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Abstract
Modern statisticalmethodswhichwere developed for pattern recognition are increasingly being used for
data analysis in studies on emissions of volatile organic compounds (VOCs).With thedetection of
disease-relatedVOCprofiles, novel non-invasive diagnostic tools could be developed for clinical
applications.However, it is important tobear inmind that not all statisticalmethods are equally suitable
for the investigation ofVOCprofiles. In particular, univariatemethods are not able to discoverVOC
patterns as they consider each compound separately. Thepresent studydemonstrates this fact in practice.
UsingVOCsamples froma controlled animal study onparatuberculosis, the random forest classification
methodwas applied for pattern recognition anddisease prediction.This strategywas comparedwith a
prediction approach based on single compounds. Bothmethodswere framedwithin a cross-validation
procedure.A comparisonof both strategies based on theseVOCdata reveals that randomforests
achieves higher sensitivities and specificities thanpredictions based on single compounds. Therefore, it
willmost likely bemore fruitful to further investigateVOCpatterns insteadof single biomarkers for
paratuberculosis. Allmethodsused are thoroughly explained to aid the transfer to other data analyses.

1. Introduction

The potential of volatile organic compounds (VOCs)
for diagnostic purposes has already been acknowl-
edged for a variety of diseases [1, 2]. Since VOCs are
emitted constantly during various metabolic pro-
cesses, the detection of disease-related VOC profiles
might enable the development of novel non-invasive
diagnostic tools [3]. Nevertheless, the high naturally
occurring variability which is observed in measure-
ments on VOC samples currently hinders potential
clinical applications [4]. This variability originates to a
large extent in external confounding factors and

physiological effects [5, 6]. At the same time, recent
techniques in metabolomics (like mass spectrometry
and nuclear magnetic resonance) enable hundreds of
compounds to be measured for each sample. There-
fore, data analysis is central in order to assess if
observed variations are related to a disease and to
identify potential biomarkers [7].

A wide range of statistical methods have been
adapted for such research questions in metabolomics
studies [8]. For VOC analysis, specialized review arti-
cles provide recommendations on the appropriate
choice of statistical methods [7, 9]. Moreover, possible
pitfalls in data analysis and adequate prevention
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strategies have also been highlighted in the literature
[10, 11]. Currently, enhanced statistical methods are
being used increasingly for pattern recognition in
VOC studies, for instance neural networks, support
vector machines and random forests [12–14]. These
and similarmethods are suitable for analysing patterns
in VOC data sets because they consider multiple com-
pounds of a sample simultaneously, as opposed to sta-
tistical methods like t-tests or Mann–Whitney U-tests
which are applied to each compound separately.
Methods which consider single compounds can help
to discover biomarkers when single compounds suf-
fice for diagnosing the disease accurately. However,
considering several compounds simultaneously may
reveal complex disease signatures, since relationships
among compounds can be taken into account and
slight changes in several compounds may add up to a
pronounced distinction between groups [15].

In the present study, the presence of an induced
infection was predicted from VOC data obtained in a
controlled animal study. This was implemented using
two opposing statistical approaches: a prediction using
random forests was directly compared with a predic-
tion based on single compounds which discriminated
most clearly between healthy and infected individuals.
Therefore, the actual gain from considering the whole
VOC sample instead of single compounds could be
evaluated for this data set. Both strategies were tested
within a cross-validation procedure in order to
achieve a realistic estimation of their sensitivity and
specificity.

Random forests was preferred over other methods
for pattern recognition since this method is non-para-
metric (i.e. the data are not required to conform to a
given specific distribution) and robust to both outliers
and correlations between compounds. In this way it
also provides the possibility to include possibly corre-
lated physiological and environmental factors (in
order to control for potential confounders [10]) with-
out overfitting the data. Moreover, in contrast to some
other multivariate classification methods, random
forests is also able to detect non-linear relationships
between compounds and the outcome (i.e. the disease
status in the present investigation) [7, 9, 16].

The animal study which provided the data for
these analyses assessed differences in VOC concentra-
tions which were related to paratuberculosis. In short,
paratuberculosis, or Johne’s disease, is a chronic dis-
ease in ruminants caused by infection with the bacter-
ial pathogen Mycobacterium avium subsp.
paratuberculosis (MAP). The infection results in an
inflammation of the intestine and accounts for con-
siderable economic losses in cattle farming due to
reduced milk yield and slaughter value. Clinical signs
like diarrhoea and severe weight loss are only apparent
in the late progression of the disease after a latent
phase of up to several years, whereas shedding of bac-
teria already starts during the subclinical phase.
Hence, reliable diagnostic tests are crucial in order to

single out clinically non-apparent MAP-shedding ani-
mals in a herd.

Currently the most sensitive diagnostic procedure
for paratuberculosis is the cultural isolation of MAP
bacteria from faecal or tissue samples. A major dis-
advantage of this method is the long incubation time
(at least 12 weeks). Diagnosis might be accelerated by
detection of MAP-specific antibodies in samples of
serum or milk via enzyme-linked immunosorbent
assays, especially in the case of high-shedding animals.
But most importantly, all diagnostic tests available to
date show a limited sensitivity, particularly in the sub-
clinical phase. This is due to the fact that bacteria are
shed intermittently and in lower amounts during this
phase. In addition, faecal shedding and immune
response vary individually to a large extent [17].
Therefore, there is a need for diagnostic tests with
higher sensitivities and decreased processing time in
order to reduce false negative findings and enable
effective disease control strategies.

A recent approach for accelerating the diagnosis of
paratuberculosis focuses on VOCs which are being
emitted fromMAP cultures with the aim of identifying
in vitro bacterial growth earlier than currently possible
by visual assessment or nucleic acid amplification
techniques. By two in vitro experiments, MAP-related
VOCs could be detected and even linked to different
stages of bacterial growth [18, 19]. Nevertheless, the
processing time for diagnosis might be further
reduced by avoiding the limiting step of culturing and
instead measuring VOCs directly in vivo. Pilot in vivo
studies on goats showed thatMAP-inoculated animals
can be distinguished from non-inoculated animals
based on VOC samples from exhaled breath or head-
space over faeces by means of differential ion mobility
spectroscopy (DMS) [20] and by gas chromatography-
mass spectrometry (GC-MS) [21], respectively. The
present animal study was based on the study design of
the pilot in vivo study usingGC-MSmeasurements but
comprised a considerably increased sample size. From
the measurements of this extensive study we aimed to
assess whether VOC samples can be utilized to predict
MAP infections. As the predictability of para-
tuberculosis by VOC samples had not been investi-
gated so far, it was not known in advance which of the
proposed data analysis strategies would be more
suitable.

The focus of this publication lies in presenting two
different strategies for data analysis which assist in
identifying potential disease biomarkers and disease-
indicative VOC profiles. Although themethodological
comparison of both approaches was based on specific
example data, it yielded results which may be trans-
ferred to similar studies on VOC samples. All methods
are described in detail to give insight into the sequence
of considerations for choosing a strategy for data ana-
lysis. Finally, we hope that this example may serve as a
bridge between methodological reviews and applied
data analyses.
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2.Methods

2.1. Study design
Twenty-four clinically healthy goat kids were split into
a case group of 14 goats and a control group of
10 goats. Animals of the case group were subsequently
inoculated with MAP (strain JII-1961) by repeated
administration of bacterial wet mass suspended in
milk replacer. The optimum dose for inoculation had
been determined experimentally in a preceding
study [17].

Sampling in the course of the study covered
roughly the first year of life. Faecal samples for VOC
analysis were obtained from all goats approximately
every 2 weeks, starting 3 weeks after completion of
inoculation (wpi, weeks post-inoculation). Sampling
of exhaled breath for VOC analysis was performed
approximately every 4 weeks starting at 5 wpi. The last
samples for VOC analysis were taken at 47 wpi (see
tables S1 and S2, available online at stacks.iop.org/
JBR/11/047105/mmedia). Altogether, VOC con-
centrations were measured for a total of 477 faecal
samples and 299 breath samples. Samples of exhaled
breath were partially obtained in duplicate in order to
monitor the accuracy of in vivo measurements. In
order to avoid a bias towards those repeated measure-
ments only their averages were included. This was
justified since deviations between repeated measure-
ments were low. The resulting data set contained 238
breath samples.

Furthermore, standard diagnostics for para-
tuberculosis were performed in addition to VOC ana-
lyses. In order to monitor the MAP-specific
interferon-γ response and seroconversion, blood sam-
ples were collected approximately every 4 weeks from
all animals. Faecal shedding of MAP was examined by
cultural isolation of MAP from faecal samples, which
were also collected every 4 weeks. In order to examine
the intestine forMAP-related pathomorphology,most
animals were euthanized and dissected at the end
of the experiment. According to schedule, four
MAP-inoculated animals were dissected in the
course of the study (at 12 and 25 wpi, respectively).
As expected, MAP-positive tissues (obtained by
necropsy) and faecal shedding of MAP was only
observed for inoculated animals. Moreover, MAP was
detected in all animals of the case group, indicating a
successful inoculation. None of the inoculated animals
showed clinical signs by the end of the study, thus all
samples of inoculated animals represented subclinical
infection.

2.2. Animals, husbandry and animalwelfare
All goats were of the same breed (Thüringer Wald
Ziege) and purchased at the age of 2–3 weeks from one
local farm which had no reported cases of paratuber-
culosis in the past. After transfer to the experimental
animal facility, the two groups of goats were housed in

separate stables but under equal, standardized condi-
tions. Each group contained a single female with all
other goats being male. All the male goats were
castrated at the beginning of the study.

Feeding was adjusted to the age of the goats. Up to
the 12th week of life, goat kids were fed with commer-
cial milk replacer. From the 9th week of life on, goats
received concentrated feed (at first pellets for lambs,
later on dairy concentrate pellets). Hay, water and
mineral blocks were freely available over the whole
course of the study. Daily clinical examinations
ensured that all goats were in a good state of health.

The study was carried out in strict accordance with
the German Animal Welfare Act and in conformity
with the guidelines for animal welfare set forth by the
European Commission. The study protocol was
approved by the Committee for the Ethics of Animal
Experiments and the Protection of Animals of the State
of Thuringia, Germany (registration no. 04-002/12).
Throughout the duration of the study, every effort
was made to minimize suffering and animals were
strictly treated in accordance with good veterinary
practice.

2.3. Collection andmeasurement of samples
Samples of exhaled breath were collected, as described
previously, using an automated alveolar sampling
device (PAS Technology Deutschland GmbH, Mag-
dala, Germany) combining mainstream capnometry
and needle-trap microextraction (NTME; absorbent
material: divinylbenzene, Carbopack X and Carboxen
1000) [22]. The device facilitates sampling of a
predefined volume restricted to the alveolar phase of
exhalation by considering flow rates and CO2 thresh-
olds [23]. It was adapted for collection of breath gas
samples from goats by addition of a tightly fitting face
mask [6, 21, 24]. The flow rate during sampling was
21.5±1.9 ml min−1 (mean±SD) and the sample
volume per goat per time point was set at 50 ml.

Faecal samples were collected individually and,
immediately after collection, aliquots were filled sepa-
rately into 20ml headspace vials sealed with Teflon-
coated rubber septa and magnetic crimp caps (Gerstel
GmbH and Co. KG, Muelheim/Ruhr, Germany). The
vials were processedwithin 72 h of sampling. VOCswere
pre-concentrated from headspace over faeces by means
of solid-phase microextraction (SPME; Carboxen®/
polydimethylsiloxane-SPME fibres, 75 μm, Supelco,
Bellefonte, PA,USA).

Subsequently, VOCs of all gaseous samples were
thermally desorbed from the needle-trap devices and
SPME fibres, respectively, separated and measured
using GC-MS (GC Agilent 7890A, MS Agilent 5970C
inert XLMSD). Prior tomeasurements theGC-MS sys-
tem was calibrated and optimized with adapted stan-
dard mixtures. Compounds were tentatively identified
by a mass spectral library (NIST 2005, Gaithersburg,
MD, USA) and selected based on concentration
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differences between MAP-inoculated and non-inocu-
lated animals. In order to obtain an unequivocal identi-
fication and quantification, selected compounds were
verified bymeasurements of pure reference substances.
For the calibration and determination of the limit of
detection (LOD; signal-to-noise ratio 3:1) and limit of
quantification (LOQ; signal-to-noise ratio 10:1), differ-
ent concentration levels of the reference substances
were analysed as described previously [18, 22]. Noise
was determined by repeated measurements of blank
samples. Peak areas of selected compounds were calcu-
lated based on extracted ion counts using Agilent MSD
Chemstation (E.02.00.493) software.

Preparation and analysis of blood samples for
monitoring the immune response and of faecal sam-
ples for cultural isolation was carried out as described
in a previous publication [17].

2.4. Explanation of terms and statistical procedures
The present data analysis focused on identifying if
VOC samples originated from MAP-inoculated or
healthy individuals. Hence, the method of choice
should assign each VOC sample either to the group (or
‘class’) of MAP-inoculated animals or to the group of
healthy animals. This is called a classification problem
in the terminology of statistics. Often, classification
methods are divided into supervised and unsupervised
methods. These terms were first introduced in the
context of machine learning. Supervised classification
methods are used when the group structure is known
and can be exploited to build the classifier, whereas
unsupervised methods are used to discover any group
structures from the data [25]. For our data analysis,
supervisedmethodswere employed.

The central point of our data analysis was to com-
pare a classification method which considers each
compound separately with a classification method
which takes the complete VOC sample into considera-
tion. In the terminology of statistics, methods using
single variables are referred to as univariate whereas
multivariate methods include multiple variables. The
twomethods that we chose for comparison are descri-
bed in detail below.

As classification problems occur in diverse con-
texts,many differentmethods have been developed for
different types of data. An overview onmethods suited
for metabolomics data, and VOC data in particular,
can be found in the literature (see e.g. [7–9, 26, 27]).
The choice ofmethod should be based on the question
of the study and the type of data.

For instance, some methods (referred to as para-
metric methods) are tailored to data that fulfil certain
assumptions, for example conforming to a normal dis-
tribution. In our case, an exploratory analysis revealed
that measurements on most compounds did not con-
form to a normal distribution and contained strong
outliers. In addition, data sets contained a consider-
able number of zeros, especially for compounds that

were only observed in concentrations close to the limit
of quantification and below. For this reason, log-
transforming the data to achieve a normal distribution
was not an option. Instead of testing differentmethods
of data transformation for best practice, we preferred
to apply non-parametric methods, which do not
require data transformation, to the original, untrans-
formed data.

Moreover, classification methods differ in the
expected type of relationship between compounds and
the outcome (i.e. a linear or non-linear relationship).
As we aimed to explore a potentially complex VOC
pattern, we decided to choose random forests as a
multivariate classificationmethod that can also handle
non-linear relationships.

In the present data analysis, classification methods
are compared based on their accuracy in predicting the
disease status. In order to obtain an unbiased predic-
tion for each observation it is important to split the
data into a training set (for fitting the classifier) and a
test set (for evaluating the classifier), as otherwise the
final estimation of sensitivity and specificity would be
overoptimistic [28]. This was taken into account using
five-fold cross-validation. With five-fold cross-valida-
tion, the data are first randomly split into five blocks of
roughly equal size. Subsequently, in each of the five
runs of the procedure, one block of data is held out
(the test set)while the remaining data (the training set)
are used to train the classifier. The classifier is then
used for prediction on the test data set which enables
us to evaluate its performance on the previously unseen
data. In this way, the full data set is used in each cross-
validation run such that each observation is being
classified exactly once. Finally, sensitivity and specificity
are estimated by averaging across allfive runs.

As a general rule, the training and test set need to
be independent of each other in order to achieve an
unbiased estimation of sensitivity and specificity.
However, the measurements of the study are not
mutually independent, but actually depend on time
and on the goat from which the sample originated.
Since such dependences may lead to an overfitting of
the cross-validation procedure [29, 30], the measure-
ments were not assigned randomly to one of the five
blocks. Instead, each goat was assigned randomly to
one block so that all of the measurements on a specific
goat either belonged to the training set or to the test set
for each cross-validation run. In this way, wemade use
of the naturally occurring inter-individual variations
as a test for the predictive performance of the classi-
fiers. The group stratification was also taken into
account for the assignment to ensure an equal dis-
tribution of cases and controls in the training and test
set. In order to ensure that this random assignment
does not obstruct the direct comparison of the
accuracy of the two classification methods, the same
assignment of blocks was used for both classification
methods.
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VOCdata from exhaled breath and headspace over
faeces were considered in parallel to allow a compar-
ison of both sample sources. After defining a
cross-validation scheme for each of the data sets, both
classificationmethodswere trained and evaluated ana-
logously on both data sets.

Data analysis was performed in R version 3.4.0.
with packages caTools and randomForest [31–33].
The package ggplot2was used for visualizations [34].

2.5. Univariate classification approach
For the univariate approach, single compounds had to
be selected from all available VOCs. In order to assess
which of the compounds discriminated most clearly
between both groups, effect sizes were calculated from
the training data. In general, effect sizes measure the
magnitude of variation between two groups. The
advantage of effect sizes over hypothesis testing in this
situation lies in their interpretability and indepen-
dence of the sample size. The latter allows a compar-
ison across different studies as opposed to p-values
fromhypothesis testing, that is why they play a key role
in meta-analyses [35]. Here, the effect size was
calculated as the rank-biserial coefficient of correla-
tion based on the Mann–Whitney U statistic as
proposed by Wendt [36]. While a large number of
definitions for effect sizes exist, the advantage of this
definition lies in its robustness even in the presence of
strong outliers, since the non-parametric U statistic
considers only the ranking of the values. For this
definition, an effect size close to 1 corresponds to a
high discrimination between both groups whereas an
effect size close to 0 corresponds to a low discrimina-
tion. However, this definition of effect size does not
distinguish effect directions, i.e. the group for which
this compound showed higher concentrations inmost
cases. Therefore, this information was memorized
from the previously calculated Mann–Whitney U
statistic.

In order to gain insight into the distribution of
measurements for the most promising compounds,
we present combined violin and box plots for the three
compounds that exhibited the highest effect sizes. Box
plots summarize the spread of the data by quartiles:
the interquartile range (IQR; middle 50% of the data)
is depicted as a box with a horizontal line marking the
median and vertical lines (‘whiskers’) extending to the
most extreme value above and below the box, respec-
tively, whose distance to the box is less than 1.5× IQR.
Measurements beyond this are depicted as single
points. Violin plots visualize the distribution of mea-
surements using a smoothed histogram which is
depicted on both sides of the box plot. This adds addi-
tional information to the box plot by showing the
peaks of the distribution.

After selecting the compound with the highest
effect size on the respective training data set, a cut-off
value was determined for this compound by means of

a receiver operating characteristic (ROC) analysis
based on the measurements in the training data. The
cut-off value was determined such that its false posi-
tive rate (FPR; 1 – specificity) and true positive rate
(TPR; sensitivity)were closest (i.e. had the shortest dis-
tance) to the optimum, namely FPR=0 and
TPR=1 [37]. This cut-off value was eventually used
as the decision threshold for classifying each observa-
tion of the respective test data set either to the inocu-
lated or to the non-inoculated group.

2.6.Multivariate classification approach
Random forests was chosen as the multivariate classi-
fication method because this method does not assume
a specific distribution of measurements and can
handle outliers, correlations among compounds and
non-linear relationships. In general, a random forest
consists of a large number of decision trees, which
simply use a sequence of binary (i.e. answered either
‘yes’ or ‘no’) decision rules for classification [7, 9, 16].
The decision rules can be pictured in the shape of a
binary tree; an example of a decision tree is given in
figure 1. The figure exemplifies a non-linear relation-
ship between two compounds, which results in a low
effect size for every single compound. Therefore,
neither of the two compounds seems to qualify as a
disease biomarker from this point of view. However,
the decision tree gives a perfect classification without
any misclassifications using just these two com-
pounds. The decision rules are determined based on
the explanatory variables (which here are also referred
to as ‘features’) such that sub-regions are constructed
which should each ideally contain only observations of
the same class.

As decision rules may be added until perfect classi-
fication is achieved, decision trees are prone to over-
fitting the data. This means that a decision tree is
perfectly adapted to the data it was trained on. There-
fore it does not generalize well for the actual classifica-
tion problem and performs badly on new data.
Random forests compensates for this by restricting the
construction of each decision tree on a random sub-
sample of the training data and a random subset of all
available features, which ensures a diverse set of deci-
sion trees as a result. Finally, each observation of the
test data set is classified by each decision tree and is
lastly assigned to the class which was reported most
frequently. In this manner, it is also possible to evalu-
ate the relative importance of each feature for the acc-
uracy of the prediction. This is assessed during the
construction of the trees by randomly resampling the
measurements for each feature (i.e. replacing each
measurement by a random one for this feature with-
out consideration of the true class) using only themea-
surements of the training data which had not been
used for constructing the tree. The resulting change in
misclassification rate is averaged over all trees of the
random forest [16, 33]. For strong predictors,
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resampling results in a distortion of the association
with the classes. Therefore when such features are
being resampled, the average misclassification rate
increases considerably—in other words, the accuracy
of the prediction decreases considerably. Hence, fea-
tures for which resampling leads to a high mean
decrease in accuracy are regarded as being of high
importance for the prediction.

Apart from measurements on volatile organic
compounds, additional variables that might make a
contribution were included, for instance age (in
weeks), body mass (in kg), rectal temperature (in °C),
information on diet such as the amount (in g) and type
of concentrated feed (suited for lambs or dairy goats),
and for faecal samples also the volume of milk (in ml,
sampling of exhaled breath started after weaning) and
further variables indicating if a newmineral block was
placed in the stable and if medication or treatments
were necessary at the time of sampling. For example,
some of the goats had to be treated for orchitis as a
complication following castration. Body mass was
assessed once a week, which is why the weight at the
day of sampling was estimated by linear interpolation.
For one goat, rectal temperature was missing for
one measurement on exhaled breath and headspace
over faeces, respectively. This issue was resolved
by inserting the median of the last seven measure-
ments of rectal temperature for this goat, which did
not influence the results as the body temperature was
in the normally observed range throughout these
measurements.

For analyses by random forests, 61 features were
included for exhaled breath and 56 features for head-
space over faeces, respectively (all VOCs plus covari-
ables). The number of features that were randomly
selected and considered for a split decision was set to
seven while constructing the decision trees. For each
random forest, 500 decision trees were generated (the

default value for this function). For bothVOCdata sets,
five random forests were trained and evaluated accord-
ing to the cross-validation schemedescribedbefore.

2.7. Exclusion ofmeasurements for goat kids
Since nutrition has a major impact on the measure-
ments, the change in feeding from milk to a plant-
based diet may complicate a precise differentiation of
VOC samples from MAP-inoculated and non-inocu-
lated animals. For this reason, the data analysis was
rerun as described above after excluding all VOC
samples which were taken before the 20th week of life,
because we assumed that the digestion of the goats was
fully adapted to the plant-based diet and rumination
by this age.

3. Results

Fifty-one volatile organic compounds in exhaled
breath and 45 compounds in headspace over faeces
were found to differ between MAP-inoculated and
non-inoculated animals. These VOCs belong to the
categories of aliphatic and aromatic hydrocarbons,
aldehydes, esters, ketones, furans, organonitrogen and
organosulfur compounds. In exhaled breath, alcohols
were also detected. The majority of compounds in
exhaled breath showed a decrease in concentration for
MAP-inoculated goats comparedwith non-inoculated
goats, whereas roughly two-thirds of the compounds
in headspace over faeces showed (on average) higher
concentrations for samples of MAP-inoculated goats
than for samples of non-inoculated goats.

3.1. Prediction based onVOCs in exhaled breath
For prediction based on a single compound,
3-methylpentane was found to exhibit the highest
effect size among all VOCs from exhaled breath in

Figure 1.Artificial example of a decision tree. (a) Sample data for two artificial groups (blue healthy, red diseased) and two arbitrary
compounds. None of the compounds gives an accurate prediction of the disease status when considered on its own (56.8% sensitivity
and 65.1% specificity for compound 1, 59.5% sensitivity and 53.5% specificity for compound 2; values derived as described before);
the effect sizes for both compounds are below 0.2. (b)However, the classification tree [38] gives a perfect classification for each
observation. For example, all observations which showed concentration levels equal to or greater than 19.91 for compound 1were
correctly classified as diseased. Next, all observationswhich exhibited concentration levels below 19.91 for compound 1 but equal to
or greater than 21.36 for compound 2were correctly classified as diseased, etc.
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each of the five cross-validation runs. Averaged across
all five runs, 3-methylpentane reached an effect size of
0.81, followed by 2-methylpentane with an average
effect size of 0.71 and 2-ethyl-1-hexanol with an
average effect size of 0.57. Figure 2 depicts the
distribution of the measurements for these three
compounds contrasting both groups of this animal
study. Obviously, the figures for 3-methylpentane and
2-methylpentane resemble each other strikingly, dis-
regarding the differing ranges of concentration levels.
2-Ethyl-1-hexanol was one of the few compounds
which tended to exhibit higher concentrations in
exhaled breath of MAP-inoculated animals. In total,

the rankings of the compounds according to their
effect sizes were quite stable across the cross-validation
procedure. Figure 3 gives an overview on the effect
sizes of the top 20 compounds from exhaled breath as
calculated during the first cross-validation run and
depicts how the cut-off for 3-methylpentane was
determined by ROC analysis during this run. As
3-methylpentane had the highest effect size in every
run, prediction of the disease status was always based
on this compound with varying cut-off values. The
effect direction was consistent throughout the cross-
validation procedure, so all measurements of the
respective test set below the corresponding cut-off

Figure 2.Comparison of the distribution ofmeasurements for both groups for 3-methylpentane (LOD0.13 ppbV, LOQ0.22 ppbV),
2-methylpentane (LOD0.93 ppbV, LOQ1.65 ppbV) and 2-ethyl-1-hexanol (LOD0.09 ppbV, LOQ0.15 ppbV), respectively. These
three compounds had the highest effect sizes among all volatiles that were detected in exhaled breath. The figure combines violin and
box plots (box, IQR; horizontal line,median). Thewhiskers extend to themost extreme value above and below the box, respectively,
when distance to the box is less than 1.5× IQR.Measurements beyond this are depicted as single points. The y-axis is square-root
transformed for better visualization.

Figure 3.Results from thefirst cross-validation run for prediction based on single compounds from exhaled breath. (a)Effect sizes for
the first 20 of the 51 detected compounds (sorted by decreasing effect size). The shape and colour of the points indicatewhether high
concentrations tended to be observedmore frequently inMAP-inoculated goats (red rhombus) or in the control group (blue circle).
(b)TheROC curve for 3-methylpentane [area under the curve (AUC)= 0.886]. The optimal cut-off (blue circle)was chosen to be
2.53 ppbVwith all values above this being classified as controls and all values below being classified asMAP-positive. The solid grey
line represents the respective ROC curve for the random forest from this cross-validation run.
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value were classified asMAP-positive and all measure-
ments greater than or equal to the cut-off were
classified as MAP-negative. Averaged across all five
cross-validation runs, this approach reached a sensi-
tivity of 83.7% and a specificity of 80.0%; the confu-
sionmatrix is presented in table S3.

Consistent with the ranking according to average
effect sizes, 3-methylpentane, 2-ethyl-1-hexanol and
2-methylpentane were also ranked highest regarding
the respective mean decrease in accuracy caused by
random resampling as estimated and averaged across
the five random forests which were trained during the
cross-validation procedure. Figure 4 compares the
effect sizes of all compounds and the mean decrease in
accuracy for all features of the random forests. All
additional covariables which had been included for
random forests were associated with low influences on

prediction accuracy. Averaging across the whole cross-
validation procedure, random forests achieved a sensi-
tivity of 90.3% and a specificity of 81.8%. The corresp-
onding confusionmatrix is given in table S4.

3.2. Prediction based onVOCs in headspace over
faeces
For VOCs in headspace over faeces, 2,3-butanedione
reached the highest effect size in four out of five cross-
validation runs with an average effect size of 0.50,
followed by 2,3-pentanedione with an average effect
size of 0.46 and isoprene with an average effect size of
0.45. Just as for VOCs in exhaled breath, the first two
compounds were structurally closely related and
showed a comparable distribution of measurements
irrespective of the differing concentration levels (see
figure 5). However, the top compounds exhibited

Figure 4.Contrasting estimates for exhaled breath: effect sizes for each compound (black) andmean decrease in accuracy for each
feature as evaluated by random forests (grey). Circlesmark the average across thefive cross-validation runs, horizontal bars range
from theminimum to themaximumvalue. Covariables whichwere considered only using random forests are set in italics.
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considerably lower effect sizes compared with VOCs
in exhaled breath. As a consequence, the rankings of
the top compounds were less stable across the cross-
validation procedure. That is why, finally, four-fifths
of the samples were classified based on their measure-
ments for 2,3-butanedione with varying cut-offs
whereas the remaining fifth were classified based on
the measurements for 3-methyl-2-pentanone. While
for 2,3-butanedione all values above the respective
cut-off were classified as MAP-negative, for 3-methyl-
2-pentanone higher values were classified as MAP-
positive, because the effect directions of these com-
pounds were inverted. In figure 6, results for the first
cross-validation run are depicted; here 2,3-butane-
dione was ranked first and subsequently selected for

prediction. Averaged across all five cross-validation
runs, this approach achieved a sensitivity of 59.7% and
a specificity of 77.3%. Table S6 reports the confusion
matrix.

Regarding the estimated importance of compounds
as derived from random forests, 3-methylfuran was
ranked as most important for the accuracy of the pre-
diction followedby 2,3-butanedione andmethyl acetate
(see figure 7). Body mass was estimated to be the
most important covariable among the additional
features, but its influence on the decrease of prediction
accuracy was again relatively low as for all covariables.
Finally, a sensitivity of 86.6% and a specificity of 85.0%
(averaged across the cross-validation procedure)
were achieved for headspace over faeces by means

Figure 5.Comparison of the distribution ofmeasurements for both groups for 2,3-butanedione (LOD1.06 ppbV, LOQ2.79 ppbV),
2,3-pentanedione (LOD0.30 ppbV, LOQ0.61 ppbV) and isoprene (LOD0.26 ppbV, LOQ0.56 ppbV), respectively. These three
compounds had the highest effect sizes among all VOCs that were detected in headspace over faeces (see alsofigure 2).

Figure 6.Results from thefirst cross-validation run for the prediction approach based on single compounds fromheadspace over
faeces. (a)Effect sizes for thefirst 20 of all 45 detected compounds (sorted by decreasing effect size). The shape and colour of the points
indicate whether high concentrations tended to be observedmore frequently inMAP-inoculated goats (red rhombs) or in the control
group (blue circles). (b)ROCcurve for 2,3-butanedione (AUC0.720). The optimal cut-off (blue circle)was chosen to be 59.29 ppbV
with all values above being classified as controls and all values below being classified asMAP-positive. The solid grey line represents the
respective ROC curve for the random forest from this cross-validation run.
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of random forests. Table S7 reports the confusion
matrix.

Overall, the predictions of the disease status by
VOC measurements were less specific than the stan-
dard diagnostics which were carried out repeatedly in
the course of the study (see table 1). But none of the
standard diagnostics was as sensitive as the VOC based
predictions bymeans of random forests.

3.3. Prediction after exclusion ofmeasurements for
goat kids
Exclusion of samples whichwere taken before the 20th
week of life restricted the data set to 177 breath gas
samples and 347 faecal samples. Overall, sensitivities
and specificities varied only slightly comparedwith the
original data analysis and should not be overstated (see
table S9). For prediction using single compounds,

Figure 7.Effect sizes for eachVOC fromheadspace over faeces (black) and themean decrease in accuracy for each feature for
headspace over faeces as evaluated by random forests (grey). Circlesmark the average across thefive cross-validation runs, horizontal
bars range from theminimum to themaximumvalue. Covariables whichwere considered only using random forests are set in italics.

Table 1.Overview of sensitivity and specificity for each classificationmethod for exhaled breath and headspace over faeces comparedwith
the standard diagnostics for independent samples of faeces and blood.

Exhaled breath Headspace over faeces Standard diagnostics

Single

compound

Random

forest

Single

compound

Random

forest

Faecal shedding

(cultural
isolation)

MAP-specific

antibody

response

MAP-specific

IFN-γ

response

Sensitivity 83.7% 90.3% 59.7% 86.6% 64.6% 48.8% 81.7%

Specificity 80.0% 81.8% 77.3% 85.0% 100% 98.6% 100%
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sensitivities increased while specificities decreased
after exclusion of these samples for both exhaled
breath and headspace over faeces. For prediction using
random forests, for exhaled breath sensitivity did not
change at all and specificity increased, whereas for
headspace over faeces sensitivity and specificity slightly
decreased. Analogously, both rankings (based on effect
sizes and as derived from random forests) showed also
only minor changes compared with the original
rankings (data not shown).

4.Discussion

Regarding VOCs in exhaled breath, the top com-
pounds showed fairly high effect sizes. Thismeans that
these compounds showed pronounced differences in
concentration between breath samples ofMAP-inocu-
lated animals and those of control animals. As a result,
the prediction of the disease status based on VOCs in
exhaled breath already achieved a high sensitivity and
specificity using only single compounds. However, the
sensitivity could be further increased by random
forests. For VOCs in headspace over faeces, effect sizes
of the top compounds were considerably lower than
for top compounds from exhaled breath. Therefore
the sensitivity of the prediction based on single
compounds was also comparably low. Nevertheless,
random forests increased both sensitivity and specifi-
city for this VOC data set to such an extent that the
prediction of the disease status was roughly as accurate
as the predictions based onVOCs in exhaled breath.

So overall, predictions by random forests reached
a higher accuracy than when considering only single
compounds. It is unlikely that this increase is only due
to the inclusion of potential confounding factors, since
their importance for prediction accuracy was esti-
mated to be low. The gain in accuracy using random
forests points to the fact that additional information is
hidden in the interrelation of the compounds which
cannot be exploited when considering each com-
pound separately [15]. Apparently, it is important to
consider a VOC pattern instead of searching for single
biomarkers in order to detect paratuberculosis-related
signatures, particularly for measurements on head-
space over faeces.

Moreover, it should be noted that the two data
analysis strategies also resulted in different rankings of
compounds. For instance, the ‘top five’ lists derived
from both data analysis strategies for VOCs in head-
space over faeces differ in three out of five compounds.
For exhaled breath the top compound is
3-methylpentane for both methods, but for headspace
over faeces two different VOCs are considered as top
compounds (2,3-butanedione and 3-methylfuran,
respectively; see tables S5 and S8). Thus it should gen-
erally be taken into consideration that candidate lists
of putative biomarkers also depend on the choice of
method for data analysis.

Considering the choice of statistical methods, the
random forest classification method was selected as
the multivariate classification method with regard to
the structure of the data. However, other multivariate
classification methods could have been chosen
instead. The advantages of random forests in this set-
ting have been highlighted in previous sections, but it
should also be noted that while random forests can
detect interrelations between features, the estimation
of importance considers each feature separately and
does not provide insight into the interrelations of the
features [39]. Hence, it is difficult to report VOC pat-
terns that might have been detected by random forests
andmay be related to the disease.

Another important consideration for multivariate
classificationmethods revolves around the selection of
variables to be included in the data analysis. We deci-
ded to include additional covariables for demonstrat-
ing how such possibly confounding factors can be
assessed using random forests. As stated above, these
factors contributed only slightly to the accuracy of the
prediction. In fact, the low contribution of the addi-
tionally included covariables reflects the controlled
conditions of the animal study as laid out in the study
design. For example, feeding is known to have a high
influence on VOC emissions [24], but this influence
was diminished in this animal study for the reason that
all goats were fed the same diet and sampling followed
a standardized protocol. In addition, some of the cov-
ariables were observed only rarely (e.g. some medical
treatments), so their influence on VOC emission pat-
terns should not be extrapolated from this study. Fur-
thermore, the controlled conditions of the animal
study also contributed to the minimization of exogen-
ous influences on VOC measurements which could
not be confined for field data in the same way. For
instance, environmental influences from housing and
husbandry should be comparable across the whole
duration of the study since animals were continuously
housed in their group-specific stables under standar-
dized conditions. On the other hand, this also means
that the composition of ambient air was considerably
influenced by VOC emissions from the animals. Thus
indicative compounds showing increased concentra-
tions in samples fromMAP-inoculated animals might
also show increased concentrations in samples of
ambient air fromMAP stables. Therefore we refrained
from selecting only VOCs from exhaled breath which
showed significant differences from ambient air.
Instead, a comparisonwith inlet air could bemade (see
table S10).

Since all animals were of approximately the same
age and inoculated at the same time in their first weeks
of life, the course of infection was correlated with their
somatic growth and metabolic changes due to the
transition from goat kid to adult. For instance, the
change in nutrition regime frommilk replacer for goat
kids towards a purely plant-based diet for adult goats
entailed a major change in digestion, which was
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covered in this study as sampling started shortly before
weaning for faeces and during weaning for breath.
While this transition brings additional variation into
the VOC emission patterns [6], it represents more clo-
sely the natural course of infection, because the infec-
tion is typically acquired during the first weeks of life
[40]. In addition, the exclusion of VOC samples from
goat kids did not result in a considerably increased
sensitivity or specificity. Hence, the transition in diges-
tion did not obscure relevant differences inVOC emis-
sions in the present animal study.

The observation that random forests reached a
higher sensitivity than the standard diagnostics which
were carried out repeatedly in the course of the study
raise hope that VOC measurements may in future be
utilized to enhance the diagnosis of paratuberculosis.
Prior to potential application, further validation by
independent data is needed in order to ensure the
reproducibility and stability of our results. The pilot
in vivo study on paratuberculosis-related VOCs cannot
be used directly for this aim due to differences inmeth-
odology, although the study design was comparable.
This emphasizes the importance of a standardized
methodology for comparing VOC measurements
across different studies and settings. Nevertheless, we
would like to draw some comparisons with our pre-
vious studies, which support and amend the recent
findings.

In the pilot in vivo study on paratuberculosis-spe-
cific VOCs, 21 compounds were identified as potential
biomarkers in headspace over faeces [21]. Indeed, all
of them were detected in the present study as well.
Although the present study considered 24 compounds
in addition to those due to the increased sample size,
some of the previous biomarker candidates were
ranked again among the top discriminating com-
pounds, for example 3-methylfuran, isoprene, methyl
isobutyl ketone and 3-methyl-2-pentanone.

The composition of headspace over faeces is influ-
enced in many ways by food intake, host physiology
and gut microbiota, which makes it hard to trace back
the origins of VOC emissions unambiguously. Never-
theless, some of the hydrocarbons, ketones and furan
derivatives had been shown to be directly related to
MAP by means of an in vitro study [19]. For instance,
3-methylfuran had been detected in significantly
higher concentrations above MAP cultures compared
with blank media. Thus, this compound might be
detectable in higher concentrations in faeces of MAP-
inoculated animals for the reason that it is emitted
directly from MAP. On the other hand, 2,3-butane-
dione and methyl acetate were detected in vitro only
above MAP cultures but not above blanks, indicating
that these compounds might also originate from the
bacteria. In our investigation both compounds were
ranked among the top discriminating compounds, but
the in vivomeasurements on both compounds tended
to be decreased inMAP-inoculated animals compared
with non-inoculated animals. Therefore, it is plausible

to assume that these compounds originate in vivo pre-
dominantly from other sources which are affected by
the presence of MAP, such that emissions of these
compounds are reduced. This gives an example why
conclusions from in vitromeasurements should not be
transferred directly to in vivo conditions as influences
from the host, its microbiome and host–microbiome
interactions need to be taken into account [41].

Although the pilot study found that para-
tuberculosis-related differences were less pronounced
in exhaled breath than in headspace over faeces [21], in
the present study both classificationmethods achieved
high sensitivities and specificities for VOC samples
from exhaled breath. This coincides with the fact that
the most distinctive compounds in exhaled breath
from the present study had not been detected pre-
viously. Possible reasons for this may be the improved
methodology or the increased sample size of the pre-
sent study. The findings from exhaled breath are as yet
inconsistent, but promising, so additional validation is
needed which could be a starting point for further
studies.

As a last point, comparing the effect sizes of the
compounds that were detected in both studies reveals
similarities for some of themost promising biomarker
candidates from headspace over faeces such as
3-methylfuran, isoprene and 3-methyl-2-pentanone
(see figure 8). Next, it is necessary to investigate whe-
ther these findings can be confirmed in farms with
MAP-infected animals under naturally less controlled
conditions than in this animal study. In addition, fur-
ther measurements are needed to evaluate the accur-
acy of the VOC profiles with respect to other bacterial
infections and diseases.

5. Conclusions

This article presents a data-based comparison between
a univariate and amultivariate data analysis strategy in
the context of VOC studies. Both strategies were used
to predict whether VOC samples originated either
from the experimentally infected group or from the
control group. Most importantly, we were able to
demonstrate that amultivariate data analysismay yield
comparably precise predictions of the disease status
even though initially none of the compounds seemed
to qualify as a disease biomarker when considered on
its own (i.e. univariate). The reason for this is the basic
ability of multivariate methods to consider com-
pounds simultaneously, which enables the detection
of disease-related patterns across several compounds
(i.e. disease-indicative VOC profiles). Univariate
methods are not able to reveal such patterns, and are
therefore ineligible for the detection of disease-indica-
tive VOC profiles. On the other hand, results from
multivariate data analyses might not be applicable to
other studies, since methodological differences in
study design or in VOC analysis, for example a
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differing composition of the adsorbent material, may
entail a notable shift in concentration ranges and in
covariance among compounds. In this case, simila-
rities between studies could rather be detected using
univariate statistics such as effect sizes. In addition,
univariate methods are generally appropriate when
single compounds are highly indicative.

In this way, both strategies provided new insights
into paratuberculosis-related changes in VOC emis-
sions. Not only could we confirm the feasibility of dis-
tinguishing MAP-inoculated goats from healthy
controls by means of VOC samples, we could also
exploit the distinction to predict the presence of the
infection. VOC samples from both exhaled breath and
headspace over faeces were well suited for prediction.
As these data sets cover a long period of time, includ-
ing major physiological changes in the host, it was
more effective to consider the full VOC sample includ-
ing potential confounders using random forests.

The proposed workflow might also be used as a
template for a data analysis strategy for situations
where little is known about the predictive power of
single compounds and their interrelations. We argue
that the random forest classification method is parti-
cularly suited for such situations for the reason that
this method is able to handle non-linear relationships
and correlations among compounds and to incorpo-
rate different measures on potential confounders
while it is robust regarding data abnormalities and
resistant to overfitting at the same time. For compar-
ability across studies, the reporting of effect sizes is
highly recommended.

Nevertheless, the high physiological variability of
VOC profiles and the potential contribution of exo-
genous sources remain major issues that need to be
addressed carefully in study design, sampling and data
evaluation for VOC studies in general. In addition, we
emphasize the need for a standardizedmethodology in
order to enable a valid comparison between studies.
This is essential for verifying the reproducibility of the
results, and thus for defining disease biomarkers and

disease-indicative VOC profiles which may eventually
serve as basis for future diagnostic applications.
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