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Abstract: Titanium dioxide (TiO2) is one of the most applied nanomaterials and widely used in
food and non-food industries as an additive or coating material (E171). It has been shown that E171
contains up to 37% particles which are smaller than 100 nm and that TiO2 nanoparticles (NPs) induce
cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells
(NF-κB) reporter cell line (Caco-2nfkb-RE), Real time polymerase chain reaction (PCR), and inhibition
of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO2 NPs
(nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial
growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the
uptake of TiO2 NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear
factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to
TiO2 NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular
signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by
the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO2 NPs enter the cell
via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway,
which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells
exposed to 32 nm and 490 nm TiO2 particles.

Keywords: titanium dioxide nanoparticles; intestinal epithelial cells; inflammation; endocytosis;
EGFR; ERK1/2

1. Introduction

Titanium dioxide (TiO2) is one of the most applied nanomaterials and is widely used in the food
and non-food industry as additive or coating material (for review see [1]). Food-grade TiO2 is coded
E171 and contains up to 37% nanoparticles (NP), resulting in an estimated exposure to TiO2 NPs of
1 mg kg−1·day−1 in adults and up to 2–3 mg kg−1·day−1 in children [2].

Studies using Caco-2 cell lines have shown that TiO2 NPs induced oxidative damage [3],
influenced metabolic activity and cytotoxicity [4,5], produced reactive oxygen species (ROS) [6,7],
and induced the expression of interleukin 8 (IL8) [8] through the activation of nuclear factor (NF)-κB
and p38 mitogen activated protein kinase (MAPK) pathways [9]. Any influence of TiO2 NPs on
Caco-2 cells is caused by primary contact, which is followed by an interaction which is still unclear.
Several studies discuss a possible activation of toll-like receptors (TLR) [10,11] or suggest an endocytic
uptake [12–15]. In vitro studies on Caco-2 cells demonstrated that TiO2 NPs are taken up by the cell:
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TiO2 NPs have been detected intracellularly [16], surrounded by cytoplasmic vesicles [17] without
disruption of junctional complexes [18]. Endocytosis, as the initial cellular reaction and beginning of
the inflammatory response of TiO2 NPs, has not been investigated so far.

Several mechanisms responsible for cellular uptake of materials are named endocytosis:
phagocytosis, which is reserved by specialized cell types and pinocytosis, which can be divided
in micropinocytosis, clathrin-mediated endocytosis, caveolae-mediated endocytosis, and endocytosis
independently of clathrin and caveolae [19]. Figure 1 provides an overview of the different endocytosis
pathways and the inhibitors used in this study.
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Figure 1. Illustration of different manners in which endocytosis occurs. Shown are the different methods
of endocytosis and the mechanisms of action for the inhibitors used in this study. The illustration has
been adapted from [19].

In the present study, we exposed Caco-2 cells to TiO2 particles with nominal particle diameters
of 5 nm, 10 nm, 32 nm, and 490 nm. We could show that TiO2 NPs of 5 nm and 10 nm express
their inflammatory potential mainly via an EGFR-mediated endocytosis process. Actin filaments and
tubulin microtubules, as well as dynamin and, partly, clathrin, are involved in this process. Further
investigations revealed that TiO2 NPs induced an EGFR dependent activation of downstream ERK1/2
and of the ERK-related transcription factor ELK1 (ETS (E26 transformation-specific) domain-containing
protein) and consequently an increased expression of chemokine (C–C motif) ligand 2 (CCL2) and
chemokine (C–X–C motif) ligand 3 (CXCL3) genes.

2. Results

2.1. Characterization of TiO2 Particles in Cell Medium

TEM of the particles in cell culture medium revealed single particle sizes of 10.7 nm (mean),
10.0 nm (median), and 9.0 nm (mode) for NP1, 12.1 nm (mean), 11.0 nm (median), and 10.0 (mode)
for NP2, 23.1 nm (mean), 17.0 nm (median), 16.0 nm (mode) for NP3, and 138.9 nm (mean), 134.0 nm
(median), and 78.0 nm (mode) for NP4 (Figure 2a–d). Agglomerates were observed in NP1, NP2,
and NP4, while no agglomeration could be detected in NP3. By static light scattering SLS analysis
(Figure 2e–h) we could demonstrate that the agglomerates of NP4 dispersed, while NP1 and NP2
showed a wide size distribution of the particles in a range from 40 nm to 57 µm with peaks at 300 nm
and 4.5 µm for NP1 and peaks at 400 nm, 2.5 µm and 30 µM for NP2. NP3 and NP4 showed a unimodal
size distribution with a mean agglomeration size of 96 nm for NP3 and 390 nm for NP4.
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Figure 2. Characterization of TiO2 particles used in this study. (a–d) TEM images of TiO2 particles in 
medium of nominal (a) 5 nm (NP1); (b) 10 nm (NP2); (c) 32 nm (NP3); and (d) 490 nm (NP4) size. The 
bar corresponds to 500 nm. (e–h) Size distribution measured by static light scattering SLS of (e) np1; 
(f) np2; (g) np3; and (h) NP4. See text for details. 

2.2. TiO2 Particles Are Located within the Cell 

Based on our previous study [9], and others [12–15], we reasoned that TiO2 particles are 
endocytosed by Caco-2 cells. To investigate this possibility, we used laser scanning confocal 
microscopy identification of 10 nm TiO2 NPs within the Caco-2 cells (Figure 3a–c). We chose 10 nm 
particles as these caused an inflammatory response in Caco-2 cells, as shown in our previous study 
[9]. Three sections along the z-axis ((a) apical side; (b) within; (c) basal side) of the cells provide 
information about TiO2 NPs localization. Confocal images show nuclei (blue) surrounded by actin 
filaments (red). Aggregates of 10 nm TiO2 NPs (green) are located at the apical side of the cells (Figure 
3a), in the cell membrane, and within the cell (Figure 3b,c).  

 

Figure 3. Confocal laser scanning microscopy of Caco-2 cells treated with NP2. (a–c). Monolayers 
of Caco-2 cells were treated with 10 nm TiO2 particles (NP2, concentration of 40 µg cm−2 of cell growth 
surface) and incubated for 6 h. Cells were stained for actin with Alexa Fluor 633 Phalloidin (red), 
nuclei were stained with DAPI (blue) and TiO2 NPs fluorescence (green). The upper panel shows a 
cross-section of Caco-2 cells. Shown are three images along the z-axis from the apical side (a) to the 
basal side (c) of the epithelium. The blue line in the upper image indicates the position of the image 
below, whereas the red line marks the position of the cross-section. Arrows demonstrate TiO2 
particles within the cell membrane and intracellular. The bar corresponds to 30 µm. 

2.3. TiO2 NP-Induced Inflammatory Response Is Reduced by Inhibitors of Endocytosis 

To further prove that NPs are endocytosed by Caco-2 cells, we used inhibitors of molecules 
which are involved in endocytosis (see Figure 1) and measured the NF-κB response of Caco-2 cells 
after administration of TiO2 NPs. NP1 and NP2 induced NF-κB activity in Caco-2nfkb-RE cells by a factor 
of 7.0 ± 0.6 and 7.7 ± 0.7, respectively, NP3 and NP4 showed no effect on NF-κB activity (1.0 ± 0.0 and 
1.4 ± 0.1, respectively) (Figure 4a). Nystatin (50 µg mL−1), a caveolae-mediated endocytosis inhibitor, 

Figure 2. Characterization of TiO2 particles used in this study. (a–d) TEM images of TiO2 particles
in medium of nominal (a) 5 nm (NP1); (b) 10 nm (NP2); (c) 32 nm (NP3); and (d) 490 nm (NP4) size.
The bar corresponds to 500 nm. (e–h) Size distribution measured by static light scattering SLS of (e) np1;
(f) np2; (g) np3; and (h) NP4. See text for details.

2.2. TiO2 Particles Are Located within the Cell

Based on our previous study [9], and others [12–15], we reasoned that TiO2 particles are
endocytosed by Caco-2 cells. To investigate this possibility, we used laser scanning confocal microscopy
identification of 10 nm TiO2 NPs within the Caco-2 cells (Figure 3a–c). We chose 10 nm particles as
these caused an inflammatory response in Caco-2 cells, as shown in our previous study [9]. Three
sections along the z-axis ((a) apical side; (b) within; (c) basal side) of the cells provide information
about TiO2 NPs localization. Confocal images show nuclei (blue) surrounded by actin filaments (red).
Aggregates of 10 nm TiO2 NPs (green) are located at the apical side of the cells (Figure 3a), in the cell
membrane, and within the cell (Figure 3b,c).
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Figure 3. Confocal laser scanning microscopy of Caco-2 cells treated with NP2. (a–c). Monolayers of
Caco-2 cells were treated with 10 nm TiO2 particles (NP2, concentration of 40 µg cm−2 of cell growth
surface) and incubated for 6 h. Cells were stained for actin with Alexa Fluor 633 Phalloidin (red),
nuclei were stained with DAPI (blue) and TiO2 NPs fluorescence (green). The upper panel shows a
cross-section of Caco-2 cells. Shown are three images along the z-axis from the apical side (a) to the
basal side (c) of the epithelium. The blue line in the upper image indicates the position of the image
below, whereas the red line marks the position of the cross-section. Arrows demonstrate TiO2 particles
within the cell membrane and intracellular. The bar corresponds to 30 µm.

2.3. TiO2 NP-Induced Inflammatory Response Is Reduced by Inhibitors of Endocytosis

To further prove that NPs are endocytosed by Caco-2 cells, we used inhibitors of molecules which
are involved in endocytosis (see Figure 1) and measured the NF-κB response of Caco-2 cells after
administration of TiO2 NPs. NP1 and NP2 induced NF-κB activity in Caco-2nfkb-RE cells by a factor
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of 7.0 ± 0.6 and 7.7 ± 0.7, respectively, NP3 and NP4 showed no effect on NF-κB activity (1.0 ± 0.0
and 1.4 ± 0.1, respectively) (Figure 4a). Nystatin (50 µg mL−1), a caveolae-mediated endocytosis
inhibitor, had no effect on NP-induced NF-κB activation. Treatment with 10 µM chlorpromazine
(a clathrin-mediated endocytosis inhibitor) reduced NP-induced luciferase activity by 74% and 75% in
NP1 and NP2, respectively. Dynasore (100 µM) (a dynamin inhibitor) reduced activation of NF-κB
by 68% and 69% in NP1 and NP2, respectively. As actin filaments and microtubules play an essential
role in all types of endocytosis, we investigated the effects of cytochalasin D (0.1 µg mL−1) and
nocodazole (2 µM) on NP-induced NF-κB response. Treatment with cytochalasin D reduced NF-κB
activity by 64% in both, NP1 and NP2 treated cells. Nocodazole reduced NP-induced NF-κB activity
by 45% (NP1) and 42% (NP2). Since NP2 showed pronounced effects, we chose this NP for all further
experiments. Expression of IL8 mRNA, chemokine (C–C motif) ligand 20 (CCL20) mRNA and C–X–C
motif chemokine 10 (CXCL10) mRNA as indicators for inflammatory response of the cell was increased
by 6.7 ± 1.1-fold, 9.6 ± 1.4-fold, and 9.2 ± 2.9-fold 3 h after NP2 exposure compared to untreated
control cells (Figure 4b). Co-treatment with dynasore reduced the response by 76.2%, 66.7%, and
84.3% (IL8, CCL20, CXCL10), cytochalasin D altered the expression by 77.6%, 76.3%, and 87.1% and
nocodazol lowered the reduced the response cells by 59.2%, 77.3%, and 89.5%. Treatment with nystatin
did not change the NP-induced increase in mRNA expression of IL8, CCL20, or CXCL20, while
chlorpromazine only reduced CCL20 expression by 47.3%.
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2.4. Activation of EGFR Is Essential for the Cellular Response to TiO2 NPs 

As receptor mediated endocytosis is often initiated by activating the EGFR receptor, we aimed 
to suppress the NP-induced inflammatory response by pretreatment of Caco-2 cells with EGFR 
inhibitors BIBX 1382 and CL-387785. This treatment resulted in a reduced NF-κB activity in NP2 
treated cells by 51.3% and 44.6%, respectively (Figure 5a), 6h after NPs exposure. Further, 3 h after 
NPs exposure IL8 mRNA, CCL20 mRNA, and CXCL10 mRNA expression was reduced by 81.6%, 

Figure 4. Effect of endocytic inhibitors on luciferase activity of Caco-2nfkb-RE cells and expression of IL8
mRNA, CCL20 mRNA, and CXCL10 mRNA. (a) Treatment of nystatin (50 µg mL−1), chlorpromazine
(10 µM), dynasore (100 µM), cytochalasin D (0.1 µg mL−1), and nocodazole (2 µM) on luciferase
activity of Caco-2nfkb-RE cells 6 h after treatment with NP1, NP2, NP3, or NP4. Before NPs treatment
(concentration of 40 µg cm−2 of the cell growth surface) confluent monolayers of Caco-2nfkb-RE cells
were incubated with inhibitors. Luminescence of treated cells are presented as the fold change to
untreated controls; (b) mRNA expression of IL8, CCL20, and CXCL10 3 h after NP2 exposure pretreated
with the indicated inhibitors. mRNA expression of the treated cells are presented as the fold change
to untreated controls. Mean ± SEM (n ≥ 3). Non-parametric analysis of variance was followed by
Bonferroni post-tests (p < 0.05). Asterisks (*) represent significant differences to NPs treated cells, plus
(+) represent significant differences to untreated controls.

2.4. Activation of EGFR Is Essential for the Cellular Response to TiO2 NPs

As receptor mediated endocytosis is often initiated by activating the EGFR receptor, we aimed to
suppress the NP-induced inflammatory response by pretreatment of Caco-2 cells with EGFR inhibitors
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BIBX 1382 and CL-387785. This treatment resulted in a reduced NF-κB activity in NP2 treated cells
by 51.3% and 44.6%, respectively (Figure 5a), 6h after NPs exposure. Further, 3 h after NPs exposure
IL8 mRNA, CCL20 mRNA, and CXCL10 mRNA expression was reduced by 81.6%, 75.3%, and 73.7%,
respectively, in BIBX 1382 treated cells and by 89.1%, 77.4%, and 73.2%, respectively, in CL-387785
treated cells (Figure 5b).
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2.6. TiO2 NPs Activate EGFR/ERK/ELK Signaling Pathway 
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mRNA, CCL20 mRNA, and CXCL10 mRNA. (a) Effect of BIBX 1382 and CL-387785 on luciferase
activity of Caco-2nfkb-RE cells 6 h after NP2 (concentration of 40 µg cm−2 of the cell growth surface)
treatment. Luminescence of treated cells are presented as the fold change to untreated control;
(b) mRNA expression of IL8, CCL20, and CXCL10 3 h after NP2 exposure pretreated with inhibitors
BIBX 1382 and CL-387785. mRNA expression of the treated cells are presented as the fold change
to untreated controls. Mean ± SEM (n ≥ 3). Non-parametric analysis of variance was followed by
Bonferroni post-tests (p < 0.05). Asterisks (*) represent significant differences to NP2 treated cells, plus
(+) represent significant differences to untreated control cells.

2.5. NPs Are Colocalized with Lysosomes

To gain evidence that TiO2 NP2 after being taken up by endocytosis are transported though the
cell within lysosomes, we used live cell imaging. Caco-2 cells treated with NP2 showed a fluorescence
signal of the NPs (green, Figure 6a), whereas untreated control cells showed no signal (Figure 6d).
Lysosomes labeled by LysoTracker® Red DND-99 are present in NP-treated cells (Figure 6b) and in
untreated control cells (Figure 6e). Overlay of both images indicate NPs localized to lysosomes 3 h
after exposure (marked by the arrows, Figure 6c,f).
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Figure 6. NPs are co-localized with lysosomes. Confluent monolayers of Caco-2 cells (a–c) treated with
NP2 for 3 h and (d–f) untreated control cells, co-incubated with 50 nm LysoTracker® Red DND-99.
Fluorescence imaging of (a,d) NPs (green), visualized by using FITC filter set; (b,e) lysosomes labeled
by LysoTracker® Red DND-99 (red); and (c,f) overlay demonstrated co-localized NPs with lysosomes.
Arrows demonstrate the same position of NPs and lysosomes. The bar corresponds to 25 µm.
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2.6. TiO2 NPs Activate EGFR/ERK/ELK Signaling Pathway

To show that after endocytosis and transport via lysosomes gene expression is mediated via the
known EGFR pathway, we analyzed the downstream elements of the pathway using Western blot and
EMSA analyses. NP2 treatment of Caco-2 cells induced a transient activation of ERK1/2 compared to
untreated control cells since levels of p-ERK1/2 increased in a time dependent manner until 60 min
after NPs exposure. Activation of ERK1/2 faded 90 min after NPs exposure (Figure 7a). To analyze the
involvement of EGFR in the NP-induced ERK activation we used EGFR inhibitor BIBX 1382. As shown
by Western blot analysis p-EKR1/2 was induced 30 min after NPs and EGF stimulation by a factor of
2.5 ± 0.4 and 4.2 ± 0.9 compared to untreated control cells, and was completely abolished using BIBX
1382 (Figure 7b).
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Figure 7. TiO2 NPs induced thee EGFR/ERK/ELK signaling pathway. (a) TiO2 NPs induced activation
of p-ERK1/2. Caco-2 cells were stimulated with NP2 (concentration of 40 µg cm−2 of the cell growth
surface) for 15, 30, 45, 60, and 90 min. Phosphorylated ERK1/2 was evaluated by Western blot analyses
as shown in the upper row and presented in the bar diagram as the fold change to unstimulated
samples = 0 min. Expression of p-ERK1/2 was normalized to total protein expression measured
by densitometry; (b) the effect of EGFR inhibitor BIBX 1382 on NP- and EGF-induced ERK1/2
phosphorylation. Caco-2 cells were pre-treated with the inhibitor and exposed to NP2 or 100 ng mL−1

EGF for 30 min or remained untreated (w/o inhibitor). Treated samples are presented as the fold
change to the untreated control sample; (c) TiO2 NPs induced binding capacity of ELK1. Caco-2 cells
were stimulated with NP2 for 15, 30, 45, and 60 min. ELK1 binding was measured by EMSA and shown
as the binding complex of ELK1 and ELK1-specific biotin-labeled oligonucleotides. For competition
reaction (comp.) a 1000-fold molar excess of unlabeled oligonucleotides were used. Binding capacity
was quantified by densitometry and treated samples are presented as the fold change to the untreated
control. Presented are representative blots of n ≥ 3 independent experiments; (d,e) mRNA expression
analyses of CCL2 (d) and CXCL3 (e) in Caco-2 cells. Caco-2 cells were pre-treated with 50 µM BIBX
1382 and exposed to NP2 or remained untreated for indicated time. The expression of CCL2 mRNA
and the expression of CXCL3 mRNA was determined and values of the treated samples are presented
as the fold change to the untreated control sample at the same time point. All data are presented the
mean ± SEM of n ≥ 3 independent experiments. One- and two-way ANOVA, followed by Tukey’s
multiple comparisons test (p < 0.05) were conducted. Asterisks (*) represent significant differences to
untreated control w/o inhibitor, plus (+) represent significant differences to NP2 or EGF-treated cells
without inhibitor.
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The best-studied nuclear target of phosphorylated ERK1/2 is the transcription factor ELK1 [20].
Stimulation with NP2 increased the binding of ELK1 to its DNA recognition site (Figure 7c) and
declined 60 min after NPs treatment. Densitometric analyses revealed a 1.8 ± 0.5-fold increase of the
binding complex compared to untreated control. Expression analysis revealed an increase by factor
11.0 ± 2.6 and 12.6 ± 5.3 3 h after NPs exposure of CCL2 and CXCL3 mRNA, respectively (Figure 7d).
6 h after NPs treatment mRNA expression of CCL2 and CXCL3 was induced by 4.8 ± 0.4-fold and by
3.3 ± 0.5-fold, respectively. Pre-incubation with EGFR inhibitor BIBX 1382 decreased the NP-induced
mRNA expression of CCL2 and CXCL3 after 3 h by 77% and by 70%, and after 6 h by 54% and 58%.

3. Discussion

Although it has been shown that intestinal epithelial Caco-2 cells exposed to TiO2 NPs induced a
transient inflammatory response, the interaction mechanism of TiO2 NPs with the cell surface remains
unclear. By CLSM we were able to show that TiO2 NPs are internalized in Caco2-cells (Figure 3)
and confirmed previously-published data using TEM [16–18,21]. The mechanism of internalization is
still unknown. Some studies suggest that TiO2 NPs are internalized by endocytic mechanisms [12]
or an interaction with the Toll-like receptor 4 [10,11]. To gain deeper insight into potential uptake
mechanisms, we focused on endocytic pathways and EGFR, which is influenced by NPs [22,23].

As shown in Figure 1, four different mechanisms (micropinocytosis, clathrin-mediated endocytosis,
caveolae-mediated endocytosis, and endocytosis independent of clathrin and caveolae [19]) are known
in epithelial cells. Actin and microtubule dynamics are involved in all types of endocytosis [24,25]. Our
results showed that TiO2 NP-induced NF-κB response was reduced by cytochalasin D, which inhibits
actin polymerization [26,27] and in part by nocodazole, which depolymerizes microtubules [28,29]
(Figure 4a). Expression analyses of typical inflammatory genes [30] confirm these observations: TiO2

NPs of 5 nm and 10 nm induced expression of different inflammatory markers, as shown in our
previous study [9], and were reduced by treatment with cytochalasin D and nocodazole (Figure 4b). It
can be concluded that an intact cytoskeleton is essential for internalization of TiO2 NPs in Caco2 cells
as has been demonstrated in human keratinocytes [31], alveolar macrophages, [32] and fibroblasts [33].

Transport within cells requires forming of subcellular structures. In Caco-2 cells these vesicles
can be formed caveolae-mediated [15], clathrin-mediated [34], dynamin-dependent [35], and clathrin-
and caveolae-independent [36]. To investigate the mechanism involved, we used specific inhibitors
of the key molecules: First, we used nystatin, a sterol-binding drug, which prevents the formation of
lipid rafts [37]. Although there have been reports that nystatin inhibits cellular uptake of TiO2 NPs
in Caco-2 cells [12] as well as in intestinal rainbow trout cells [38], we could not detect an altered
cellular response to TiO2 NPs after treatment with nystatin (Figure 4) at concentrations which do not
alter cell viability. Next, we treated Caco-2 cells with chlorpromazine. This cationic amphiphilic drug
prevents coated pit assembly at the cell surface in clathrin-mediated endocytosis (CME) [39]. CME is
characterized by the formation of a clathrin lattice around the invaginated membrane. This premature
vesicle is pinched off by the GTPase dynamin to form clathrin-coated vesicles (CCV) [40]. We observed
a reduction in the NP-induced NF-κB activation in Caco-2 cells (Figure 4a) but we could not detect an
influence in the expression of IL8 mRNA and CXCL10 mRNA (Figure 4b). Therefore, we suggest the
inflammatory response to TiO2 NPs in Caco-2 cells is only partly mediated by clathrin. This confirms
a previous study, which has shown an involvement of CME in the uptake of TiO2 NPs in Caco-2
cells [12].

Clathrin-dependent endocytosis is mostly associated with receptor-mediated endocytosis [22],
and NPs induced an EGFR mediated signaling pathway via extracellular signal-regulated kinase (ERK)
in lung epithelial cells [41,42]. We, thus, examined the effect of EGFR kinase inhibitors BIBX1382 [23]
and CL-387785 [43] to the cellular response of TiO2 NPs. Both block phosphorylation of tyrosine kinase
and prevent activation of downstream signal transduction pathways. The NP-induced activation of
NF-κB and mRNA expression of IL8, CCL20, and CXCL10 was decreased after treatment with EGFR
inhibitors (Figure 5a,b). The results demonstrate that activation of EGFR is essential for initiating
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cellular response to TiO2 NPs. We assume TiO2 NPs activate EGFR and will be internalized into
vesicles. As receptor-ligand interactions are very specific, it is most likely that recognition is not based
on the metallic TiO2, but on some of the proteins present in the protein corona [44–46].

As activation of EGFR is required for cellular response to TiO2 NPs, we further analyzed
downstream effectors of EGFR. ERK1/2 is part of the Ras/Raf/MEK/ERK signal transduction
cascade [47]. Our results show that NPs induced phosphorylation of ERK1/2 (Figure 7). This activation
was followed by an increased binding capacity of the transcription factor ELK1 and an increased mRNA
expression of ERK1/2 target genes CCL2 and CXCL3 [48]. The NP-induced activation was reduced
after EGFR inhibition. Various studies using different types of NPs have shown an activation of ERK
signaling pathway [49,50] with a previous activation of EGFR in epithelial cells [51–55]. Further, it was
shown that the expression of CCL2 and CXCL3 mRNA was increased after different inflammatory
stimuli and was part of an inflammatory response, mediated by EGFR [56,57].

In conclusion, we show that in Caco-2 cells TiO2 NPs, probably due to their protein corona,
are recognized by EGFR, which is internalized via clathrin-dependent and clathrin-independent
mechanisms, but not by caveolin-mediated endocytosis. The involvement of cytoskeletal, as well
as dynamin, in this endocytosis process has been documented. TiO2 NPs activate the complete
EGFR/ERK/ELK signaling pathway, including the expression of the effector mRNA CCL2 and CXCL3.

4. Material and Methods

4.1. Preparation of TiO2 NPs

Titanium (IV) dioxide (anatase) particles were obtained from Alfa Aesar (Alfa Aesar GmbH and
CoKG, Karlsruhe, Germany). Four differently-sized particles were used: 1. 5 nm (NP1; Stock Number
44689, Lot F11T023, specific surface area (SSA) 210 m2 g−1), 2. 10 nm (NP2; Stock Number 44690,
Lot B19T020; SSA 120 m2 g−1), 3. 32 nm (NP3; Stock Number 39953, Lot F23T043, SSA 51 m2 g−1) and 4.
490 nm (NP4; Stock Number 36199, Lot G02S013; SSA not specified). Stock dispersions of all particles
were prepared with deionized water to a final concentration of 2 mg mL−1. The dispersion was
sonicated at 23 KHZ and 150 W (MSE Ltd., London, UK) for 2 min and finally autoclaved. Immediately
before treatment of the cells the dispersion was diluted in culture medium as indicated below.

4.2. Nanoparticle Characterization

Characterizations of the particles were performed by transmission-electron microscopy (TEM)
using freeze-fracture preparation technique and by static light scattering (SLS). Sonicated and
autoclaved stock solutions of NPs were diluted 1:10 in cell culture medium and cryoprotected
by immersion in glycerol solution. Samples were cryofixed into melting Freon 22 and liquid
nitrogen. Freeze fracturing took place at −120 ◦C with a BAF 400 (Bal-Tec, Balzers, Liechtenstein).
Freeze-fractured specimens were replicated by application of Pt/C and C by electron-gun evaporation.
The replicas were cleaned in concentrated sodium hypochlorite and in acetone and examined with
a Tecnai 10 (FEI Company, Hillsboro, OR, USA) transmission-electron microscope operated at 80 kV.
Size measurement of single particles and particle aggregations using the TEM images was conducted
with the program “Bild-Vermessen 1.0” (CAD-KAS Kassler Computersoftware GbR, Markranstädt,
Germany). At least 30 single particles and 20 aggregates of the different NPs were measured. Particle
size distribution was measured by SLS using a LS 230 (Beckmann Coulter, Krefeld, Germany).
The particle dispersion was dosed into the instrument without special sample preparation. The volume
fraction-length mean diameter was measured.

4.3. Cell Culture

Human colon adenocarcinoma cell line Caco-2 (Toni Lindl, Munich, Germany) between passage
24 and 50 were cultured in Caco-2 medium (45% Dulbecco’s Modified Eagle Medium (DMEM),
low glucose, 45% Ham’s F12, 9% fetal calf serum (FCS), 0.9% non-essential amino acids) (all PAA
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Laboratories GmbH, Austria), and insulin (10 µg mL−1) (Biochrome AG, Berlin, Germany) at 37 ◦C and
5% CO2. For all experiments cells were seeded at a density of 1× 105–2× 105 cells cm−2. TiO2 particles
were added to the cells at a final concentration of 40 µg cm−2 cell growth surface as this concentration
is in accordance with the observed exposure in humans [2] and in the range of other comparable
references [3,5,18,58]. We determined the time we exposed the cells to NPs prior to the described
experiments by a number time course analyses.

4.4. mRNA Expression Analysis

For mRNA expression analysis cells were seeded in 24-well or six-well culture plates (Sarstedt AG
and Co., Nümbrecht, Germany). After reaching confluency, TiO2 particles of indicated sizes or water
(control) were added at a final concentration of 40 µg cm−2 cell growth surface. At indicated time points
cells were washed twice with PBS and proceeded to RNA extraction. RNA was extracted using the
GeneJET RNA Purification Kit (Thermo Fisher Scientific GmbH, Dreieich, Germany) and first-strand
cDNA synthesis was prepared using a RevertAid™ H Minus First Strand cDNA Synthesis Kit (Thermo
Fisher Scientific GmbH, Dreieich, Germany) as described by the manufacturer. Real-time PCR was
performed on a 7500 Real-Time PCR Systems (Life Technologies Inc., Carlsbad, CA, USA) using HOT
FIREPol® EvaGreen® qPCR Mix Plus ROX (Solis BioDyne, Tartu, Estonia). Sequences of primers (used
at 0.2 µM) were as follows: B2M (Beta-2 microglobulin) forward: GCAAGGACTGGTCTTTCTATCT,
reverse: TAACTATCTTGGGCTGTG-ACAAA; CCL2 (chemokine (C–C motif) ligand 2) forward: CCCA
AAGAAGCTGTGATCTTCA; reverse: TCTGGGGAAAGCTAGGGGAA, CCL20 (chemokine (C–C
motif) ligand 20) forward: CGAATCAGAAGCAGCAAGCAA, reverse: TTGCGCACACAGACAACTTT;
CXCL3 (chemokine (C–X–C motif) ligand 3) forward: CCCAAACCGAAGTCATAGCCA, reverse:
ACCC TGCAGGAAG-TGTCAA; CXCL10 (chemokine (C–X–C motif) ligand 10) forward: GCCATTCT
GATTTGCTGCCTT, reverse: GCTCCCCTCTGGTTTTAAGGA; GAPDH (glyceraldehyde 3-phosphate
dehydrogenase) forward: AGAGCACAAGAGGAAGAGAGAG, reverse: GGTTGAGCACA GGGTAC
TTTATT; IL8 (interleukin 8) forward: CACCGGAAGGAACCATCTCA, reverse: TGGCAAAACTG
CACCTTC-ACA. Parameters for qPCR were as follows: 95 ◦C for 15 min, 40 cycles of 10 s at 95 ◦C,
30 s at 60 ◦C, and 30 s at 72 ◦C. After cycling, melting curve analysis was performed. Expressions of
the different genes was normalized to the expressions of GAPDH and B2M and compared to control.

4.5. NF-κB Reporter Gene Assay

Caco-2nfkb-RE [9] cells were seeded in 96-well plates (Corning Incorporated, New York, NY,
USA). At confluency, inhibitors of endocytosis were added to the cells and incubated as indicated
below. Subsequently, cells were treated with TiO2 NPs or water (control) at a final concentration of
40 µg cm−2 cell growth surface. After 6 h cells were harvested and luciferase activity was measured
for 5 s in a CHAMELEON™ V plate reader (Hidex, Finland) using Beetle-Juice substrate (PJK GmbH,
Kleinblittersdorf, Germany) according to the manufacturer’s instructions. Luciferase activity is
expressed in relation to untreated controls.

4.6. Fluorescence and Confocal Laser Scanning Microscopy (CLSM)

Detection of lysosomes was performed by fluorescence microscopy. Caco-2 cells were seeded in
eight-well on cover glass II (Sarstedt AG and Co., Nümbrecht, Germany). At confluency, prepared
medium with TiO2 NPs or water (control) was added. Simultaneously LysoTracker® Red DND-99
(Molecular Probes, Eugene, OR, USA) was added to medium at a final concentration of 50 nM.
After incubation time of 3 h cells were observed by fluorescence microscopy. Co-localization of
lysosomes and NPs was detected by different filter sets. NPs were visualized by using FITC filter
set and LysoTracker® Red DND-99 by using filter set appropriate to Texas Red® dye. To investigate
intracellular distribution of the NPs, confocal laser scanning microscopy was employed. Caco-2
cells were seeded in a removable 12-well chamber (ibidi GmbH, Munich, Germany). At confluency,
prepared medium with TiO2 NPs or water (control) was added. After incubation time of 6 h cells
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were harvested and stained for actin with Alexa Fluor 633 Phalloidin (Molecular Probes, Eugene,
OR, USA) as described by the manufacturer. Nuclei were stained with Dapi-Fluoromount-G™ clear
mounting media (SouthernBiotech™, Birmingham, AL, USA). NPs were excited by a laser at 488 nm
and the emission was measured from 490 nm to 501 nm. Excitation of phalloidin took place by a laser
at 633 nm and emission was measured from 642 nm to 655 nm to allow a clear separation of both
signals. Confocal and fluorescence images were acquired with a confocal laser scanning microscope
TCS SP8 (Leica Microsystems GmbH, Wetzlar, Germany) using a 40× objective and 63× glycerol
immersion objective.

4.7. Western Blot Analyses

Caco-2 cells were seeded in six-well plates (8.87 cm−2 per well) (Sarstedt, Germany) at a density
of 1–2 × 105 cells cm−2. At confluency, prepared medium with 10 nm TiO2 NPs was added to the
cells at a final concentration of 40 µg cm−2 cell growth surface or remained untreated. EGF at a
concentration of 100 ng mL−1 was used as a positive control in the EGFR/ERK signaling pathway
as described [59]. Cells were washed twice with cold PBS and lysed 20 min on ice in RIPA buffer
(Sigma-Aldrich, St. Louis, MO, USA) added with inhibitors (1 mM PMSF, 1 mM Na3VO4, 1× complete
protease inhibitor cocktail (Santa Cruz Biotechnology, Santa Cruz, CA, USA), 1× phosphatase inhibitor
cocktail 3 (Sigma-Aldrich, St. Louis, MO, USA). Lysates were clarified by centrifugation (12,000× g
for 6 min) and protein concentration was measured using bicinchoninic acid assay (BCA) reagent.
40 µg protein from each preparation were separated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) and transferred to a nitrocellulose membrane (Carl Roth GmbH + Co.KG,
Karlsruhe, Germany). Membranes were blocked in 5% (w/v) BSA/TBST (20 mM Tris–HCl (pH 7.6),
150 mM NaCl, and 0.1% (v/v) Tween 20) for 1 h at room temperature. Primary antibody incubation
p-ERK1/2 1:200 (sc-7383, Santa Cruz Biotechnology, Santa Cruz, CA, USA) in 5% BSA/TBST took
place at 4 ◦C overnight, followed by secondary antibody incubation 1:500 in TBST (anti-mouse HRP
(PAB10782, Abnova, Taiwan)) for 2 h at room temperature. The antibody was detected with enhanced
chemiluminescence (ECL) reagent (MBL International Corporation, Woburn, MA, USA) and visualized
with Fusion Solo S (Vilber Lourmat Deutschland GmbH, Eberhardzell, Germany). Densitometry of
the bands was analyzed using FusionCapt Advance Solo 4s software and the ratio of p-ERK to total
protein, detected by Ponceau staining, was determined. Expressions of the treated samples were set in
relation to the untreated control sample. Experiments were performed at least three times.

4.8. Electrophoretic Mobility Shift Assay (EMSA)

Binding of ELK1 was investigated by non-radioactive EMSA using a LightShift EMSA Optimization
and Control Kit (Thermo Fisher Scientific Inc., Waltham, MA, USA) according to manufacturer’s
protocol. In detail, Caco-2 cells were seeded in six-well plates (Sarstedt AG and Co, Nümbrecht,
Germany) at a density of 1–2 × 105 cells cm−2. At confluency, cells were stimulated with 10 nm TiO2

NPs at a final concentration of 40 µg cm−2 cell growth surface or remained unstimulated. Cells were
washed twice with ice cold PBS and lysed 20 min on ice in lysis buffer (10 mM HEPES, 1.5 mM MgCl2,
10 mM KCl, 1 mM DTT, 1 mM PMSF, 1× complete protease inhibitor cocktail (Santa Cruz Biotechnology,
Santa Cruz, CA, USA)) adapted from [60]. Cells were scraped, placed in a microliter tube, and
centrifuged 20 min at 11,000× g at 4 ◦C to separate cytosolic and nuclear fractions. Supernatant was
decanted and pellet was suspended in extraction buffer to lyse nuclei (20 mM HEPES, 1.5 mM MgCl2,
0.42 M NaCl, 0.2 mM EDTA, 25% (v/v) glycerol, 1 mM DTT, 1 mM PMSF, 1× complete protease
inhibitor cocktail, [60]). 2 µg of nucleus extraction were used for binding reaction with biotin-labeled
DNA for ELK1: 5′-TTTGCAAAATGCAGGAATTGTTTTCACAGT-3′ [61]. Samples were separated by
6% native polyacrylamide gel and transferred to a nylon membrane (GE Healthcare, Little Chalfont,
UK). Biotin was detected with peroxidase-coupled streptavidin and ECL (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) and visualized and quantified with Fusion Solo S (Vilber Lourmat Deutschland
GmbH, Eberhardzell, Germany). Densitometry of the binding complex was analyzed using FusionCapt
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Advance Solo 4s software and expressions of the treated samples were set in relation to the untreated
control sample. Experiments were performed at least three times.

4.9. Cell Treatment

To investigate the mechanisms involved in the TiO2 NPs-induced inflammatory response in Caco-2
cells, we used various inhibitors of endocytic processes (Figure 1, Table 1). Confluent monolayers of
Caco-2 cells were pre-incubated with inhibitors (cytochalasin D (AppliChem, Darmstadt, Germany),
nocodazole (AppliChem, Darmstadt, Germany), nystatin (AppliChem, Darmstadt, Germany),
dynasore (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), chlorpromazine (Sigma-Aldrich,
St. Louis, MS, USA), BIBX 1382 (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), and CL-387785
(Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA)). The final concentrations that were used in
medium, incubation time, and effect of inhibitors are summarized in Table 1. After pre-incubation,
the medium with TiO2 NPs or water (control) was added at a final concentration of 40 µg cm−2 cell
growth surface and incubated for 3 h or 6 h. Cytotoxic activity was tested by the ToxiLight™ bioassay
kit (Lonza Group AG, Walkersville, MD, USA). No cytotoxic effect was observed for inhibitors at the
used concentration (data not shown). After particle treatment, cells were washed twice with PBS and
further treated with the stated methods.

Table 1. Inhibitors used in this study. Presented are the effects of the inhibitors, the corresponding
reference for the used concentration, and pre-incubation time.

Inhibitor Effect Reference Concentration Preincubated Time

Cytochalasin D Inhibits actin polymerization [26,27] 0.1 µg mL−1 30 min
Nocodazole Depolymerizes microtubules [28,29] 2 µM 30 min

Nystatin Inhibits Caveolae-dependent endocytosis [37] 50 µg mL−1 30 min
Dynasore Inhibits dynamin [62,63] 100 µM 1 h

Chlorpromazine Inhibitor of clathrin-mediated endocytosis [35,64] 100 µM 1 h
BIBX 1382 EGFR kinase inhibitor [23] 46 µM 1 h
CL-387785 EGFR kinase inhibitor [43] 20 µM 3 h

Epithelial growth factor (EGF) at a concentration of 100 ng mL−1 was used as a positive control
in the EGFR/ERK signaling pathway, as described [61]. A confluent monolayer of Caco-2 cells
was incubated for 1 h with 50 µM BIBX 1382 and subsequently stimulated with NPs, EGF, or left
unstimulated. After treatment, cells were washed twice with cold PBS and processed as described
above. Results of the treated cells are presented as the fold change to untreated cells.

4.10. Data Analysis

We performed every experiment with, at least, replicate samples for each treatment with the
appropriate controls carried out on three different days (i.e., at least technical duplicates with three
biological replicates). Data of RT-qPCR were analyzed using the delta-delta Ct method [65]. Results are
presented as means ± standard error (SEM) and expressed as the fold change to the untreated control.
Statistical analysis was carried out using GraphPad Prism 4 software (GraphPad Software, Inc., La Jolla,
CA, USA). After testing for Gausian distribution (Kolmogorov-Smirnoff test) and homogeneity of
variance (Levene test) comparisons of the groups were either carried out by non-parametric analysis,
followed by Bonferroni post-tests or by ANOVA, followed by Tukey’s multiple comparison test.
Differences were considered to be statistically significant at p < 0.05.
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