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Metabotypes with properly 
functioning mitochondria and anti-
inflammation predict extended 
productive life span in dairy cows
K. Huber1, S. Dänicke2, J. Rehage3, H. Sauerwein4, W. Otto5, U. Rolle-Kampczyk6 &  
M.  von Bergen5,6,7

The failure to adapt metabolism to the homeorhetic demands of lactation is considered as a main 
factor in reducing the productive life span of dairy cows. The so far defined markers of production 
performance and metabolic health in dairy cows do not predict the length of productive life span 
satisfyingly. This study aimed to identify novel pathways and biomarkers related to productive life in 
dairy cows by means of (targeted) metabolomics. In a longitudinal study from 42 days before up to 100 
days after parturition, we identified metabolites such as long-chain acylcarnitines and biogenic amines 
associated with extended productive life spans. These metabolites are mainly secreted by the liver and 
depend on the functionality of hepatic mitochondria. The concentrations of biogenic amines and some 
acylcarnitines differed already before the onset of lactation thus indicating their predictive potential for 
continuation or early ending of productive life.

Dairy cows selected for high milk yield have an intrinsic high risk for metabolic disorders postpartum1–3. The 
adaptation to the onset of lactation requires a highly flexible metabolism with effective utilization of nutrients 
for fuelling milk production, maintenance and immune function. However, most modern dairy cows have very 
short production life spans due to the development of several, often severe diseases related to energetic imbalance 
and metabolic dysregulation. Characterization of dysregulated metabolic pathways and identification of early 
biomarkers for such dysregulation would be of great advantage. For dairy cows identified as being at a high risk 
for dysregulation, preventive interventions could be timely initiated at the level of the individual cow, e.g. by diet. 
In the long term, the phenotypic information about a low risk for dysregulation could be used in breeding to 
improve animal health and productive life span of dairy cows.

Classical markers such as non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHBA) and insulin 
concentrations are of low predictive value to identify cows which are not adequately able to actually match the 
genetically defined milk production performance. High lipid mobilization as reflected by high plasma NEFA con-
centrations is the most commonly accepted metabolic response, which is supposed to predict metabolic imbal-
ance in dairy cows. However, high mobilizing cows are often just not metabolically dysregulated and cope very 
well with the metabolic changes provoked by parturition and the onset of lactation4,5. Thus, novel biomarkers of 
not yet considered pathways in the metabolism of the dairy cow need to be identified.

In human medicine, metabolomic approaches were used to identify patients/individuals with high risks to 
develop metabolic diseases and to detect genetic defects in specific pathways6,7. Metabolic phenotypes of patients 
could thereby be established and biomarkers for dysregulated pathways were identified. Besides a general, 
most often only semiquantitative profiling, there is also the opportunity of quantitative profiling using many 
targeted multiple reaction monitoring (MRM)-based mass spectrometric assays in a scheduled MRM setting. 
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A commercialized and nowadays widely used selection of targeted quantifications is provided by Biocrates 
(Salzburg, Austria). The selection of quantified metabolites focuses on lipid metabolites, but covers also nearly 
all amino acids and many biogenic amines. Consequently, this metabolite panel has been proven to be useful in 
large-cohort studies, focusing on identifying novel biomarkers indicating human individuals at high risk for dis-
ease related to metabolic syndrome and diabetes type 28. Recently, also in dairy research metabolomic approaches 
were performed in body fluids by GC-TOF/MS or triple quadrupole MS using the Biocrates metabolite panel9–11. 
Imhasly et al.10 studied the transition from gestation to early lactation but focused on hepatic lipidosis; the stage 
of hepatic lipidosis was confirmed by liver biopsy sampling in those cows. Hailemariam et al.11 studied the differ-
ence in 12 cows, from which six became ill during the periparturient period. In their study the time points − 4, 
−1, 1, and 4 weeks in relation to parturition were analyzed. In contrast to those studies that were successfully 
defining molecular markers for evident diseases we stratified the animals by different criteria. In this study we 
aimed at identifying markers and (patho-) physiological processes in phenotypically healthy individuals that have 
a predictive value for later occurring health disturbances which may reduce the productive life span. Therefore we 
compared animals that were healthy for the entire lactation period versus those remaining healthy during the per-
iparturient period from day − 42 until day + 100 but left productive life thereafter within the current lactation. We 
performed a targeted metabolomics approach in blood serum samples collected at different time points within 
the periparturient period of dairy cows to assess the dynamic changes in metabolite concentrations in plasma. 
The results of metabolic phenotyping were then linked to health status und length of productive life of these cows. 
Thus, the study aimed to describe a metabolic profile which may allow identification of a novel health metabotype 
predictive for metabolic flexibility and thereby, length of a cow’s productive life span.

Results and Discussion
Animal grouping. According to the cow’s history, the time of leaving productive life as grouping criterion 
revealed two groups. Group LE (=  Left productive life Early) comprised 8 cows that were clinically healthy until 
day  +100, but left productive life within the current lactation due to various health and fertility problems where-
upon it was decided to cull them. Group H (=  Healthy) consisted of 11 cows that were clinically healthy during 
the trial and finished the current lactation without any signs of clinical illness (details see Methods chapter).

Characterization of phenotypes. Classical data describing the metabolic situation of dairy cows, includ-
ing performance data such as dry matter intake (DMI), energy balance (EB), daily amount of fat corrected milk 
(FCM, kg/d) and 200 days milk amount (kg), were also assessed in the LE and H cows throughout the ante par-
tum (ap) period and during lactation, respectively12. Imbalanced cows were commonly discussed to show exces-
sive lipid mobilization with high plasma NEFA and BHBA, fatty liver and insulin resistance1.

However, DMI and EB of the 19 cows of groups LE and H were not significantly different (Table 1). Likewise, 
daily milk performance (LE: 35.5 ±  1.3 kg FCM/d, H: 33.7 ±  1.2 kg FCM/d) and 200 d lactation performance (LE: 
6965 ±  484 kg, H: 7444 ±  296 kg) were similar in both groups. Plasma NEFA, BHBA and insulin concentrations 
showed the characteristic periparturient time course with an increase in NEFA and BHBA pp, while insulin 
decreased (Table 1). Again, no statistically significant difference was observed between LE and H cows. Obese 
cows over-conditioned in late pregnancy were discussed to be at high risk for metabolic disorders pp13. BFT, BCS 
and plasma leptin concentrations were therefore used to describe the initial situation regarding over-conditioning 
at day − 42 of the cows used in this study. However, BFT (Table 1), BCS (LE: 3.26 ±  0.16, H: 3.32 ±  018) and leptin 
(LE: 8.57 ±  0.68 ng/ml, H: 10.9 ±  1.12 ng/ml) were not significantly different between LE and H groups. To define 
“obesity” in LE and H cows more accurately, liver triglyceride accumulation (LTAG), visceral adipose tissue (VAT) 
amount and plasma adiponectin concentration were determined throughout the periparturient period by ELISA 
and ultrasound measures, respectively. LTAG was not different in both groups (Table 1); however, H cows had 
higher amounts of VAT than LE cows throughout the periparturient period (Table 1). Consistently, since adi-
ponectin is highly synthesized by VAT14, H cows also had higher adiponectin concentrations in plasma, especially 
around parturition (Table 1). Therefore, it can be suggested that an adequate amount of adiponectin-producing 
visceral adipose tissue was a physiological prerequisite in dairy cows to maintain metabolic balance throughout 
lactation. Adiponectin is an adipokine with insulin sensitizing effects, thereby contributing to metabolic health in 
humans15, and most likely also in cows14.

Grouping and identification of grouping variables. Considering physiological (DMI, EB, glucose, 
NEFA, BHBA, glycerol, insulin, LTAG, VAT, BFT) and metabolomics markers, at day − 42, PCA of both did not 
reveal any separation of groups (Fig. 1a,b). Only at day + 3 the PCA of physiological markers indicated a clear 
separation of the two different groups in the cohort (Fig. 1c), while PCA of metabolomics markers showed lower 
power to discriminate between the two groups (Fig. 1d). However, at day + 21 (Fig. 1e,f) and more pronounced, 
at day + 100 (Fig. 1g,h) the PCA of metabolomic markers indicated a clear separation of LE and H group, while 
physiological markers did not reveal any separation. The distribution of metabolites in the comparison of LE 
versus H revealed over all time points a significant up-regulation of certain metabolites in the H group (Fig. 2).

Key metabolites indicating properly functioning mitochondria. The capacity to utilize substrates, 
especially fatty acids, for generating of ATP in the respiratory chain requires effective oxidative pathways in mito-
chondria and is suggested to be an essential prerequisite for metabolic health. The carnitine and acylcarnitine 
pathway belongs to that capacity and was of particular importance for discriminating the LE versus the H group. 
Carnitine, synthesized from lysine and methionine in a PPARα -dependent manner in liver, brain and kidney or 
ingested with the diet, is essential for mitochondrial fatty acid oxidation and improves glucose homeostasis16. H 
group cows had higher carnitine concentrations throughout the periparturient period, which was especially obvi-
ous at day 100 (Fig. 3a). Concomitantly, H cows had higher plasma lysine concentrations indicating better educt 
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Figure 1. Exploratory data analysis to identify metabotypes. Principal component analyses (PCA) of 
physiological (dry matter intake, energy balance, glucose, non-esterified fatty acids, beta hydroxybutyrate, 
glycerol, insulin, liver triglycerides, visceral adipose tissue, back fat thickness) and metabolomics 
(acylcarnitines, proteinogenic and modified amino acids, glycerophospho- and sphingolipids, biogenic amines 
and hexoses) markers at days − 42, + 3, + 21 and +100 related to calving. The two metabotypes, cows left 
productive life early (LE, red dots) and healthy cows (H, green dots) were clearly separated by metabolomics 
markers at day 21 and 100, while physiological markers revealed a clear separation at day + 3 only.
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availability for carnitine synthesis (Fig. 3b). Carnitine was also identified as an outstanding disease biomarker in 
dairy cows developing sickness already during the perparturient period11; however, these cows suffering from 
different production diseases at the time of examination had higher carnitine concentrations in serum within the 
transition period. This was suggested to be the consequence of tissue cell death and organ dysfunction leading to 
release of carnitine and acylcarnitines into serum. The higher carnitine concentrations in H group may support 
effective mitochondrial acylcarnitine formation by carnitine palmitoyl transferase 1 (CPT1), thereby reducing 
oxidative stress and accumulation of reactive oxygen species.

Accordingly, major changes were found in serum concentrations of valerylcarnitine (Fig. 3c), hexadecanoyl-
carnitine (Fig. 3d), octadecanoylcarnitine (Fig. 3e), hexadecadienylcarnitine (Fig. 3f) and octadecadienylcarni-
tine (Fig. 3g). The concentrations of these acylcarnitines were higher in H cows compared to LE cows throughout 
the periparturient period and at any specific time points. The acylcarnitines with double bounds in the fatty acids 
were already lower ante partum in LE cows indicating hexadecadienylcarnitine and octadecadienylcarnitine as 
predictive markers relevant for the risk of developing metabolic dysregulation and for leaving productive life 
early. The biological impact of these differences cannot be defined yet and has to be assessed by further stud-
ies. However, these findings led to the hypothesis that higher levels of acylcarnitines in serum of H cows may 
reflect their capacity to adapt mitochondrial functions properly to the metabolic situation postpartum. Probably 
hepatic mitochondria are primarily affected, because the liver is discussed to be the main source of serum acyl-
carnitines16. This could also be suggested for the dairy cow, especially during the transition from pregnancy to 
lactation when most of ATP is produced by fatty acid oxidation in the liver. However, it was unlikely that the 
greater concentrations of carnitine and acylcarnitine in serum from H cows were associated with enhanced liver 
cell death and organ dysfunction. While aspartate transaminase was similar in H and LE cows (Fig. 4a), gamma 
glutamyl transferase, as a well-known marker for hepatocyte integrity of dairy cows17, was significantly lower 
in H cows compared to LE cows indicating a less affected liver function in H cows (Fig. 4b). Thus, higher levels 
of acylcarnitines in serum of H cows appeared to be beneficial. It is suggested that this reflects a greater ability 
of hepatocytes to release any surplus of carnitine and acylcarnitines from the mitochondria to avoid mitochon-
dria damage. Specific transporters existed in membranes of cells and mitochondria for the uptake or release 
of carnitine (SLC22A5, OCTN2; novel organic cation transporter 2) and of acylcarnitines (SLC16A9; MCT9, 
monocarboxylate transporter 9)16. The OCTN2 is known to be upregulated in livers of early lactating cows18 
and to be stimulated by PPARα  and proinflammatory cytokines in bovine kidney cells19. Since hepatocytes are 
highly capable of synthesizing carnitine, especially in early lactation16,18, an uptake of carnitine appeared to be 
biologically unnecessary. This indicates an important role of OCTN2 for carnitine export from liver for the use 
in other peripheral tissues. Information about the existence and regulation of MCT9 transporters in bovine liver 
is not available so far.

Figure 2. Visualization of changes in metabolite patterns by Volcano Plot. Statistical evaluation of group 
differences by t-test (visualized by Volcano Plot; it plots fold-changes versus significance on the x and y axes, 
respectively, for all metabolomic data) revealed significant upregulation (shift to the left) of certain metabolites 
in the healthy cow (H) group compared to the group of cows left productive life early (LE). Each colored dot 
represents one metabolite. Thus, the most-meaningful changes were identified. In a second evaluation step, 
these metabolites were tested by Two Way ANOVA for the factors group and time to identify metabolic markers 
associated with health and extended productive life (see Figures 3–5).
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To summarize, in addition to the fact that the liver is also the main source for serum acylcarnitines16, carni-
tine ester concentrations in bovine liver tissues were very low postpartum18. These findings support the above 
mentioned hypothesis that an increased hepatic export of carnitine and acylcarnitines is an important adaptive 
process in early lactating dairy cows. Thus, the liver may allocate the excess of carnitine and acylcarnitines to 
other peripheral tissues including mammary gland, and thereby support effective oxidative energy production in 
peripheral tissues and avoid liver cell damage by accumulation of fatty acid degradation intermediates.

Key metabolites indicating anti-inflammation. Since intracellular accumulation of derivatives of lipid 
metabolism and deprivation of carnitine caused oxidative stress, mitochondrial dysfunction, insulin resistance 

Figure 3. Carnitine and acylcarnitines in healthy (H) and left productive life early (LE) cows.  
Serum carnitine (a), lysine (b), valerylcarnitine (c), hexadecanoylcarnitine (d), octadecanoylcarnitine  
(e), hexadecadienylcarnitine (f) and octadecadienylcarnitine (g) concentrations in cows that left productive  
life early (LE, black bars, n =  8) or were healthy (H, grey bars, n =  10) as influenced by parturition and onset  
of lactation. Given were means ±  SEM; *p <  0.05, **p <  0.01, ***p <  0.001. Results of repeated measures Two-
Way ANOVA and Sidak’s multi comparison posttest (Graphpad.prism version 6.0) demonstrate effects of time 
and grouping and point out interactions between them (results see Table 2 below).
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and increased pro-inflammatory cytokine expression (reviewed by20), it was expected that a high hepatic capacity 
for release of lipid metabolism intermediates such as acylcarnitines into the blood was connected with less inflam-
mation in H cows. In confirmation, metabolites indicating inflammation, oxidative stress and metabolic aging 
were lower in H cows compared to LE cows. These metabolite patterns belonging to the tryptophan (Trp)/kynure-
nine (Kyn) pathway and to the class of biogenic amines indicated an improved metabolic balance in H cows.

The amino acid Trp was significantly higher in H cows, while its degradation product, Kyn was lower demon-
strating less activated Trp degradation (Fig. 5a,b). Consequently, the Kyn/Trp ratio, an indicator of low-grade 
chronic inflammation in humans21, was lower in H cows (Fig. 5c). In contrast, LE cows had higher Kyn/Trp 
ratios throughout the periparturient period with a massively higher value shortly after parturition. This enhanced 
Trp degradation might reflect the inability of LE cows to avoid metabolic imbalance in a very early period of 
production, most likely based on a low capacity to protect mitochondria by an effective release of acylcarnitines. 
Mitochondrial dysfunction caused secretion of pro-inflammatory cytokines, which stimulated Trp degradation 
to Kyn by the indoleamine 2,3 diaminooxidase (IDO-1)22. This new pathway may indicate low-grade chronic 
inflammation in LE cows, which however did not lead to clinically obvious diseases within the experimental 
period, but compromised the length of their productive life span. Furthermore, Kyn and its degradation inter-
mediates were involved in the development of insulin resistance, especially in obese humans22, in the process 
of inflammageing23 and also in modulation of immune cell function in humans and cows24,25 - pathways which 
might also be affected in high-yielding dairy cows. Thus, the metabolites of the Kyn/Trp pathway should in the 
future also be considered as molecules discriminating balanced and non-balanced metabolic phenotypes in dairy 
cows.

Inflammation and mitochondrial dysfunction also point to pathways underlying the metabolic imbalance in 
LE cows as indicated by the Kyn/Trp ratio and less carnitine and acylcarnitines in serum from day − 42 before 
until day +100 after calving. In confirmation, the concentrations of anti-inflammatory and anti-oxidative bio-
genic amines such as carnosine (Fig. 5d), sarcosine (Fig. 5e) and spermidine (Fig. 5f) were significantly lower in 
LE cows compared to H cows. While sarcosine and spermidine were constantly lower from day − 42 before until 
day 100 after calving without any time-related effect, carnosine showed highest values at day 100 without any 
difference between H and LE cows. However, from day − 42 up to day 21 the concentration of this biogenic amine 
was significantly lower in LE cows.

In general, common effects of biogenic amines such as carnosine, sarcosine and spermidine are 
anti-inflammatory, anti-oxidative and anti-ageing26. Carnosine (β -alanyl-L-histidine) belongs to the non-protein 

Figure 4. Liver enzymes in healthy (H) and left productive life early (LE) cows. Serum aspartate 
transaminase (AST) (a) and gamma glutamyl transferase (GGT) (b) activity in cows that left productive life 
early (LE, black bars, n =  8) or were healthy (H, grey bars, n =  11) as influenced by parturition and onset of 
lactation. Given were means ±  SEM; **p <  0.01. Results of Two-Way ANOVA and Sidak’s multi comparison 
posttest (Graphpad.prism version 6.0) demonstrate effects of time and grouping and point out interactions 
between them (results see Table 3 below).
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nitrogen-containing compounds and is primarily synthesized by muscle cells27. It plays a role in cellular pH buff-
ering, in anti-oxidative protection of the cell by scavenging reactive oxygen species (ROS) and in cellular defense 
against formation of advanced glycoxidation and lipoxidation end-products27,28. The concentration in serum may 
reflect intracellular concentrations; the LE cows may thus have less benefit of carnosine especially from day − 42 
up to day 21 than the H cows. This could indicate less protection against oxidative damage in the first three weeks 
of lactation. The dramatically higher values of carnosine at day 100 in LE cows might reflect muscle cell degrada-
tion and thereby increased carnosine release into serum. Aspartate transaminase activity, as a marker for muscle 
damage, was higher at day 100 in LE cows but this was also the case in H cows (Fig. 4a). Thus, this result is difficult 
to interpret and needs further examination. As day 100 was often noticeable in terms of significant differences in 
metabolite concentrations (carnitine, C5, C16, C18, gamma glutamyl transferase) between LE and H cows, those 
and the increase in carnosine might demonstrate initiation of metabolic dysregulation, which lead to leaving 
productive life early.

Sarcosine (N-methylglycine) is an intermediate product from glycine metabolism and is produced by all 
body cells. As dietary supplements, sarcosine promotes neuroprotection29 and its precursor, betaine, increases 
lean mass, decreases body fat accretion, enhances insulin sensitivity and stimulates growth hormone secretion 

Figure 5. Tryptophan, kynurenine and biogenic amines in healthy (H) and left productive life early 
(LE) cows. Serum tryptophan (a), kynurenine (b), kynurenine/tryptophan ratio (Kyn/Trp) (c), carnosine 
(d), sarcosine (e) and spermidine (f) in cows that left productive life early (LE, black bars, n =  7–8) or were 
healthy (H, grey bars, n =  8–10) as influenced by parturition and onset of lactation. Given were means ±  SEM; 
*p <  0.05, **p <  0.01. Results of Two-Way ANOVA and Sidak’s multi comparison posttest (Graphpad.prism 
version 6.0) demonstrate effects of time and grouping and point out interactions between them (results see 
Table 4 below).
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(reviewed by30). Furthermore, sarcosine can serve as methyl donor, thereby causing epigenetic changes by meth-
ylation of DNA and providing methyl groups for carnitine synthesis30.

Spermidine, a polycationic aliphatic amine (polyamine), is synthesized by somatic cells but also by gut micro-
biota. Its concentrations in the body decrease during the ageing process indicating a linkage to longevity in mice; 
and it is suggested that polyamines increase longevity by decreasing low-grade inflammation in the gut and the 
body26. The capability of spermidine to modulate autophagy, a mechanism responsible for regeneration of cellular 
components and organelles, is discussed to be the major underlying pathway for longevity and other beneficial 
effects of spermidine31. Studies in dairy cows about spermidine effects are not existent to the best of our knowl-
edge. Since polyamines can be also modulated by diet directly or indirectly by dietary modulation of microbial 
population and its polyamine production, these metabolites are not only good candidates as biomarkers for met-
abolic balance but also a target for nutriceutical approaches to improve anti-inflammation and to extend produc-
tive lifetime in dairy cows.

Conclusions
By considering metabolomic data in blood of periparturient dairy cows we suggest the carnitine and acylcarni-
tine production and the capacity for its secretion from hepatocytes as a potentially crucial event in supporting 
a healthy metabotype in the periparturient period. Even if the sample size is limited the identified dysregulated 

Variables Day1 Unit

Groups Two Way ANOVA2

LE H day (d) group (g) d × g

Dry matter intake

− 42

kg/d

16.2 ±  0.8 15.7 ±  0.8

p <  0.0001 n.s. n.s.
+ 3 11.2 ±  0.9 12.1 ±  0.7

+ 21 17.9 ±  1.1 17.5 ±  0.6

+ 100 23.2 ±  0.5 23.4 ±  0.6

Energy balance

− 42

MJ/d

68.2 ±  9.3 58.5 ±  6.9

p <  0.0001 n.s. n.s.
+ 3 − 98.3 ±  13.9 − 87.3 ±  9.7

+ 21 − 43.8 ±  7.7 − 48.5 ±  3.9

+ 100 3.2 ±  4.9 6.9 ±  4.8

Back fat thickness

− 42

mm

7.6 ±  06 10.4 ±  1.6

p =  0.0002 n.s. n.s.
+ 3 13.7 ±  1.5 13.3 ±  1.8

+ 21 11.3 ±  1.8 11.8 ±  1.2

+ 100 5.9 ±  0.3 7.8 ±  1.2

Non-esterified fatty acids 

− 42

mmol/l

0.22 ±  0.04 0.15 ±  0.01

p <  0.0001 n.s. n.s.
+ 3 0.71 ±  0.15 0.73 ±  0.12

+ 21 0.47 ±  0.06 0.40 ±  0.04

+ 100 0.17 ±  0.02 0.19 ±  0.02

Beta-hydroxy-butyrate

− 42

mmol/l

0.57 ±  0.07 0.67 ±  0.05

n.s. n.s. n.s.
+ 3 0.82 ±  0.11 0.87 ±  0.13

+ 21 0.88 ±  0.18 1.12 ±  0.38

+ 100 0.75 ±  0.07 0.72 ±  0.04

Insulin

− 42

mU/l

38.4 ±  9.52 25.1 ±  5.82

p =  0.0061 n.s. n.s.
+ 3 14.6 ±  3.22 18.2 ±  3.69

+ 21 14.4 ±  1.46 18.7 ±  2.89

+ 100 20.8 ±  3.66 20.8 ±  3.01

Liver triglycerides

− 42

nmol/mg

1.5 ±  0.4 0.9 ±  0.1

p <  0.0001 n.s. n.s.
+ 3 25.7 ±  4.4 21.2 ±  5.5

+ 21 35.5 ±  6.3 35.4 ±  11

+ 100 3.5 ±  2.8 2.1 ±  1.5

Visceral adipose tissue

− 42

kg

34.0 ±  4.9 45.6 ±  4.0

p <  0.0001 p =  0.0003 n.s.
+ 3 39.9 ±  6.6 57.1 ±  2.5*

+ 21 29.5 ±  5.5 40.0 ±  3.9

+ 100 22.3 ±  3.2 32.0 ±  4.2

Adiponectin

− 42

μg/ml

27.8 ±  1.9 36.1 ±  4.8

p =  0.0003 p =  0.0428 n.s.
+ 3 19.6 ±  2.4 22.8 ±  1.0

+ 21 25.2 ±  1.7 30.1 ±  0.8

+ 100 28.0 ±  2.3 29.2 ±  1.1

Table 1.  Animal performance and condition data (means ± SEM, LE n = 6–8; H n = 8–11). 1Days related to 
parturition; + ante partum, − postpartum. 2Two Way ANOVA for factor day, group and their interaction was 
performed, and Sidak’s multiple comparison post test (differences between LE and H indicated by *) was used 
(Graphpad.prism Version 6.0).
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pathways in the LE group appeared to be fundamental and evolutionary highly conserved pathways with a strong 
impact for balanced metabolic performance also in other species. Extrapolation of these findings to dairy cows 
world-wide is difficult; however, this study facilitates creation of new hypotheses on metabolic dysregulation and 
energetic imbalance in dairy cows which are not based on detrimental effects of excessive lipid mobilization but 
on consequences of less effective mitochondrial function. Finally, potentially signaling metabolites have to be val-
idated as biomarkers in large-cohort studies to be used for management and feeding programs in dairy herds for 
health protection of individual cows at high risk. Furthermore, these potential new biomarkers, if proven, could 
support genetic selection of sires and dams in dairy breeding to increase the numbers of cows with inherited traits 
for an “extended productive life span” metabotype.

Methods
Animals. All animal experiments were performed in accordance with the German Animal Welfare Act, and 
approved by the Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Oldenburg, 
Germany.

Multiparous Holstein dairy cows of an experimental herd at the Federal Research Facility for Farm Animals 
(FLI) in Braunschweig, Germany, in their second to fourth lactation were used to perform a feeding trial with 
variations in concentrate feeding ante partum (ap) and niacin supplementation ap and up to day 24 pp; the exper-
iment lasted from day − 42 (expected to calving) ap up to day + 100 postpartum (pp) in total. Background data 
such as experimental design, feeding regimen, methods and animal data were already published elsewhere10. The 
feeding regimen did not affect measured animal performance data (dry matter intake (DMI), energy balance 
(EB), body condition score (BCS), back fat thickness (BFT), milk yield) and classical metabolic variables (NEFA, 
BHBA, insulin, liver enzymes) in blood and tissues10. However, inter-individual variation in all measured varia-
bles over time was indicating considerable different individual metabolic responses to the onset of lactation. Thus, 
data were re-analyzed by using the following criteria.

The individual history of the 20 cows - analyzed in-depth in former studies12 - was followed up according to 
the herd recordings regarding the time of leaving productive life.

For identifying new metabotype-grouping variables, serum samples of 19 cows (one sample was lost due to 
technical reasons) were used for a targeted metabolomic approach. Serum samples were selected from day − 42, 
−10 (to expected calving), + 3, + 21 and +100 for analysis. The reasons why cows left productive life early varied 
to some degree. Main reasons were metabolic disorders, related inflammatory production diseases and infertility 
reflected by prolonged first estrus interval pp and low conception rates. Other features from the cows’ histories 
such as genetic origin (fathers), feeding regimen, age, lactation numbers or other aspects were randomly distrib-
uted between the three groups indicating that the ability for metabolic and energetic balance and thereby, health 
and productivity, was a major determinant for grouping.

Metabolomics. For quantification of metabolites, a targeted, standardized and quality controlled met-
abolic phenotyping was performed based on LC/MS-MS analysis. The metabolome analyses were carried out 
using the AbsoluteIDQ®  p180 Kit (Biocrates Life Science AG, Innsbruck, Austria). The kit identifies and quan-
tifies 188 metabolites from 5 compound classes, namely acyl carnitines40, proteinogenic and modified amino 
acids19, glycerophospho- and sphingolipids (76 phosphatidylcholines, 14 lysophosphatidylcholines, 15 sphin-
gomyelines), biogenic amines19 and hexoses (for details see www.biocrates.com/products/research-products/
absoluteidq-p180-kit). All reagents used in the processing and analysis were of LC-MS grade. From the serum 
samples 10 μL were mixed with isotopically labeled internal standard in a multititer plate and dried under 

Variable

Two Way ANOVA

day (d) group (g) d × g

Aspartate transaminase p <  0.0001 n.s. n.s.

Gamma glutamyl transferase p =  0.0007 p =  0.0041 n.s.

Table 3.  Statistical analysis of results demonstrated in Fig. 4. n.s. non significant.

Variable

Two Way ANOVA

day (d) group (g) d × g

Carnitine p <  0.0001 p =  0.0178 p =  0.0967

Lysine p <  0.0001 p =  0.0376 n.s.

Valerylcarnitine p =  0.0022 p =  0.0131 p =  0.0078

Hexadecanoylcarnitine p =  0.0001 p =  0.0065 n.s.

Octadecanoylcarnitine p =  0.0001 p =  0.0141 n.s.

Hexadecadienylcarnitine n.s. p =  0.0004 n.s.

Octadecadienylcarnitine n.s. p <  0.0001 n.s.

Table 2.  Statistical analysis of results demonstrated in Fig. 3. n.s. non significant.

http://www.biocrates.com/products/research-products/absoluteidq-p180-kit
http://www.biocrates.com/products/research-products/absoluteidq-p180-kit
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nitrogen (nitrogen evaporator 96 well plate, VLM GmbH, Bielefeld, Germany). Afterwards the metabolites were 
derivatized with phenylisothiocyanate (PITC) 5% for 20 min at room temperature and subsequently dried for 
30 min under nitrogen flow. For extraction first 300 μL of extraction solvent (5 mM ammonium acetate in metha-
nol) were added and incubated with shaking at 450 rpm (Thermomixer comfort Eppendorf, Hamburg, Germany) 
for 30 min at room temperature followed by filtration by centrifugation (Sigma 2-16 k, Taufkirchen, Germany ) 
for 2 min at 500 ×  g. Subsequently 200 μL were removed from the filtrate, transferred to a fresh multititer deepwell 
plate and diluted with 200 μL of water (LC/MS grade) for LC-MS analysis of biogenic amines and amino acids. To 
the remaining 100 μL from the filtrate 500 μl of MS running solvent were added for flow injection analysis-MS/MS  
measurements (FIA-MS/MS). Both types of measurements were performed on a QTRAP mass spectrometer 
applying electrospray ionization (ESI) (ABI Sciex API5500Q-TRAP). The MS was coupled to an UPLC (Waters 
Acquity, Waters Corporation, Milford, USA). In case of LC-MS the metabolites were separated by an hyphenated 
reverse phase column (Agilent, Zorbax Eclipse XDB C18, 3.0 ×  100 mm, 3.5 μm , Agilent Waldbronn, Germany) 
preceded with a precolumn (Security Guard, Phenomenex, C18, 4 ×  3 mm; Phenomenex, Aschaffenburg, 
Germany) applying a gradient of solvent A (formic acid 0.2% in water) and solvent B (formic acid 0.2% in ace-
tonitrile) over 7.3 min (0.5 min 0% B, 5 min 70% B, 0.3 min 70% B, 2 min 0% B) at a flow rate of 500 μl/min. Oven 
temperature was 50 °C. For LC-MS analysis 10 μl and for FIA 2 times 20 μl for measurements in positive and neg-
ative mode were subjected. Identification and quantification were achieved by multi reaction monitoring (MRM) 
standardized by applying spiked-in isotopically labelled standards in positive and negative mode, respectively. For 
calibration a calibrator mix consisting of 7 different concentrations was used. Quality controls were included for 3 
different concentration levels. For FIA an isocratic method was used (100% organic running solvent) with varying 
flow conditions (0 min, 30 μL/min; 1.6 min 30 μL/min; 2.4 min, 200 μL/min; 2.8 min, 200 μL/min; 3 min 30 μL/min),  
and the MS settings were as follows: scan time 0.5 s, IS voltage for positive mode 5500 V, for negative mode 
− 45000 V, nitrogen as collision gas medium, source temperature 200 °C; the according parameters for LC-MS 
were scan time 0.5 s, source temperature 500 °C, nitrogen as collision gas medium).The integrated MetIDQ soft-
ware (Biocrates, Innsbruck, Austria) streamlines data analysis by automated calculation of metabolite concentra-
tions providing quality measures and quantification.

Bioinformatic evaluation. Metabolomic data of cows grouped according to their history were evaluated 
by discriminant analysis to verify grouping using the free software package R (www.r-project.org). Furthermore, 
metabolomes of cows grouped according to their history were compared at each time point by Vulcano Plots (R 
software). This method was used to visualize differences between the two groups and to identify the metabo-
lites which vary significantly between the groups regarding their fold-change. The principal component analysis 
(PCA) of the samples was performed with the princomp function of GNU R. The analyte concentrations were 
normalized by calculation of the standard score. Cows grouped according to their history were tested for signif-
icance of difference in those highly varying metabolites by using repeated measures (rm) Two Way ANOVA and 
Sidak’s multi comparison posttest (Graphpad.prism version 6.0). Values were given as means ±  SEM, LE group 
n =  8, H group n =  11, if not otherwise stated in the figure legends. Full sample size could often not be considered 
for rm Two Way ANOVA due to single missing values at single time points. A p-value <  0.05 was considered to 
be significant.

References
1. Ingvartsen, K. L. Feeding- and management-related diseases in the transition cow. Physiological adaptations around calving and 

strategies to reduce feeding-related diseases. Anim. Feed Sci. Technol. 126, 175–213 (2006).
2. Drackley, J. K. Biology of Dairy cows during the transition period: the final frontier? J. Dairy Sci. 82, 2259–2273 (1999).
3. Goff, J. P. & Horst, R. L. Physiological changes at parturition and their relationship to metabolic disorders. J. Dairy Sci. 80, 1260–1268 

(1997).
4. Weber, W. J., Wallace, C. R., Hansen L. B., Chester-Jones, H. & Crooker, B. A. Effects of genetic selection for milk yield on 

somatotropin, insulin-like growth factor-I, and placental lactogen in Holstein cows. J. Dairy Sci. 90, 3314–3325 (2007).
5. Knight, C. H. et al. Metabolic safety-margins do not differ between cows of high and low genetic merit for milk production. J. Dairy 

Res. 71, 141–153 (2004).
6. Rinaldo, P., Cowan, T. M. & Matern, D. Acylcarnitine profile analysis. Genet. Med. 10(2), 151–156 (2008).
7. Sigauke, E., Rakheja, D., Kitson, K. & Bennet, M. J. Carnitine palmitoyltransferase II deficiency: a clinical, biochemical and 

molecular review. Lab. Invest. 83, 1543–1554 (2003).
8. Floegel, A. et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. 

Diabetes 62, 639–648 (2013).
9. Sun, H. Z. et al. Metabolomics of four biofluids from dairy cows: potential biomarkers for milk production and quality. J. Proteome 

Res. 14, 1287–1298 (2015).

Variable

Two Way ANOVA

day (d) group (g) d × g

Tryptophan (TRP) p <  0.0001 p =  0.0413 n.s.

Kynurenine (Kyn) p =  0.0008 n.s. n.s.

Kyn/Trp ratio p =  0.0072 p =  0.0197 n.s.

Carnosine p =  0.0051 p =  0.0115 n.s.

Sarcosine n.s. p <  0.0001 n.s.

Spermidine n.s. p <  0.0001 n.s.

Table 4.  Statistical analysis of results demonstrated in Fig. 5. n.s. non significant.

http://www.r-project.org


www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:24642 | DOI: 10.1038/srep24642

10. Imhasly, S. et al. Metabolomic biomarkers correlating with hepatic lipidosis in dairy cows. BMC Vet. Res. 10, 122 (2014).
11. Hailemariam, D. et al. Identification of predictive biomarkers of disease state in transition dairy cows. J. Dairy Sci. 97, 2680–2693 

(2014).
12. Kenez, A. et al. Changes in lipid metabolism and β -adrenergic response of adipose tissues of periparturient dairy cows affected by 

an energy-dense diet and nicotinic acid supplementation. J. Anim. Sci. 93, 4012–4022 (2015).
13. Schulz, K. et al. Effects of prepartal body condition score and peripartal energy supply of dairy cows on postpartal lipolysis, energy 

balance and ketogenesis: an animal model to investigate subclinical ketosis. J. Dairy Res. 81, 257–266 (2014).
14. Singh, S. P. et al. Lactation driven dynamics of adiponectin supply from different fat depots to circulation in cows. Domest. Anim. 

Endocrinol. 47, 35–46 (2013).
15. Tschritter, O. et al. Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism. Diabetes 52, 

239–243 (2003).
16. Schooneman, M. G., Vaz, F. M., Houton, S. M. & Soeters, M. R. Reflecting or inflicting insulin resistance. Diabetes 62, 1–8 (2013).
17. Bobe, G., Young, J. W. & Beitz, D. C. Pathology, etiology, prevention and treatment of fatty liver in dairy cows. J. Dairy Sci. 87, 

3105–3124 (2004).
18. Schlegel, G. et al. Expression of genes involved in hepatic carnitine synthesis and uptake in dairy cows in the transititon period and 

at different stages of lactation. BMC Vet. Res. 8, 28 (2012).
19. Zhou, X., Ringseis, R., Wen, G. & Eder, K. The pro-inflammatory cytokine tumor necrosis factor α  stimulates expression of the 

carnitine transporter OCTN2 (novel organic cation transporter 2) and carnitine uptake via nuclear factor-κ B in Madin-Darby 
bovine kidney cells. J. Dairy Sci. 98, 1–9 (2015).

20. Ringseis, R., Keller, J. & Eder, K. Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity: evidence from in 
vivo and in vitro studies with carnitine supplementation and carnitine deficiency. Eur. J. Nutr. 51, 1–18 (2012).

21. Strasser, B., Berger, K. & Fuchs, D. Effects of a caloric restriction weight loss diet on tryptophan metabolism and inflammatory 
biomarkers in overweight adults. Eur. J. Nutr. doi: 10.1007/s00394-014-0690-3 (2014).

22. Oxenkrug, G. Insulin resistance and dysregulation of tryptophan – kynurenine and kynurenine – nicotinamide adenine dinucleotide 
metabolic pathways. Mol. Neurobiol. 48, 294–301 (2013).

23. Oxenkrug, G. F. Interferon-gamma-inducible kynurenines/pteridines inflammation cascade: implications for aging and aging-
associated psychiatric and medical disorders. J. Neural. Transm. doi: 10.1007/s00702-010-0475-7 (2010).

24. Prendergast, G. C., Metz, R., Muller, A. J., Merlo, L. M. F. & Mandik-Nayak, L. IDO2 in immunomodulation and autoimmune 
disease. Front. Immunol. 5, 585 (2014).

25. Groebner A. E. et al. Immunological mechanisms to establish embryo tolerance in early bovine pregnancy. Reprod. Fertil. Dev. 23, 
619–632 (2011).

26. Matsumoto, M., Kurihara, S., Kibe, H., Ashida, H. & Benno, Y. Longevity in mice is promoted by probiotic-induced suppression of 
colonic senescence dependent on upregulation of gut bacterial polyamine production. PlosOne 6, 8,e23652 (2011).

27. Boldyrev, A. A., Aldini, G. & Derave, W. Physiology and Pathophysiology of carnosine. Physiol. Rev. 93, 1803–1845 (2013).
28. Song, B. C., Joo, N. S., Aldini, G. & Yeum, K. J. Biological functions of histidien-dipepetides and metabolic syndrome. Nutr. Res. 

Pract. 8, 3–10 (2014).
29. Pinto, M. C. X. et al. Sarcosine preconditioning induces ischemic tolerance against global cerebral ischemia. Neuroscience 271, 

160–169 (2014).
30. Cholewa, J. M., Guimaraes-Ferreira, L. & Zanchi, N. E. Effects of betaine on performance and body composition: A review of recent 

findings and potential mechanisms. Amino Acids 46, 1785–1793 (2014).
31. Minois, N., Carmona-Gutierrez, D. & Madeo, F. Polyamines in aging and disease. Aging 3, 8 (2011).

Acknowledgements
We gratefully acknowledge the financial support by the German Research Foundation (DFG).

Author Contributions
K.H., H.S., S.D. and J.R. are responsible for performing the underlying animal experiment and the creation of 
all none-metabolomic data. U.R.-K. performed the sample preprocessing and LC/MS-MS analysis of blood 
samples including validation control. K.H. and W.O. prepared statistical and bioinformatics analyses of animal 
and metabolomics data. K.H. and M.v.B. wrote the manuscript and prepared the figures. All authors approved 
the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Huber, K. et al. Metabotypes with properly functioning mitochondria and anti-
inflammation predict extended productive life span in dairy cows. Sci. Rep. 6, 24642; doi: 10.1038/srep24642 
(2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Metabotypes with properly functioning mitochondria and anti-inflammation predict extended productive life span in dairy cow ...
	Results and Discussion
	Animal grouping. 
	Characterization of phenotypes. 
	Grouping and identification of grouping variables. 
	Key metabolites indicating properly functioning mitochondria. 
	Key metabolites indicating anti-inflammation. 

	Conclusions
	Methods
	Animals. 
	Metabolomics. 
	Bioinformatic evaluation. 

	Acknowledgements
	Author Contributions
	Figure 1.  Exploratory data analysis to identify metabotypes.
	Figure 2.  Visualization of changes in metabolite patterns by Volcano Plot.
	Figure 3.  Carnitine and acylcarnitines in healthy (H) and left productive life early (LE) cows.
	Figure 4.  Liver enzymes in healthy (H) and left productive life early (LE) cows.
	Figure 5.  Tryptophan, kynurenine and biogenic amines in healthy (H) and left productive life early (LE) cows.
	Table 1.   Animal performance and condition data (means ± SEM, LE n = 6–8 H n = 8–11).
	Table 2.   Statistical analysis of results demonstrated in Fig.
	Table 3.   Statistical analysis of results demonstrated in Fig.
	Table 4.   Statistical analysis of results demonstrated in Fig.



 
    
       
          application/pdf
          
             
                Metabotypes with properly functioning mitochondria and anti-inflammation predict extended productive life span in dairy cows
            
         
          
             
                srep ,  (2016). doi:10.1038/srep24642
            
         
          
             
                K. Huber
                S. Dänicke
                J. Rehage
                H. Sauerwein
                W. Otto
                U. Rolle-Kampczyk
                M.  von Bergen
            
         
          doi:10.1038/srep24642
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep24642
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep24642
            
         
      
       
          
          
          
             
                doi:10.1038/srep24642
            
         
          
             
                srep ,  (2016). doi:10.1038/srep24642
            
         
          
          
      
       
       
          True
      
   




