal pen equipment (Maalek
and Sadeghpour, 2013; Rose, 2015).

2.3. Determined static positions for accuracy testing

To measure the quality of static coordinates the following experi-
ments were performed as shown in Fig. 2. Ear tags were secured to a
measuring stick. A person carried the stick with the ear tags through the
gestation stall and placed it in predefined static positions. Local mea-
suring took place for 5 min per static position, whereas each second the
2-D position (X and Y coordinate) was transmitted. Consequently, 300
data points per position were recorded and evaluated. In total, 6500 s
per ear tag were recorded, comprising static positions as well as periods
of walking between the single static positions. Only static positions
were precisely defined and evaluated subsequently. Experiments 1–3
took different heights into account to evaluate the influence of height
on localisation. Experiment 1 (Fig. 2a) raised data at three different
heights (0.1 m, 0.35 m, and 0.6 m) considering three different positions
in the stable. This resulted in nine position records in total (three ear
tags × three positions = nine position records). Additionally, the in-
fluence of proximity between ear tags was investigated in Experiment 2
(Fig. 2b). Here, the influence the ear tags might have had on each other

Fig. 2. Test design; sketches show measuring stick
(grey) with attached ear tags (black ovals) at specific
heights; (a) Experiment 1: 3 ear tags were secured at
heights of 0.1 m, 0.35 m, and 0.6 m above the floor;
data acquisition of positions P. 01 – P. 09 (see Fig. 1,
points of data acquisition 1.1–1.3), (b) Experiment 2: 2
ear tags were simultaneously secured in heights of
0.35 m and 0.6 m above the floor; data acquisition of
positions P. 19 – P. 26 (see Fig. 1, points of data ac-
quisition 2.1–2.2), (c) Experiment 3: 2 ear tags were
consecutively secured at heights of 0.35 m and 0.6 m
above the floor; data acquisition of positions P. 27 – P.
34 (see Fig. 1, points of data acquisition 3.1–3.2), (d)
Experiment 4: 3 ear tags were secured at distances of
0.1 m, 0.35 m, and 0.6 m away from the wall at a height
of 0.6 m; data acquisition of positions P. 10 – P. 18 (see
Fig. 1, points of data acquisition 4.1–4.3).
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when they were close to each other was explored. This might occur
when sows were lying close together. Therefore, two ear tags were si-
multaneously secured at two different heights (0.35 m and 0.6 m) at
two different positions. This led to eight position records in total. Ex-
periment 3 (Fig. 2c) functioned as a reference for Experiment 2 and
further analysed the position deviation that might have occurred be-
tween different transmitters. Here again, in total eight position records
were collected. Data for the first three experiments were collected close
to the cubicle walls. Data in Experiment 4 (Fig. 2d) were collected
0.6 m above the ground. This experiment evaluated the influence of the
distance to the walls of the resting areas by horizontally holding the
stick with three ear tags away from the wall. Here, three different po-
sitions were taken into account resulting in nine position records in
total. Thus, the overall experimental design contained 34 position re-
cords (P. 01 to P. 34) according to Figs. 1 and 2.

2.4. Data processing

Fig. 3 shows the single steps of data processing from the import of
the raw data to the output of the filtered data. The single steps are
explained in detail in the following sub-sections.

2.4.1. Preparation of location data
After the import of the raw data, the number of transmitted pings

was evaluated. Correspondingly, the missing percentage of measure-
ments (MPM) was computed as the division of the lost measurements

(LM) and the total number of measurements (TM) in seconds.

= ×MPM LM
TM

100 (1)

LM specifies the number of pings that were not captured by the
system due to signal absorption. It was computed by subtracting the
number of transmitted pings from the total number of measurements
(TM), while TM designates the number of pings that should have been
recorded by the system (6500 pings for the present study). MPM can
range between 0% and 100%, where 0% indicates that all pings (one
per second) were transmitted and 100% indicates that no ping was
transmitted. A low MPM is favoured because it shows a low rate of lost
pings.

The shortest and longest time span with a ping loss in seconds was
also registered. As lost pings had been inserted into the dataset, longer
ping losses could result in position distortions. Sows move with a
walking speed of around 0.7–0.9 m per second (Gregoire et al., 2013;
Thorup et al., 2007). Therefore, longer ping losses may include un-
registered walking routes or lying. To better evaluate the effects of
these possible distortions, the share of 1 s losses was registered together
with losses of up to 10, 20, 30, 60, or more than 60 s. The number of
time spans lost was also captured. A high number of 1 s losses leads to
considerably less data distortion because sows may not walk that far.
Data losses of 10 s and more lead to distortions because sows may walk
longer distances or visit places that remain unregistered during that
time. Missing pings (9% on average in the present study) were inserted

Fig. 3. Flowchart of data processing. (MPM: Missing percentage of measurements describes the data completeness; DRMS: Distance root mean squared describes the accuracy of the
system).
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into the time series by dividing the distance between the past and fol-
lowing position by the number of lost pings. This was necessary to
adjust the signal length for filtering which requires signals of the same
length.

2.4.2. Discrete wavelet transform (DWT)
The discrete wavelet transform (DWT) is a valuable tool in signal

processing (Madan et al., 2009). As signals are often disturbed by noise,
relevant information might be hidden. The wavelet transform may help
to reduce noise and with that reveal essential information. In the fol-
lowing, we may differentiate between four types of signals: original,
measured, pure, and filtered signal (see Supplementary data). The ori-
ginal signal reflects the actual positions within the stall. Actual posi-
tions were only available for static positions, which is why this para-
meter is only theoretical and not available in practice. The measured
signal represents the signal transmitted by the system. It comprises the
pure signal (signal without noise) distorted by noise. The pure signal is
supposed to reflect the original signal at the best. Due to system-related
influences the pure signal may slightly differ from the original signal.
Further, it is distorted by noise. Filtering helps to reduce the noise part
and strengthens the pure signal. Consequently, filtering leads to the
filtered signal (signal with noise reduction) which is supposed to ap-
proximate the pure and with that ideally the original signal.

Signals may comprise low as well as high frequencies (see
Supplementary data). Pigs are inactive up to 70% of the day (Maselyne
et al., 2014; Rolandsdotter et al., 2009) and walk slowly (Gregoire
et al., 2013; Thorup et al., 2007). Thus, their activity level is best re-
presented by low frequencies. Hence, the low frequencies reflect the
original signal while high frequencies represent the noise part (see
Supplementary data). With low frequencies, even small frequency
changes are of importance. Therefore, a good frequency resolution is
required. In contrast, at high frequencies, changes may occur more
often. Additionally, in high frequencies a complete oscillation requires
less time, which is why these frequencies request a good time resolu-
tion. Oscillations describe the temporal repetitive variation of a signal
(see Supplementary data). DWT is based on a low- and high-pass filter
and therefore balances a good frequency resolution with a good time
resolution. Consequently, it works for both high and low frequencies as
both parts are issued.

DWT comprises the mother wavelet ψ and the scaling function ϕ
(see Supplementary data). The scaling function ϕ is a low-pass filter
only letting through low frequencies, whereas the wavelet function ψ is
a high-pass filter suppressing low frequencies.

DWT was applied to the entire signal, comprising static measuring
points and time periods with carrying the ear tags from one position to
the next. Data recording resulted in a signal with a length of 6500 s. If
only static sequences were considered, a very strong smoothing of the
signal could be used to achieve an optimal result. At the same time, this
would also smooth movement and let it disappear. Hence, position
changes of the ear tags had to be taken into account. Thus, the filtered
result had to be optimised for a signal with movement and stagnation.
During filtering, the signal was split into two sets of coefficients. Firstly,
low-pass coefficients from the scaling function were called “approx-
imation” and contained information about the signal. Secondly, high-
pass coefficients from the wavelet function were called “detail” and
contained the noise part (see Supplementary data). The coefficients
from this first splitting were called “Level 1” coefficients. Accordingly,
the approximation could be further split up into scaling and wavelet
coefficients. Each additional splitting comprised a further level.

The filtering process was carried out following Madan et al. (2009).
In the present study, different numbers of wavelet coefficients were
taken into account for the subsequent inverse wavelet transform (IWT).
Only a specific number of coefficients was considered for filtering while
all other wavelet coefficients were set to 0, which reduced the noise.
Finally, IWT was applied to receive a filtered signal with less noise. IWT
reconstructs the input signal from the scaling and wavelet coefficients.

As only a limited number of wavelet coefficients was used for the back-
transformation, this resulted in a smoothened signal (Madan et al.,
2009).

The discrete wavelet transform “dwt” of the R package “wavelets”
was used for filtering. The pure signal, included in the measured signal,
comprises constant and linear phases to reflect lying and walking be-
haviour in sows. Thus, different wavelets were tested (see
Supplementary data) to decide for an appropriate one. The Haar wa-
velet (Haar, 1910) was chosen because this wavelet resembles best with
the pure signal. The number of iterations was set to “Level 7”. Previous
tests have shown that higher levels do not further improve the filter
results (see Supplementary data). Therefore, “Level 7” was sufficient for
filtering.

2.4.3. Wavelet filter settings
A suitable filter is supposed to reduce the noise without dropping

information about position changes of the sows. The chosen filter set-
ting must be able to most explicitly reveal the inactivity or activity of
the sows. Therefore, different filter options were compared to find an
appropriate filter setting and, finally, filter the signal. The procedure is
illustrated in Fig. 3 and described in detail below.

2.4.3.1. Wavelet filtering. The appropriate filter setting depends on the
considered number of coefficients kept for filtering. Therefore, the
signal was filtered with different numbers of coefficients. Previous tests,
performed with the data obtained for this study, had resulted in an
error curve that suggested an optimal number of coefficients between
20 and 30. Low values of the error curve indicate the optimal number of
required coefficients for filtering. The error values were lowest within
the mentioned range. However, for the present study, the considered
number of coefficients was extended to a range of 5–70 coefficients to
more accurately calculate an error curve.

2.4.3.2. Define filter settings. To specify the optimal number of
coefficients, the filter results were rated with an error size. The
filtered signal is supposed to approximate the true positions. With
that, movement as well as rest times must be represented adequately.
Hence, an appropriate error size must result in a good approximation.
This is achieved by balancing the Euclidean distance, the signal
variation, and the number of coefficients, whereby a low variation
requires a low number of coefficients. Therefore, two error values were
taken into account: firstly, the Euclidean error eeuclid and secondly, an
error for the variation of the filtered signal, evar. Errors were calculated
for each filter setting.

The error eeuclid rates the Euclidean distance (Deza and Deza, 2016)
between the single positions i of the measured signal S_measuredi and
the single positions i of the filtered signal Si. The measured signal was
compared to the filtered signal because the original signal is only
available for static positions. The complete measured signal with a
length of 6500 s, however, also contains phases of walking. In addition,
the filtered signal is expected to approximate the original signal. This
error increases with progressing filtering because the filtered signal
smoothens and with that the Euclidean distance between measured and
filtered signal increases.

=
∑ ∑ −

=e
S Smeasured

l
( )

,euclid
i
n

i i1
2

(2)

where l is the signal length. eeuclid assumes positive values in metres. In
case of eeuclid, a low error value results in only marginal filtering. Thus,
especially rest times would not be visible in the filter results. For this
reason, the applied error size must be enhanced by evar.

The error evar was calculated to value the variation (Clarkson and
Adams, 1933) of the filtered signal S.
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where l is the signal length, Si indicates the current filtered position,
and Si+1 stands for the next filtered position of the following second.
With proceeding filtering the signal becomes smoothed and the varia-
tion decreases. With that also evar decreases. evar assumes positive values
in metres. Here, a low value is favoured.

The total error e is a combination of the two error sizes eeuclid and
evar. evar of the given dataset proved to be smaller than eeuclid and
therefore less influential. Static phases in the filtered signal led to a low
evar because the current and next position do not differ from each other.
Therefore, an extremely low evar may be expected when the activity
level of the animals is low. This may be the case for pigs because they
are lying up to 70% of the day (Maselyne et al., 2014; Rolandsdotter
et al., 2009) which leads to long static phases with no variance in the
signal. As a low variation in the filtered outcome is favoured, the in-
fluence of evar is weighted with λ to stress this error. Therefore, the total
error e is defined as

= +e e λe .euclid var (4)

λ has to be chosen carefully because it influences the achieved error
curve as illustrated in Fig. 4. A low λ value underestimates evar (Fig. 4a)
while a high λ value leads to overestimation (Fig. 4b). In both cases
only a rising or declining error line can be obtained with no indication
of a suitable filter setting. An appropriate λ gives adequate influence to
evar and thus helps to create an appropriate error curve (Fig. 4c). Only
this error curve may help to identify the required number of coefficients
for filtering. Different λ values between 5 and 155 were tested to
adequately weight the variance of the signal. A wider range was tested
in advance to limit the obtained λ values to 5–155. With regard to using
this error size e as a decision criterion for the number of coefficients, a
low error is favoured.

2.4.3.3. Statistical analysis. All statistical analyses were performed in R
(R Core Team, 2016).

Ideally, all ear tags should result in the same number of required
coefficients. Therefore, filter errors for each ear tag with different filter
settings were collected. For each λ value, the lowest and highest
number of coefficients over all ear tags were registered. Furthermore,
the mean and the standard deviation (SD) of all coefficients were cal-
culated. The number of necessary coefficients depends on λ. Therefore,
SD functions as a measure for an appropriate λ value. The mean pro-
vides the appropriate averaged number of coefficients for all ear tags
because the number of coefficients for individual ear tags is normally
distributed.

The optimal number of coefficients for individual ear tags may differ
from the average number of coefficients. To test whether a lower or
higher number of coefficients of the individual filtering results in sig-
nificantly different filter results, a t-test was performed in R. For this
purpose, total errors were calculated; firstly, with the average number
of coefficients, and secondly, with the individual number of coefficients
appropriate for a specific ear tag.

2.5. Accuracy testing before and after filtering

Usability of position data depends on the accuracy of the signal
which is compared with the exact position of the respective ear tag.
Hence, the stable was measured with a tachymeter using laser tech-
nology to determine the distances between walls and pen equipment.
The original positions of the ear tags were obtained from the positions
measured with tachymeter and then compared with the measured po-
sitions from the ear tag. Maalek and Sadeghpour (2013) described
specific parameters to test the signal accuracy. For 2-D position data (X,
Y coordinates), the distance root mean squared (DRMS), precision, and
offset are valuable parameters. In order to rate the filter effect, the
collected position measurements were evaluated twice, before and after
filtering, thus allowing the capture of the filter effect on the parameters
DRMS, precision, and offset.

2.5.1. Distance root mean squared (DRMS)
The accuracy of the measured positions is expressed by DRMS in

metres which is an appropriate parameter of the measurement relia-
bility. DRMS (Maalek and Sadeghpour, 2013) is calculated by means of
the transmitted and the actual positions:
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where n is the total number of pings, xi and yi are the single positions i
of the measured locations, and xactual and yactual are the actual reference
locations. DRMS assumes positive values in metres. A low DRMS value
close to 0 indicates very accurate measurements that were tracked near
the original position. Nevertheless, under practical conditions such a
low value can be rarely obtained due to distraction by metal pen
equipment. Thus, values below 1 m are desirable.

2.5.2. Precision
The precision of the transmitted signal compares the standard de-

viation of the captured positions to their average value. Measurements
that conglomerate are more precise and have little deviation, whereas
spreading values are not very accurate. Considering the mean value of
each axis (X and Y), precision (Maalek and Sadeghpour, 2013) is cal-
culated as
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where n is the total number of signal points, xi and yi are the single
positions i of the measured locations, and x and y are the mean of the
measured locations. Precision assumes positive values in metres. As the
objective is to obtain precise data, low precision values below 1 m are
favoured.

2.5.3. Offset
The mean of the captured locations can deviate from the actual

location and, thus, results in an offset from the actual position. The
difference between these two dimensions is described by the offset
(Maalek and Sadeghpour, 2013):

Fig. 4. Exemplary presentation of error curves and
impact of λ; (a) λ value is too low, therefore only a
rising error line can be obtained; (b) λ value is too
high, therefore only a declining error line can be
obtained; (c) λ value is optimal, therefore an error
curve can be obtained.
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= − + −Offset x x y y( ) ( ) ,actual actual
2 2 (7)

where xactual and yactual are the actual reference position and x and y are
the mean of the measured locations. Offset assumes positive values in
metres. Preferably, the measured locations are close to the original
position and hence, have a low offset value below 1 m.

3. Results

3.1. Evaluation of data completeness

The error of measurements is described by the missing percentage of
measurements (MPM). Overall, roughly 8–12% with a mean of around
9% of pings were lost (Table 1). For all ear tags, the shortest ping loss
was 1 s. For 10 out of 12 ear tags, the longest ping losses varied from 4
to 32 s. Only two ear tags showed extreme ping losses of 398 or 441 s,
respectively. However, 80–90% of the losses lasted only 1 s. 9 out of the
12 used ear tags (75%) showed consecutive ping losses of less than 20 s.

3.2. Wavelet filter settings

The discrete wavelet transform (DWT) was used to filter the noised
signal. Exemplary illustrations of the filter results for one ear tag are
shown in Fig. 5, where the grey line reflects the measured signal while
the black line shows the filtered signal for the X or Y coordinate, re-
spectively. Fig. 5 displays the entire recorded signal with a length of
6500 s. Therefore, static phases as well as position changes can be
found. Arrows indicate the performed position changes while the rec-
tangles highlight some of the captured static positions (see
Figs. 1 and 2).

An error size e was calculated to value the results. The influence of
different λ values on evar was tested. However, no single ideal λ value,
where all standard deviations approximated the minimum, could be
detected. The averaged filter settings were settled within a λ range of
105–107 for the X coordinate or 96–100 for the Y coordinate, respec-
tively. The lowest standard deviation of coefficients for the X

coordinate was within this λ range indicating that the smallest error
occurred with 29 coefficients. For the Y coordinates the lowest standard
deviation indicated that the smallest error occurred with 20 coefficients
(Fig. 6).

Both above-mentioned λ ranges were evaluated. Exemplarily, the
results of the mean λ values (X coordinate: λ = 106; Y coordinate:
λ = 98) are shown in Table 2

. The t-test compared the two sets of errors. With a λ of 106, total
errors (Table 2) for the X coordinate range between 3.49 m and 4.30 m
for the averaged filter settings and between 3.39 m and 4.10 m for in-
dividual filter settings. For the X coordinate, the mean of the total errors
(Table 2) for the averaged filtering with 3.79 m was not significantly
different from the individual filtering with 3.65 m (t-test, p = 0.15).
With a λ of 98 for the Y coordinate, total errors (Table 2) ranged be-
tween 3.13 m and 3.83 m for the averaged filter settings and between
2.99 m and 3.65 m for individual filter settings. Here again, the mean of
the total errors (Table 2) for the averaged filtering with 3.39 m was not
significantly different from the individual filtering with 3.27 m (t-test,
p = 0.18). A t-test was also performed for the whole λ ranges (X co-
ordinate: 105–107; Y coordinate: 96–100; results not shown). No λ
value resulted in significant differences between the mean errors.
Therefore, the averaged filter settings were used for filtering and fur-
ther calculations.

3.3. Accuracy testing before and after filtering

Accuracy of the captured positions was evaluated twice: before and
after filtering with the averaged filter settings. The accuracy of the
captured data points is described by the distance root mean squared
(DRMS) in metres. In total, data were recorded at 34 positions. Before
filtering, the accuracy for all measurements was more than 1.2 m and
escalated up to 5.2 m with a median of 2.7 m. 35% of the considered
positions showed an accuracy of less than 2.0 m (Fig. 7a). Precision as a
parameter for the closeness of data points fluctuated between 1.1 m and
2.8 m with a median of 1.4 m for the unfiltered data. Almost 90% of the
recorded positions reached a precision below 2.0 m (Fig. 7b). Before

Table 1
Overview of data completeness per ear tag in percent.

Ear tag MPM Longest Shortest 1 s < 10 s <20 s < 30 s < 60 s > 60 s

80 12.08% 398 1 56.41% 7.14% 0.89% – 3.25% 32.31%
81 12.13% 441 1 55.21% 8.16% 0.97% – – 35.65%
82 8.65% 13 1 86.69% 9.92% 3.39% – – –
83 8.41% 12 1 85.44% 12.81% 1.75% – – –
110 9.02% 7 1 82.35% 17.65% – – – –
111 8.66% 7 1 83.57% 16.43% – – – –
112 8.59% 4 1 89.14% 10.86% – – – –
113 9.19% 32 1 80.74% 15.01% – – 4.25% –
140 8.96% 14 1 81.04% 13.64% 5.32% – – –
141 8.92% 13 1 83.95% 14.27% 1.78% – – –
142 8.72% 10 1 84.15% 15.85% – – – –
143 8.82% 12 1 82.94% 13.73% 3.33% – – –
Mean 9.35% 80.25 1 79.30% 12.96% 1.45% – 0.63% 5.66%

Fig. 5. Exemplary results of discrete wavelet transform with (a) 29
coefficients (X coordinate) and (b) 20 coefficients (Y coordinate) for
one ear tag; Arrows indicate position change; Rectangles indicate
static positions (e.g. P. 01) according to Figs. 1 and 2.
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filtering, 47% of the considered positions showed an offset to the origin
of less than 2.0 m (Fig. 7c). The offset describes the distance between
measured and original position. It ranged between 0.07 m and 5.0 m
with a median of 2.2 m.

Data filtering resulted in a higher accuracy for measured positions
which then ranged between 0.6 m and 4.5 m with a median of 2.0 m.
Half of the positions achieved an accuracy of less than 2.0 m after fil-
tering, while 24% of the considered positions (8 positions) were still
above a 3 m limit (Fig. 7a). Strong improvement could be obtained for
precision. All considered positions ranged between 0 m and 1.5 m after
filtering. Even the median decreased from 1.4 m to 0.4 m (Fig. 7b).
After filtering the offset ranged between 0.3 m and 4.5 m. 53% of
considered positions deviated less than 2.0 m from the origin. However,
the median decreased only slightly from 2.2 m to 1.9 m (Fig. 7c).

Besides the accuracy, the correct locating might be of importance
for some problems. Therefore, the locating in the correct cubicle, the
distance reproduction between ear tags, and the position reproduction
of ear tags was evaluated.

Exemplarily, Fig. 8a shows measured positions before and after

filtering to evaluate the location in the correct cubicle. Three ear tags
were arranged on top of each other to include different heights. There
was a large variance between measurements of the same ear tag. All ear
tags were located in the correct cubicle after filtering apart from one.

Ear tags located in the same place should reflect the same position.
Thus, the position reproduction of ear tags was evaluated
(Fig. 8b and c). Comparing simultaneously with consecutively recorded
data, it became clear that filtered positions differed to different extents.

Fig. 8d shows the measured positions before and after filtering of
three ear tags which lay 0.25 m apart to evaluate the distance re-
production between ear tags. The measured positions showed a high
variance. The distance of 0.25 m was not displayed after filtering. Ra-
ther, positions of filter results deviated to different extents from the
original position and suggested a different order of the ear tags.

4. Discussion

4.1. Evaluation of data completeness

On average 9% of positions were not transmitted. This may be due
to signal absorption from water sources or metal pen equipment (Deak
et al., 2012; Maalek and Sadeghpour, 2013; Rose, 2015). Further, at
least three receivers are required to locate an ear tag. The ear tags send
their signal to receivers in clear view. Therefore, localisation may be
noised when a person or an animal moves between the ear tag and the
receivers. However, the signal is rarely shielded to all directions which
is why positions can still be located. For practical application, it has to
be kept in mind that sows lying on an ear tag may shield the signal,
which may lead to data losses depending on the sow’s rest time dura-
tion. Also in cow studies sensors that slip out of place or animal head
movements led to incorrect positioning (Arcidiacono et al., 2017a,
2017b; Gygax et al., 2007). Finally, battery life may also affect the
localisation. Data completeness is important as missing values were
inserted and signal length was adjusted for further evaluation. With
regard to the subsequent filtering, this was of special importance as the
filter result is dependent on the signal length. Thus, a standardised
signal length was essential for the comparability of results. The inser-
tion of missing values simplifies the reconstruction of the signal. Ac-
cordingly, inserted values do not represent the actual positions of sows
but rather suggest possible positions. That is why, especially with
longer missing time spans, data distortions may occur. Only two con-
sidered ear tags (16%) showed ping losses of more than 60 s. Data of six
additional ear tags showed occasional ping losses between 10 s and 60

Fig. 6. Error curves for (a) X coordinate filtered with 29
coefficients (λ= 106) and (b) Y coordinate filtered with
20 coefficients (λ = 98).

Table 2
Total errors e (see Eq. (4)) in metres calculated with a λ value of 106 (X coordinate) or 98
(Y coordinate), respectively, for significance testing of the averaged and the individual
filter settings.

Ear tag Total error (averageda) in metres Total error (individualb) in metres

X Y X Y

80 3.49 3.48 3.39 3.34
81 3.68 3.44 3.66 3.34
82 4.04 3.23 3.74 2.99
83 3.65 3.36 3.49 3.21
110 3.76 3.13 3.68 3.11
111 4.30 3.66 4.10 3.52
112 3.57 3.29 3.53 3.14
113 3.76 3.17 3.57 3.05
140 3.70 3.17 3.56 3.08
141 3.86 3.63 3.67 3.52
142 3.51 3.35 3.49 3.31
143 4.15 3.83 3.92 3.65

Min 3.49 3.13 3.39 2.99
Max 4.30 3.83 4.10 3.65
Mean 3.79 3.39 3.65 3.27

a Signal filtered with 29 coefficients for X coordinate and 20 coefficients for Y co-
ordinate.

b Signal filtered with number of coefficients that are optimal for the specific ear tag.
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s. Losses of 10 s or more may be regarded as critical for further data
evaluation due to the fact that sows may walk approximately 0.7–0.9 m
per second (Gregoire et al., 2013; Thorup et al., 2007). As a matter of
fact, the covered distance lengthens over time. Long data losses may
also include contact with others, stays in specific areas, or phases of
inactivity that would not be registered. Real-time location systems may
suffer from data losses but compared with video analysis, data collec-
tion is more extensive and detailed. Technical solutions may record
data over 24 h periods while videos are often evaluated by scan-sam-
pling. In scan-sampling, data is recorded only at predetermined time
intervals. Therefore, one has to deal with more extensive data losses.
Further, data of only small numbers of animals may be collected to be
able to distinguish between the animals. Recently, robust image ana-
lysis simplifies video analysis as it helps to detect animal behaviour
such as lying, walking, or eating (Porto et al., 2013, 2015; Giancardo
et al., 2013; Kashiha et al., 2013; Oczak et al., 2013). However, the
problem of recognising single animals still needs to be addressed
especially for large groups (Kashiha et al., 2013). Further, Arcidiacono
et al. (2017b) compared video analysis with acceleration data and
found that acceleration data is superior to video analysis. In this regard,
technical solutions with real-time location systems outclass conven-
tional methods such as video analysis. The severity of long ping losses
depends on the data usage and the problem under consideration. With
regard to epidemiological studies and contact structures, data com-
pleteness is very important to capture the contact structure. However,
80% of the ping losses of tested positions were shorter than 10 s. This
leads to the conclusion that data completeness is sufficient for further
usage to construct social networks, address epidemiological problems,
and study animal behaviour concerning the time of day or the length
spent in specific sections of the pen. To investigate precise interaction
between pigs, such as tail biting, video analysis might be more fa-
vourable. However, if the contact structure in large groups of animals
should be investigated, RTLS will be the only suitable solution.

4.2. Wavelet filter settings

Metal pen equipment and water sources may lead to noised data
(Deak et al., 2012; Maalek and Sadeghpour, 2013; Rose, 2015). The
discrete wavelet transform (DWT) is a useful tool to adequately filter
noised signals. The presented application of DWT for signal filtering
was already described by Madan et al. (2009). As stated by Liò (2003),
it is appropriate to assume that only a specific number of the largest
wavelet coefficient represents the signal. Small wavelet coefficients are
more likely to contain noise (Liò, 2003). Therefore, the appropriate
number of required coefficients for an optimal filter result was de-
termined with help of the error size e. The results showed that a higher
number of coefficients was required for the X coordinate. A higher
number of coefficients stands for a less intensive filtering of the X co-
ordinate. Accordingly, this result indicated less noise distorting the
signal on this axis. The difference in behaviour between the X and Y
coordinate is only minimal and may be system-related. The mean of
coefficients over all ear tags indicated that the average number of
coefficients for the filtering were 29 (X coordinate) or 20 (Y coordinate)
coefficients, respectively. This number of coefficients was sufficient for
a signal with a length of 6500 s. When the ear tags are applied to an-
imals, data can be obtained over several days or weeks. With that, also
signal length increases. Longer signals may require more coefficients.
Also, other activity patterns may influence the required number of
coefficients for filtering. When transferring these results to other da-
tasets, this has to be taken into account. Hence, the required number of
coefficients must be reinvestigated in subsequent studies.

Besides wavelet filtering, other data optimisation methods can be
found in literature. Chen et al. (2013) averaged positions over time
units of 10 s, indicating data volume decreases by 10%, which may be
necessary to handle large amounts of information. On the other hand,
this approach leads to information losses due to the data compression.
Oberschätzl et al. (2015) applied cluster analysis methods to assign

Fig. 7. (a) Accuracy (DRMS), (b) Precision, and
(c) Offset of tested positions (P. 01 – P. 34; for
explanation see Figs. 1 and 2) before and after
filtering; Light bars: Value before filtering; Hat-
ched bars: Value after filtering.
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animals to specific barn areas. They also addressed the problem of in-
formation loss because cluster analysis may reduce the data volume by
up to 95%. Great influence on usability of compressed data may be the
definition of area size as Oberschätzl et al. (2015) stated that small barn
areas may not be represented correctly and therefore lead to false re-
sults. Further, the activity level of the observed animal species has to be
taken into account when compressing data for evaluation. Active ani-
mals change their position more often. Here, data compression would
lead to tremendous information losses and false records (Oberschätzl
et al., 2015). However, sows spend between 45 and 70% of the day
lying with single resting phases of up to 7 h (Maselyne et al., 2014;
Rolandsdotter et al., 2009). This shows that sows are rather inactive
and hence, with regard to adequate sized barn areas and time resolu-
tion, cluster analysis may be feasible without great information loss.

The optimal number of coefficients calculated for each individual
ear tag differed from each other. The filtering of a single ear tag with a
specific number of coefficients may be feasible. But with regard to

practical implementation, a common filter setting which can be used for
all ear tags is necessary. Therefore, filter results were tested for possible
significant differences between the individual and the averaged filter
settings. The p-values from the t-test were greater than 0.05 (0.15 and
0.18) and therefore not significant. This indicates that the usage of an
averaged value for the coefficients is possible because the filter results
did not differ significantly. Consequently, an averaged filter setting for
all ear tags is sufficient for filtering and necessary for a practical im-
plementation.

4.3. Accuracy testing before and after filtering

With a median accuracy of 2.7 m in the present study, the location
system exceeds the manufacturer-declared indoor accuracy of 2.0 m.
But after filtering, the median accuracy improved to 2.0 m while half of
the recorded data stayed below 2.0 m. The accuracy of Experiment 1 (P.
01 – P. 09) shows that localisation in heights of 0.35 m (P. 02, P. 05,

Fig. 8. Unfiltered measurements (blank grey symbols
○△□♢) and filtered positions (filled black symbols
●▴■♦) in comparison to the original position (*); illu-
strated on the floor map of the gestation unit for selected
positions (see Figs. 1 and 2); (a) Experiment 1: 3 ear tags
on top of each other according to Fig. 2a; data acquisi-
tion points 1.1–1.2 (Fig. 1), (b) Experiment 2: 2 ear tags
simultaneously at the same place according to Fig. 2b;
data acquisition points 2.1–2.2 (Fig. 1), (c) Experiment
3: 2 ear tags consecutively at the same place according to
Fig. 2c; data acquisition points 3.1–3.2 (Fig. 1), (d) Ex-
periment 4: 3 ear tags away from the wall according to
Fig. 2d; data acquisition points 4.1–4.2 (Fig. 1).
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and P. 08) and 0.6 m (P. 03, P. 06, and P. 09) is slightly better than in a
height of 0.1 m (Fig. 7a). This may be because walls and other animals
may impair clear view between ear tag and receivers and hence, lead to
signal distractions. In addition, the used system only delivers the 2-D
position. Here, the signal is expected in a default height. Any deviation
of the default height may influence the localisation. Data acquisition
point 1.2 (P. 04 – P. 06) is less accurate than the positions of data
acquisition points 1.1 and 1.3 (P. 01 – P. 03 and P. 07 – P. 09). This may
be due to the proximity to the walls of the lying cubicle which might
lead to a stronger signal distraction. The Experiments 2 and 3 (P. 19 – P.
34) indicated that ear tags did not substantially influence each other
when they are close together. Nevertheless, positions P. 23 – P. 26 and
P. 31 – P. 34 of data acquisition points 2.2 and 3.2 showed a lower
accuracy than positions of data acquisition points 2.1 and 3.1 (P. 19 – P.
22 and P. 27 – P. 30). These positions were surrounded by metal pen
equipment and presumably suffered from strong signal disturbances
which was demonstrated by a low accuracy. The results of Experiment 4
(P. 10 – P. 18) suggest that close proximity to the walls influenced lo-
calisation negatively (Fig. 7a). Further, the distance between the three
ear tags at data acquisition points 4.1–4.3 was not reflected by the
system (Fig. 8d). Different research topics require varying degrees of
accuracy. Issues of special interest are the interaction between animals
(Büttner et al., 2015a, 2015b; Oberschätzl et al., 2015; Abeyesinghe
et al., 2013; Croft et al., 2005; Durrell et al., 2004), usual location areas
(Chen et al., 2013, 2014; Oberschätzl et al., 2013; Gygax et al., 2007),
the time of day and length spent in different sections (Gygax et al.,
2007; Galindo and Broom, 2000; Óden et al., 2000), or epidemiological
studies (Chen et al., 2013, 2014; Duncan et al., 2012; Corner et al.,
2003). Social interactions and contact structures between animals re-
quire a high accuracy to reveal proximity between animals. Gygax et al.
(2007) used the recorded position data to detect proximity between
cows. Animals were recognised to be neighbours when their distance
was 2.0 m or less. Chen et al. (2014) constructed contact networks
considering an animal distance of 0.3 m. The system accuracy must be
very precise to detect proximity between animals. The tested system
only delivers the 2-D position which is why the height marginally in-
fluences the localisation of the ear tags. Additionally, it must be con-
sidered that pig stalls include a lot of metal pen equipment which can
lead to signal distraction or absorption. Thus, the proximity between
ear tags was not always adequately reflected by the system used in the
present study as illustrated in Fig. 8. Nevertheless, exact localisation of
animals may be less important with regard to their stays in specific
housing areas. This was also shown by Oberschätzl et al. (2015), who
considered aggregated positions. Most ear tags were located in the
correct cubicle and therefore allowed the consideration of the spatial
distance between animals. Further, accuracy is less important if only
the activity of the animals is to be evaluated.

In addition to the accuracy, precision and offset was calculated.
These two parameters influence the accuracy. Results showed a median
precision of 1.4 m before filtering which could improve to 0.4 m after
filtering. Imprecise data resulted from noised measurements and can be
handled quite well with a wavelet filter which reduces the variance.
The median offset was 2.2 m before filtering but did not improve much
afterwards (1.9 m). In fact, in several cases the offset even increased
slightly. The offset may result e.g. from incorrect calibration or drift
effects. These errors severely distort the signal and are hard to handle
with filtering. Consequently, the wavelet filtering seems to have no
major positive effect on the offset parameter. Fig. 8 suggests that
measured positions drift towards the walls. It can only be speculated
whether this is due to incorrect calibration or not. So finally, this
parameter seems to be the main reason why the accuracy does still not
drop below the 2.0 m limit. Furthermore, the system did not consider
the height of the ear tags when calculating the current position. This
may have an influence on the positioning. Thereby, it has to be taken
into account that the system was tested under practical conditions. This
means that metal pen equipment or water sources like the animals

themselves may shield the signal (Deak et al., 2012; Maalek and
Sadeghpour, 2013; Rose, 2015) and thus, result in a less accurate po-
sitioning.

In the present study, only the accuracy of static positions was con-
sidered. Due to the fact that sows rest 45–70% of the day (Maselyne
et al., 2014; Rolandsdotter et al., 2009), the accuracy of static positions
was regarded as more important for disease transmission. The prob-
ability of disease transmission rises with contact length and therefore,
rest times play a major role. In contrast, when sows pass each other in
the corridor, contact duration is only about 5 s (Jensen, 1980).

It shows that under practical conditions the real-time location
system faces multi-factorial influences such as metal, water, animals,
and impacts caused by the system itself. Nevertheless, data collected
with the help of this system is suitable for subsequent studies as stated
above.

5. Conclusions

The social structure and possible disease transmission paths be-
tween sows may be uncovered with the help of real-time location sys-
tems. Thus, the aim of the present study was to specify the accuracy of a
real-time location system under practical conditions for later applica-
tion. An averaged filter setting which can be used for all ear tags could
be detected. Optimal filter results for the tested signal could be obtained
with 29 coefficients for the X coordinate and 20 coefficients for the Y
coordinate. With that, the accuracy of the system could be improved
from 2.7 m to 2.0 m. Further, the noise was suppressed, which can be
underlined by a strong decrease in precision from 1.4 m to 0.4 m.
Knowledge concerning the system accuracy is of great importance for
subsequent epidemiological and social network studies.

Acknowledgements

This work was funded by grant 01KI1301D (MedVet-Staph 2) of the
German Federal Ministry of Education and Research (BMBF) provided
through the German Aerospace Center (DLR).

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.compag.2017.09.020.

References

Abeyesinghe, S.M., Drewe, J.A., Asher, L., Wathes, C.M., Collins, L.M., 2013. Do hens
have friends? Appl. Anim. Behav. Sci. 143 (1), 61–66.

Arcidiacono, C., Porto, S.M.C., Mancino, M., Cascone, G., 2017a. A threshold-based al-
gorithm for the development of inertial sensor-based systems to perform real-time
cow step counting in free-stall barns. Biosys. Eng. 153, 99–109.

Arcidiacono, C., Porto, S.M.C., Mancino, M., Cascone, G., 2017b. Development of a
threshold-based classifier for real-time recognition of cow feeding and standing be-
havioural activities from accelerometer data. Comput. Electron. Agric. 134, 124–134.

Banhazi, T.M., Lehr, H., Black, J.L., Crabtree, H., Schofield, P., Tscharke, M., Berckmans,
D., 2012. Precision livestock farming: an international review of scientific and
commercial aspects. Int. J. Agric. Biol. Eng. 5 (3), 1–9.

Bigras-Poulin, M., Barfod, K., Mortensen, S., Greiner, M., 2007. Relationship of trade
patterns of the Danish swine industry animal movements network to potential disease
spread. Prev. Vet. Med. 80 (2–3), 143–165.

Bressers, H.P.M., Te Brake, J.H.A., Engel, B., Noordhuizen, J.P.T.M., 1993. Feeding order
of sows at an individual electronic feed station in a dynamic group-housing system.
Appl. Anim. Behav. Sci. 36 (2–3), 123–134.

Büttner, K., Krieter, J., Traulsen, A., Traulsen, I., 2013a. Static network analysis of a pork
supply chain in Northern Germany - characterisation of the potential spread of in-
fectious diseases via animal movements. Prev. Vet. Med. 110 (3), 418–428.

Büttner, K., Krieter, J., Traulsen, I., 2013b. Characterisation of contact structures for the
spread of infectious diseases in a pork supply chain in Northern Germany by dynamic
network analysis of yearly and monthly networks. Transboundary Emerg. Dis. 62,
188–199.

Büttner, K., Scheffler, K., Czycholl, I., Krieter, J., 2015a. Network characteristics and
development of social structure of agonistic behaviour in pigs across three repeated
rehousing and mixing events. Appl. Anim. Behav. Sci. 168, 24–30.

Büttner, K., Scheffler, K., Czycholl, I., Krieter, J., 2015b. Social network analysis -

M.K. Will et al. Computers and Electronics in Agriculture 142 (2017) 473–484

483

http://dx.doi.org/10.1016/j.compag.2017.09.020
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0005
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0005
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0010
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0010
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0010
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0015
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0015
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0015
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0020
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0020
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0020
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0025
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0025
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0025
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0030
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0030
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0030
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0035
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0035
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0035
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0040
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0040
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0040
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0040
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0045
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0045
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0045
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0050


centrality parameters and individual network positions of agonistic behavior in pigs
over three different age levels. SpringerPlus 4, 185.

Chen, S., Sanderson, M.W., White, B.J., Amrine, D.E., Lanzas, C., 2013. Temporal-spatial
heterogeneity in animal-environment contact: implications for the exposure and
transmission of pathogens. Sci. Rep. 3, 3112.

Chen, S., White, B.J., Sanderson, M.W., Amrine, D.E., Ilany, A., Lanzas, C., 2014. Highly
dynamic animal contact network and implications on disease transmission. Sci. Rep.
4, 4472.

Ciccolini, M., Dahl, J., Chase-Topping, M.E., Woolhouse, M.E.J., 2012. Disease trans-
mission on fragmented contact networks: livestock-associated Methicillin-resistant
Staphylococcus aureus in the Danish pig-industry. Epidemics 4 (4), 171–178.

Clarkson, J.A., Adams, C.R., 1933. On definitions of bounded variation for functions of
two variables. Trans. Am. Math. Soc. 35 (4), 824–854.

Corner, L.A.L., Pfeiffer, D.U., Morris, R.S., 2003. Social-network analysis of
Mycobacterium bovis transmission among captive brushtail possums (Trichosurus
vulpecula). Prev. Vet. Med. 59 (3), 147–167.

Cornou, C., Lundbye-Christensen, S., Kristensen, A.R., 2011. Modelling and monitoring
sows’ activity types in farrowing house using acceleration data. Comput. Electron.
Agric. 76 (2), 316–324.

Croft, D.P., James, R., Ward, A.J.W., Botham, M.S., Mawdsley, D., Krause, J., 2005.
Assortative interactions and social networks in fish. Oecologia 143 (2), 211–219.

Deak, G., Curran, K., Condell, J., 2012. A survey of active and passive indoor localisation
systems. Comput. Commun. 35 (16), 1939–1954.

Deza, M.M., Deza, E., 2016. Encyclopedia of Distances. Springer, Berlin/Heidelberg,
Germany.

Duncan, A.J., Gunn, G.J., Lewis, F.I., Umstätter, C., Humphry, R.W., 2012. The influence
of empirical contact networks on modelling diseases in cattle. Epidemics 4 (3),
117–123.

Durrell, J.L., Sneddon, I.A., O’Connell, N.E., Whitehead, H., 2004. Do pigs form pre-
ferential associations? Appl. Anim. Behav. Sci. 89 (1–2), 41–52.

Exadaktylos, V., Silva, M., Aerts, J.M., Taylor, C.J., Berckmans, D., 2008. Real-time re-
cognition of sick pig cough sounds. Comput. Electron. Agric. 63 (2), 207–214.

Ferrari, S., Silva, M., Guarino, M., Aerts, J.M., Berckmans, D., 2008. Cough sound analysis
to identify respiratory infection in pigs. Comput. Electron. Agric. 64 (2), 318–325.

Fraser, D., Phillips, P.A., Thompson, B.K., Tennessen, T., 1991. Effect of straw on the
behaviour of growing pigs. Appl. Anim. Behav. Sci. 30 (3–4), 307–318.

Freson, L., Godrie, S., Bos, N., Jourquin, J., Geers, R., 1998. Validation of an infra-red
sensor for oestrus detection of individually housed sows. Comput. Electron. Agric. 20
(1), 21–29.

Frost, A.R., Schofield, C.P., Beaulah, S.A., Mottram, T.T., Lines, J.A., Wathes, C.M., 1997.
A review of livestock monitoring and the need for integrated systems. Comput.
Electron. Agric. 17 (2), 139–159.

Galindo, F., Broom, D.M., 2000. The relationships between social behaviour of dairy cows
and the occurrence of lameness in three herds. Res. Vet. Sci. 69 (1), 75–79.

Georg, H., Bender, S., Ude, G., 2012. Feasibility test of a positioning system to measure
grazing behaviour of goat kids. Landtechnik 67 (2), 136–139.

Giancardo, L., Sona, D., Huang, H., Sannino, S., Manago, F., Scheggia, D., Papaleo, F.,
Murino, V., 2013. Automatic visual tracking and social behaviour analysis with
multiple mice. PLoS ONE 8 (9), e74557.

Gregoire, J., Bergeron, R., D'Allaire, S., Meunier-Salaun, M.-C., Devillers, N., 2013.
Assessment of lameness in sows using gait, footprints, postural behaviour and foot
lesion analysis. Animal 7 (7), 1163–1173.

Gygax, L., Neisen, G., Bollhalder, H., 2007. Accuracy and validation of a radar-based
automatic local position measurement system for tracking dairy cows in free-stall
barns. Comput. Electron. Agric. 56 (1), 23–33.

Haar, A., 1910. Zur Theorie der orthogonalen Funktionensysteme. Math. Ann. 63,
331–371.

Jensen, P., 1980. An ethogram of social interaction patterns in group-housed dry sows.
Appl. Anim. Ethol. 6 (4), 341–350.

Kashiha, M., Bahr, C., Ott, S., Moons, C.P.H., Niewold, T.A., Ödberg, F.O., Berckmans, D.,
2013. Automatic identification of marked pigs in a pen using image pattern re-
cognition. Comput. Electron. Agric. 93, 111–120.

Kruse, S., Traulsen, I., Salau, J., Krieter, J., 2011. A note on using wavelet analysis for
disease detection in lactating sows. Comput. Electron. Agric. 77 (1), 105–109.

Langley, R.B., 1999. Dilution of precision. GPS World 10 (5), 52–59.
Lentz, H.H.K., Koher, A., Hovel, P., Gethmann, J., Sauter-Louis, C., Selhorst, T., Conraths,

F.J., 2016. Disease spread through animal movements: a static and temporal network
analysis of pig trade in Germany. PLoS ONE 11 (5), e0155196.

Lentz, H.H.K., Konschake, M., Teske, K., Kasper, M., Rother, B., Carmanns, R., Petersen,
B., Conraths, F.J., Selhorst, T., 2011. Trade communities and their spatial patterns in
the German pork production network. Prev. Vet. Med. 98 (2–3), 176–181.

Liò, P., 2003. Wavelets in bioinformatics and computational biology: state of art and
perspectives. Bioinformatics 19 (1), 2–9.

Maalek, R., Sadeghpour, F., 2013. Accuracy assessment of Ultra-Wide Band technology in
tracking static resources in indoor construction scenarios. Automat. Constr. 30,
170–183.

Madan, R., Singh, S.K., Jain, N., 2009. Signal filtering using discrete wavelet transform.
Int. J. Recent Trends Eng. 2 (3), 96–98.

Mahfouz, M.R., Zhang, C., Merkl, B.C., Kuhn, M.J., Fathy, A.E., 2008. Investigation of
high-accuracy indoor 3-D positioning using UWB technology. IEEE Trans. Microw.
Theory Tech. 56 (6), 1316–1330.

Maselyne, J., Saeys, W., de Ketelaere, B., Briene, P., Millet, S., Tuyttens, F., van Nuffel, A.,
2014. How do fattening pigs spent their day? In: Proceedings of the 6th International
Conference in the Assessment of Animal Welfare at Farm and Group Level, 157.

Matthews, S.G., Miller, A.L., Clapp, J., Plotz, T., Kyriazakis, I., 2016. Early detection of
health and welfare compromises through automated detection of behavioural
changes in pigs. Vet. J. 217, 43–51.

Morris, M., 1993. Epidemiology and social networks: modeling structured diffusion.
Sociol. Method. Res. 22 (1), 99–126.

Newman, M.E.J., 2010. Networks: An Introduction. Oxford University Press Inc., New
York.

Oberschätzl, R., Haidn, B., Harms, J., Peis, R., Stitzelberger, I., Rose, T., Bernhardt, H.,
2013. Automated recording of behaviour of dairy cows a comparison of different
technical approaches. Landtechnik 68 (8), 400–405.

Oberschätzl, R., Haidn, B., Peis, R., Kulpi, F., Völkl, C., 2015. Validation of automated
processed position data for assessing dairy cow behaviour. Landtechnik 70 (1), 3–8.

Oczak, M., Ismayilova, G., Costa, A., Viazzi, S., Sonoda, L.T., Fels, M., Bahr, C., Hartung,
J., Guarino, M., Berckmans, D., Vranken, E., 2013. Analysis of aggressive behaviours
of pigs by automatic video recordings. Comput. Electron. Agric. 99, 209–217.

Óden, K., Vestergaard, K.S., Algers, B., 2000. Space use and agonistic behaviour in re-
lation to sex composition in large flocks of laying hens. Appl. Anim. Behav. Sci. 67,
307–320.

Ostersen, T., Cornou, C., Kristensen, A.R., 2010. Detecting oestrus by monitoring sows’
visits to a boar. Comput. Electron. Agric. 74 (1), 51–58.

Pluym, L.M., Maes, D., Vangeyte, J., Mertens, K., Baert, J., van Weyenberg, S., Millet, S.,
van Nuffel, A., 2013. Development of a system for automatic measurements of force
and visual stance variables for objective lameness detection in sows: SowSIS. Biosys.
Eng. 116 (1), 64–74.

Porto, S.M.C., Arcidiacono, C., Anguzza, U., Cascone, G., 2013. A computer vision-based
system for the automatic detection of lying behaviour of dairy cows in free-stall
barns. Biosys. Eng. 115 (2), 184–194.

Porto, S.M.C., Arcidiacono, C., Anguzza, U., Cascone, G., 2015. The automatic detection
of dairy cow feeding and standing behaviours in free-stall barns by a computer vision-
based system. Biosys. Eng. 133, 46–55.

Porto, S.M.C., Arcidiacono, C., Cascone, G., Anguzza, U., Barbari, M., Simonini, S., 2012.
Validation of an active RFID-based system to detect pigs housend in pens. J. Food
Agric. Environ. 10 (2), 468–472.

Porto, S.M.C., Arcidiacono, C., Giummarra, A., Anguzza, U., Cascone, G., 2014.
Localisation and identification performances of a real-time location system based on
ultra wide band technology for monitoring and tracking dairy cow behaviour in a
semi-open free-stall barn. Comput. Electron. Agric. 108, 221–229.

Pourvoyeur, K., Stelzer, A., Gassenbauer, G., 2006. The local position measurement
system lpm used for cow tracking. In: IEEE International Conference on Multisensor
Fusion and Integration for Intelligent Systems, pp. 536–540.

R Core Team, 2016. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Reimert, I., Bolhuis, J.E., Kemp, B., Rodenburg, T.B., 2013. Indicators of positive and
negative emotions and emotional contagion in pigs. Physiol. Behav. 109, 42–50.

Reiner, G., Hübner, K., Hepp, S., 2009. Suffering in diseased pigs as expressed by beha-
vioural, clinical and clinical–chemical traits, in a well defined parasite model. Appl.
Anim. Behav. Sci. 118 (3–4), 222–231.

Rolandsdotter, E., Westin, R., Algers, B., 2009. Maximum lying bout duration affects the
occurrence of shoulder lesions in sows. Acta Vet. Scand. 51 (1), 44.

Rose, T., 2015. Real-time Location System SERIES 7000 from Ubisense for Behavioural
Analysis in Dairy Cows. Dissertation. Christian-Albrechts-University Kiel, Kiel.

Samarakone, T.S., Gonyou, H.W., 2009. Domestic pigs alter their social strategy in re-
sponse to social group size. Appl. Anim. Behav. Sci. 121 (1), 8–15.

Scheel, C., Traulsen, I., Auer, W., Müller, K., Stamer, E., Krieter, J., 2017. Detecting la-
meness in sows from ear tag-sampled acceleration data using wavelets. Animal 1–8.

Špinka, M., 2012. Social dimension of emotions and its implication for animal welfare.
Appl. Anim. Behav. Sci. 138 (3), 170–181.

Thorup, V.M., Tøgersen, F.A., Jorgensen, B., Jensen, B.R., 2007. Biomechanical gait
analysis of pigs walking on solid concrete floor. Animal 1 (5), 708–715.

Traulsen, I., Breitenberger, S., Auer, W., Stamer, E., Müller, K., Krieter, J., 2016.
Automatic detection of lameness in gestating group-housed sows using positioning
and acceleration measurements. Animal 10 (6), 970–977.

van Duijkeren, E., Ikawaty, R., Broekhuizen-Stins, M.J., Jansen, M.D., Spalburg, E.C., de
Neeling, A.J., Allaart, J.G., van Nes, A., Wagenaar, J.A., Fluit, A.C., 2008.
Transmission of methicillin-resistant Staphylococcus aureus strains between different
kinds of pig farms. Vet. Microbiol. 126 (4), 383–389.

Wathes, C.M., Kristensen, H.H., Aerts, J.M., Berckmans, D., 2008. Is precision livestock
farming an engineer's daydream or nightmare, an animal's friend or foe, and a
farmer's panacea or pitfall? Comput. Electron. Agric. 64 (1), 2–10.

Zhang, D., Xia, F., Yang, Z., Yao L., Zhao, W., 2010. Localization Technologies for Indoor
Human Tracking. In: 5th International Conference on Future Information Technology
(FutureTech) 2010, pp. 1–6.

M.K. Will et al. Computers and Electronics in Agriculture 142 (2017) 473–484

484

http://refhub.elsevier.com/S0168-1699(17)30256-9/h0050
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0050
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0055
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0055
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0055
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0060
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0060
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0060
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0065
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0065
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0065
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0070
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0070
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0075
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0075
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0075
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0080
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0080
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0080
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0085
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0085
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0090
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0090
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0095
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0095
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0100
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0100
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0100
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0105
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0105
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0110
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0110
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0115
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0115
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0120
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0120
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0125
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0125
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0125
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0130
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0130
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0130
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0135
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0135
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0140
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0140
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0145
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0145
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0145
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0150
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0150
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0150
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0155
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0155
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0155
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0160
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0160
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0165
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0165
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0170
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0170
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0170
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0175
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0175
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0180
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0185
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0185
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0185
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0190
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0190
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0190
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0195
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0195
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0200
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0200
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0200
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0205
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0205
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0210
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0210
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0210
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0220
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0220
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0220
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0225
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0225
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0230
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0230
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0235
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0235
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0235
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0240
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0240
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0245
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0245
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0245
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0250
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0250
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0250
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0255
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0255
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0260
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0260
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0260
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0260
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0265
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0265
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0265
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0270
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0270
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0270
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0275
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0275
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0275
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0280
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0280
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0280
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0280
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0290
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0290
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0295
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0295
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0300
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0300
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0300
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0305
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0305
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0310
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0310
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0315
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0315
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0320
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0320
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0325
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0325
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0330
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0330
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0335
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0335
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0335
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0340
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0340
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0340
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0340
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0345
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0345
http://refhub.elsevier.com/S0168-1699(17)30256-9/h0345

	Accuracy of a real-time location system in static positions under practical conditions: Prospects to track group-housed sows
	Introduction
	Material and methods
	Animals and housing
	Real-time location system
	Determined static positions for accuracy testing
	Data processing
	Preparation of location data
	Discrete wavelet transform (DWT)
	Wavelet filter settings
	Wavelet filtering
	Define filter settings
	Statistical analysis

	Accuracy testing before and after filtering
	Distance root mean squared (DRMS)
	Precision
	Offset


	Results
	Evaluation of data completeness
	Wavelet filter settings
	Accuracy testing before and after filtering

	Discussion
	Evaluation of data completeness
	Wavelet filter settings
	Accuracy testing before and after filtering

	Conclusions
	Acknowledgements
	Supplementary material
	References




