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Abstract
We extend the concept of accessibility in temporal networks to model infections with a finite

infectious period such as the susceptible-infected-recovered (SIR) model. This approach is

entirely based on elementary matrix operations and unifies the disease and network dynam-

ics within one algebraic framework. We demonstrate the potential of this formalism for three

examples of networks with high temporal resolution: networks of social contacts, sexual

contacts, and livestock-trade. Our investigations provide a new methodological framework

that can be used, for instance, to estimate the epidemic threshold, a quantity that deter-

mines disease parameters, for which a large-scale outbreak can be expected.

Introduction
Networks are one of the most important ways to represent a finite set of elements with complex
interaction patterns. As vast amount of data becomes publicly available, the analysis of com-
plex networks plays an ever increasing role throughout different areas such as computer sci-
ence, physics, social science and biology. Well known applications are the analysis of the
World Wide Web [1], scientific collaborations [2] and protein interaction networks [3] to
name only a few.

It has become important to not only analyse network structures using graph theoretical
tools, but to conduct numerical experiments [4, 5]. This approach has led to numerous
advances in epidemiological modelling, because it allowed to analyse the impact of the topology
on the dynamics of infections [6, 7]. It was a major conceptual improvement to consider het-
erogeneous contact patterns in face of previous models, which assumed homogeneous mixing
among the individuals and separated the population into compartments such as susceptible
(S), exposed (E), infected (I) and recovered (R) [8]. As a result new vaccination strategies have
been suggested [9, 10] and network-based models are promising candidates to forecast and
mitigate the impact of global epidemics [5, 11] in the future.

However, methods from classic network analysis do not take into account the temporal res-
olution of contact data. In particular, a major drawback arises from the fact that the number of
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paths relevant for the disease spreading can be strongly overestimated [12, 13]. This is a conse-
quence of a factitious transitivity, if the temporal information of the links is neglected (see
Fig 1).

The availability of data with high temporal resolution [14–17], so called temporal networks
[18, 19], offers a promising way to improve epidemiological models. This approach allows to
consider only infection paths, with links that appear in the correct temporal order—a main
conceptual and practical advantage. Taking into account these time-respecting paths over-
comes the limitation inherent to the static approach for realistic investigations of disease
transmission.

A natural way to include the causal sequence of edges into the analysis is to consider accessi-
bility graphs. Here, a directed edge between two nodes appears only if one is accessible by the
other through a time-respecting path. In other words, an accessibility graph provides informa-
tion whether a temporal path connects two nodes within a certain time period. Recently, an
analytical approach has been proposed to calculate the corresponding accessibility matrix,
which was termed unfolding accessibility [13, 20]. This mathematical description is based on a
list of adjacency matrices, whose elements refer to the snapshots of the temporal network
under consideration. The approach models a susceptible-infected type of disease, i.e. an infec-
tion without recovery. Here, each contact leads to newly infected neighbours in a deterministic
way, thus, serving as a worst-case scenario.

In this paper, we generalize the concept of accessibility and introduce a fixed recovery time.
This allows us to include diseases with a finite infection period, and we will consider the widely
used susceptible-infected-recovered (SIR) model. As in the previous work [13], we base our
formalism on elementary matrix operations with Boolean arithmetic, which allows us to inte-
grate the disease and network dynamics in an unified framework.

From the modelling perspective our formalism gives us the advantage that we take into
account the full temporal and topological complexity of the interaction patterns, without
restricting ourselves to limiting assumptions such as Markovian dynamics [21], pair approxi-
mations [22], individual-based [23] and degree-based mean-field theory [6]. This is a conse-
quence of our approach to use time-ordered products of exact adjacency matrices, which
preserve the causal appearances of links. Furthermore, the concept of accessibility matrices
allows us to track the individual infection status. Thus, no dynamic approximation on the
number of contacts between susceptible and infected, which are crucial for disease transmis-
sion, is needed.

The remaining three sections of the paper are structured as follows. First, we will introduce the
terminology of the state vector formalism, which we will then generalize to a matrix formalism.
To demonstrate the power of our approach, we will analyse disease dynamics on different empiri-
cal networks: networks of social contacts, sexual contacts, and livestock-trade. This will allow us,
for instance, to estimate the critical infectious period. Finally, we will summarize our results.

Fig 1. Transitivity is not assured in temporal networks.Here, links 1! 2 and 2! 3 exist, but the
temporal order (1! 2 at time t = 1 and 2! 3 at time t = 0) prevents information to spread from node 1 to 3.

doi:10.1371/journal.pone.0151209.g001
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Materials and Methods

Epidemiological Model: State Vector Formalism
Since the beginning of modern epidemiological modelling [24] a Markovian dynamics was typ-
ically assumed. Upon a contact between an infected and a susceptible individual [SI] the disease
can be transmitted with a probability α. Moreover, infected individuals [I] recover at each time
step with a probability β:

½S�tþ1 ¼ 1� ½I�t � ½R�t ð1aÞ

½I�tþ1 ¼ ½I�t þ a½SI�t � b½I�t ð1bÞ

½R�tþ1 ¼ ½R�t þ b½I�t: ð1cÞ

Starting from this set of equations, a number of approaches have been proposed to approxi-
mate the interaction term [SI], which includes all topological features of the underlying contact
structure [25]. In this paper we will identify the critical contacts [SI] directly from the temporal
network. Eqs (1a) to (1c), which describe the widely used SIR model, serve as a reference before
elaborating on our algebraic alternative.

We start from a system with a fixed number of nodes N. A node can be either an individual
or a separate population, which is however treated as a unit in the sense that it enters one epi-
demiological state: susceptible (S), infectious (I) or recovered (R). A contact between two nodes
appears as a link in the network at the given time and can be either undirected, which is natu-
rally the case for proximity data [14, 26] or, directed if trade is considered for example [27].

The interactions in a static network are typically represented by an adjacency matrix A with
a positive entry Aij = 1 if node j is connected to i and Aij = 0 otherwise. In this paper we will
allow for directed links and therefore we will assume asymmetric adjacency matrices in
general.

A temporal network can be defined in a variety of ways, depending on the underlying con-
tact data and its purpose [19]. We adapt a widely used approach, which assumes that the tem-
poral network evolves in equidistant time steps, given by the sampling resolution of the data. It
allows us to define the temporal network conveniently by a set of adjacency matrices {At}. Here,
each element At describes a snapshot of interactions at time t = 1, . . ., T, with T being the obser-
vation time. This is a valid approximation as long as the time to form a link, e.g. the latency in
case of transport connections, can be neglected compared to the sampling time [19]. Further-
more, we will use the highest resolution available throughout the paper in order to minimize
potential errors. This happens due to the fact, that causal appearances of links can be violated if
snapshots are partially aggregated. As a result, potential outbreaks may be systematically overes-
timated [13].

If we assume that the pathogen can only be passed to the nearest neighbours within every
snapshot, then a temporal network allows us to infer the critical contacts [SI] (Eq (1b)) directly
from the disease status of every node. The assumption can be justified if the temporal resolu-
tion prohibits consecutive interactions within one time step and is an approximation in the
case of partially aggregated data. Therefore, we can use the time-depending topology in order
to determine the disease dynamics directly.
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We begin by replacing the fraction of infected [I] and recovered [R] nodes in Eq (1b) by
Boolean state vectors:

½I� ! ðiÞk ¼
1; node k is infected

0; otherwise
ð2aÞ

(

½R� ! ðrÞk ¼
1; node k is recovered

0; otherwise:
ð2bÞ

(

Following the binary nature of the state vectors, we will only use Boolean arithmetic [28]
without explicitly indicating it. Hence, element-wise addition and scalar multiplication are
replaced by the logical “or” and “and”, respectively. Matrix multiplication is handled similarly
through the definition (A � B)ij = ∑k Aik Bkj and element-wise multiplication � is defined by
(A � B)ij = Aij Bij. Finally, we introduce the element-wise negation ¬ of a vector or a matrix, i.e.
(¬A)ij = 0 if Aij = 1 and (¬A)ij = 1 otherwise.

Furthermore, we will consider the worst-case scenario, where the disease is transmitted
upon contact, i.e. α = 1 in Eq (1b). It is a convenient way to separate topological and probabilis-
tic fluctuations in a temporal network and to concentrate on the first. This assumption, is not
crucial and we will sketch now one possible generalization to an arbitrary α� 1.

If an infected node does not transmit the disease to its susceptible neighbour with a proba-
bility 1−α, we can just as well neglect the link with the same probability. This idea can be for-
malized by a stochastic operator O(A), which acts element-wise on the adjacency matrix A: For
Aij = 0 we defineO(Aij) = 0 and for positive entries Aij = 1 we chooseO(Aij) = 1 with probability
α� 1 and O(Aij) = 0 otherwise. The original set of adjacency matrices At (for t = 1, . . ., T)

would have to be replaced by the thinned out modification ~At ¼ OðAtÞ, in order to obtain one
realization. Finally, the ensemble of all possible outbreak scenarios would allow us to calculate
average values. This approach inherits from the simplified model with α = 1, the advantage to
account for dynamic and topological correlations. It increases, however, the computational
effort and mixes topological with probabilistic effects. In order to focus on the former we will
therefore exclude stochastic fluctuations and choose α = 1.

Using the explicit contact structure given by the set of static snapshots {At}, we propose the
following model for the SIR dynamics:

itþ1 ¼ ðAtit þ itÞ � ð: rtþ1Þ ð3aÞ

rtþ1 ¼
Xtþ1�t

k¼0

ik: ð3bÞ

The number of newly infected individuals [SI] is given by the product At it in Eq (3a), where At

is the N × N dimensional adjacency matrix of the temporal network at time t = 1, 2, . . ., T. A
node enters the recovered state I! R (Eq (3b)) if it has been infectious for τ time steps. There-
fore this model, contrary to Eqs (1a)–(1c), is not Markovian, i.e. the state of the system depends
not only on the previous, but on the last τ time steps. This is a frequently used simplification
[29, 30], which leads to a very efficient implementation. Finally, the element-wise operation
�(¬rt+1) guarantees that a recovered node cannot be reinfected or pass a disease.

The system of Eq (3) describes the disease dynamics, which starts with arbitrary initial con-
ditions i0 and r0. From a conceptual and practical point of view, it is advisable to generalize the
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state vector to a matrix formalism that accounts for different initial conditions at the same
time. This will be subject of the next section.

Tracking All Initial Conditions: Matrix Formalism
It is often important to evaluate the role of single nodes in a contact network with respect to
their influence on the outbreak dynamics. For example, one could look for nodes with a high
temporal out-component (virulence) [12] or nodes with a high probability of catching a disease
(vulnerability) [31]. This consideration motivates us to choose the initial conditions as i0 = ek
and r0 = 0 indicating that only the node k is infected and all other nodes are susceptible. ek
denotes the k-th column of the identity matrix, where (ek)i = 1, if k = i and 0 otherwise. Instead
of repeatedly considering Eq (3) for every ek, k = 1, . . ., N, it will prove useful to stack all initial
vectors into N × Nmatrices:

It¼0 ¼ e1; e2; � � � ; eN½ � ¼ 1N ð4aÞ

Rt¼0 ¼ 0; 0; � � � ;0½ � ¼ 0N : ð4bÞ

This approach allows us to convert the state-vector description into a matrix-based formalism,
which enables us to consider all homogeneously sampled, initial conditions simultaneously:

Itþ1 ¼ ðAtIt þ ItÞ � ð: Rtþ1Þ ð5aÞ

Rtþ1 ¼
Xtþ1�t

k¼0

Ik; ð5bÞ

The kth column of the matrix It indicates the nodes that are infected at time t if the epidemic
starts from the initial node k. As we are working with Boolean arithmetic, we only have binary
entries in It. Therefore, we can regard it as an adjacency matrix of an accessibility graph: A
directed edge appears only if a time-respecting path exists that connects the initial node with
the target and satisfies the epidemiological constraints: An infection can only be passed on
within a fixed time window of size τ and a node cannot be reinfected.

In the special case, if the infectious period τ exceeds the observation time T, we are effec-
tively dealing with an SI-type of infection. Then, we do not account for recovered nodes and
thus all operations including the matrix R can be ignored. Note that the simplified expression
of Eq (5a) It+1 = At It+It can be solved directly

Itþ1 ¼
Yt

k¼0

ðAk þ 1Þ; ð6Þ

which recovers a result that was independently presented in [13] and [20]. The formalism
described by Eq (6) was termed unfolding accessibility as the corresponding accessibility graph
accumulates edges, which point from the initial seed to all nodes accessible via a time-respect-
ing path within the given time frame. From a graph-theoretical point of view, adding a unity
matrix to an adjacency matrix, i.e. Ak þ 1 in Eq (6), introduces a self loop to every node. It
means that a path from a node back to itself is always possible. This circumstance mimics an
infinite recovery time for disease propagation since a node can always be the source of a new
transmission path. The unfolding accessibility itself is a special case of an earlier work [20],
which is a temporal generalization of the Katz centrality [32] and therefore accounts for walks
that visit a node repeatedly.

Infections on Temporal Networks
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The matrix It of Eq (5a) provides a direct mapping from the seed of infection to the infected
individuals. Therefore, we will also refer to it as the prevalence matrix. Given It, we can derive
the incidence matrix Jt, which links the source nodes to the newly infected ones. Similarly, we
introduce the cumulative incidence matrix Ct, which maps the seed of infection to all nodes
that have been infected up to the observation time t.

Jtþ1 ¼ Itþ1 � :It ð7aÞ

Ctþ1 ¼
Xtþ1

k¼0

Ik: ð7bÞ

In order to visualize the results we will use the density ρ of a matrix. It is defined by the ratio
between the number of non-zero elements and the squared size of the matrix N2. Note that the
three scalar values ρ(It), ρ(Jt) and ρ(Ct) reflect the mean prevalence, incidence and cumulative
incidence, respectively. That is, we automatically average over the ensemble of all homo-
geneously sampled initial conditions or in other words, we implicitly consider every node as a
seed of infection. Similarly, we define ρk to be the ratio between the number of non-zero ele-
ments in the k-th column and the network size N. Thus, ρk is the fraction of infected individu-
als for one particular source node.

From the topology of the three accessibility graphs, which we have defined in this section,
we can directly analyse the dynamics of a disease. To demonstrate the feasibility of the devel-
oped matrix formalism, we will apply our approach in the next section to three real-world
networks.

Application to Empirical Contact Networks

Social Contacts Network
As a first example, we consider a social contact graph [26] that has been recorded during a
three-days conference. Each of the 113 participants corresponds to a node and as soon as a
proximity sensor detected a face-to-face contact over a period of 20 s an edge was generated.
As a result one obtains a sequence of adjacency matrices, which refers to the snapshots of the
interaction dynamics with a temporal resolution of 20 s. The data on social contacts allows to
analyse the spread of airborne diseases as well as the propagation of information. With our
model, we will hereby focus on the number of potential transmission paths.

Fig 2 depicts an SIR process on the social contacts graph with a fixed recovery time of 20
hours. This choice is motivated by the characteristics of the dataset, i.e. a night break of several
hours. Starting from one seed of infection, we observe a quick rise in prevalence ρ(It) (Fig 2A)
within only a few hours. This observation can be explained by a high number of changing
interactions, which is the purpose of conferences. After around 21 hours the prevalence
drops just as quickly, whereas one can observe two rather stable phases in between. These are
reflected by plateaus in the cumulative incidence ρ(Ct) (Fig 2B, dashed curve). They correspond
to periods of vanishing incidence ρ(Jt) (Fig 2B, blue bars) and are due to the fact that no inter-
actions have been recorded during the night. The spreading process disappears before the third
day of the conference. Despite the short infection time, about 85% of all nodes will be affected
on average (Table 1).

In order to compare the result we ran an equivalent experiment on the time aggregated net-
work. We used the same disease parameter and assumed that the infection can spread only to
the nearest neighbours within one time step. As a result, every node would be finally infected,
independent of the seed of infection (Table 1). The difference to the temporal network amounts
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to only 17 nodes on average. Therefore, with regard to the total impact of an outbreak a tempo-
ral representation of the data might not be necessary.

Sexual Contacts network
The result is rather different, if we analyse the dynamics on a sexual contacts network from a
Brazilian escort website [14] (see Fig 3). 16,730 participants have volunteered to record their
sexual interactions online. The data spans the period from September 2002 to October 2008
and given the context of this dataset, allows to study the dynamics of sexually transmitted dis-
ease. We follow the numerical analysis of [33] and choose 91 days as the infectious period τ. It
reflects the most contagious period after an HIV-1 infection, which is followed by a chronical
stage with low transmission probability [34]. Furthermore, we ignore the first 1000 days in
order to avoid transient effects during the early stage of the growing network [33].

We notice that the mean prevalence peaks after 305 days (Fig 3, panel A), which is followed
by a very slow decline. Moreover, we observe in Fig 3B a considerable incidence throughout
the observation period. The highest number of new infections is reached after 245 days, which
is again a characteristic time that is much longer than the infectious period. Unlike the previous

Fig 2. Prevalence, incidence and cumulative incidence for the social contacts network. (A)
Comparison between the individual single source outbreaks (blue, right axes) and the corresponding,
averaged prevalence (black, left axes). The infectious period is fixed at τ = 20h. The arrow at t = 14.8h
indicates the maximum averaged prevalence. (B) Mean prevalence ρ(It) (solid curves), incidence ρ(Jt) (blue
bars, right scale) and cumulative incidence ρ(Ct) (dashed curves). Here, the arrow points at the maximum
averaged incidence (t = 1.8h).

doi:10.1371/journal.pone.0151209.g002

Table 1. Comparison between the temporal networks and the time aggregated networks.

rðCtemporal
T Þ rðCstatic

T Þ
social interactions 0.85 1.0

sexual contacts 0.027 0.88

livestock-trade 0.0048 0.15

We list the average fraction of individuals, which have been infected up to the observation time for the

temporal networks (rðCtemporal
T Þ) and the corresponding time aggregated graph (rðCstatic

T Þ). We use the same

recovery times as in Figs 2–4.

doi:10.1371/journal.pone.0151209.t001
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example, the temporal characteristics of the sexual contacts graph lead to a prolonged disease
outbreak. This feature is mainly a consequence of the fact that the network is steadily growing
[14] and an increasing number of interaction is recorded. The mean cumulative incidence
shows that 2.7% of all nodes are affected at the end of the observation time. A comparison with
the static network reveals that the total impact would be overestimated by more than one order
of magnitude if we used aggregated data (Table 1).

Livestock-Trade Network
Finally, we apply our formalism to an excerpt of the national German livestock database
HI-Tier [35], which has been established according to EU legislation. It comprises the move-
ment of pig in a period of 200 days from 2011-01-01 to 2011-07-20. With a time resolution of
one day more than 9�105 trade transactions (directed links) have been recorded between 70,286
agricultural premises and traders (nodes), respectively. Livestock-trade is considered to be a
major transmission route for animal-related diseases like classical swine fever [36]. In a poten-
tial outbreak, a detected node would be isolated from the trade network and therefore we can
consider the infectious period to be mainly determined by the detection time. In our example
shown in Fig 4 we assume a detection time of 14 days.

Similar to the sexual network, we observe a broad evolution of the epidemic with a charac-
teristic time scale of the mean prevalence (64 days) and incidence (60 days), respectively. We
note again that both values are much larger than the infectious period, which indicates a slow
mixing within the network. At the end of the observation, a fraction of 0.5% (around 340
nodes) would be affected. The corresponding static analysis would yield a result, which is again
more than one order of magnitude higher (Table 1).

These findings confirm previous observations [13, 33] that time-respecting paths can lead
to a considerable improvement compared to static network analysis. It is of crucial importance
to take into account the temporal sequence of the links in contact networks, especially, when
the infection dynamics takes place on similar time scales as the network evolution.

Fig 3. Prevalence, incidence and cumulative incidence for the sexual contacts network. (A)
Comparison between the individual single source outbreaks (blue, right axes) and the corresponding,
averaged prevalence (black, left axes). The infectious period is fixed at τ = 91 d. The arrow indicates the
maximum averaged prevalence. (B) Mean prevalence ρ(It) (solid curves), incidence ρ(Jt) (blue bars, right
scale) and cumulative incidence ρ(Ct) (dashed curves). Here, the arrow points at the maximum averaged
incidence.

doi:10.1371/journal.pone.0151209.g003
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Critical Infectious Period
In order to further analyse the impact of the infectious period τ, we examine the fraction of
nodes, which have been infected once during the observation time, i.e. CT. Again, we operate
under the assumption that one node is infected at the beginning of the observation. Our for-
malism given by Eqs (5) and (7b) allows us to calculate efficiently the cumulative incidence CT

at the end of the observation time T for every initial condition in dependence on the disease
parameter τ. This is depicted in Fig 5 for the three considered contact networks.

Focusing on the small-τ range, we notice a transition, where the impact of the epidemic
changes qualitatively from local to global outbreaks. This behaviour is well known in the litera-
ture [6, 23, 37] and indicates the existence of a critical infectious period τc or an epidemic
threshold under the assumption that the transmission probability is one. It has been shown

Fig 4. Prevalence, incidence and cumulative incidence for the livestock-trade network. (A) Comparison
between the individual single source outbreaks (blue, right axes) and the corresponding, averaged
prevalence (black, left axes). The infectious period is fixed at τ = 14 d. The arrow indicates the maximum
averaged prevalence. (B) Mean prevalence ρ(It) (solid curves), incidence ρ(Jt) (blue bars, right scale) and
cumulative incidence ρ(Ct) (dashed curves). Here, the arrow points at the maximum averaged incidence.

doi:10.1371/journal.pone.0151209.g004

Fig 5. Estimating the critical infectious period for the social (A), the sexual (B) and the livestock-trade
network (C). Fraction of nodes, which have been infected up to the observation time as a function of the
infectious period τ. The grey line is a linear regression through the last 6 data points and the zero crossing
gives a rough estimate of the critical infectious period τc. We found τc = 1.20 ± 0.05 hours, τc = 48 ± 2 days
and τc = 10.8 ± 0.3 days for the social, the sexual and the livestock-trade network, respectively. The
uncertainties are calculated from the least-squares fit.

doi:10.1371/journal.pone.0151209.g005
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that the epidemic threshold for SIR infections is related to properties known from percolation
theory [29, 30, 38, 39]. Here, a giant connected component emerges if the fraction of links
exceeds a certain threshold [40, 41]. We estimate the critical transition point through a linear
regression. This approach is motivated by the effective medium theory, which predicts a linear
behaviour above the critical value [42]. The result gives an upper bound to the typical transi-
tion point. Thus, it can be considered a loose statistical criterion for the point, beyond which a
considerable fraction of the network can become infected.

The social network is highly dynamic as observed before and therefore it does not surprise
that the critical infectious period is as low as 1.2 hours (Fig 5A). For the sexual contact network,
we find that a disease with an infectious period above 48 days can affect a considerable fraction
of the network (Fig 5B). Finally, we observe in the pig trade data a critical transition at τc = 10.8
days (Fig 5C). This finding may suggest for example that the detection time of any outbreak in
the livestock production should be below 11 days in order to minimize the impact of a disease.

Recently, an elegant approach to calculate the epidemic threshold in temporal networks has
been proposed [37]. It is based on the mean field assumption that dynamic correlations can be
ignored which means that the disease status of a node is independent of its nearest neighbour
states. Though unrealistic for some networks [43], this approximation helps to predict the
true epidemic threshold to a high degree of accuracy. On the other hand, the matrix-based
approach, which we have presented in this paper takes into account all time and topology
dependent correlations. It therefore extends existing approaches and allows to deal with net-
works, where these correlations are crucial.

Conclusion
We have introduced a formalism to calculate paths for infections in temporal networks, which
is based on elementary operations from linear algebra and Boolean arithmetic. In particular,
we have extended the concept of unfolding accessibility to include finite infectious periods. We
have focused on the susceptible-infected-recovered (SIR) model with a fixed infectious periods
τ and a transmission probability of unity. Apart from the disease parameter τ, the proposed
formalism is based entirely on the adjacency matrices of the temporal network, which refer to
snapshots of the underlying contact network. Thus, we have been able to deal with the disease
dynamics and the temporal network in one unifying framework, taking into account both tem-
poral and topological correlations.

In order to apply our framework to epidemiology, we have derived three accessibility matri-
ces that allow to compute simultaneously the prevalence, incidence and cumulative incidence
for different initial conditions. The density of each matrix hence returns the mean value, aver-
aged over all realizations.

From a computational point of view, the time complexity is dominated by the matrix multi-
plication At It and the element-wise multiplication At It � (¬Rt+1) in Eq (5a). Both can be imple-
mented efficiently for sparse Boolean matrices. Note however, that the negated term ¬Rt+1

becomes dense for a small fraction of recovered nodes. Similarly, we find that well mixing net-
works, such as the social contacts graph, can lead to a dense prevalence matrix It and hence
slowdown the performance. Furthermore, we find that the storage complexity grows linearly
with the recovery time and quadratically with the number of nodes in the case of a dense acces-
sibility matrix.

We applied the formalism to three real-world networks: conference interactions, sexual con-
tacts, and livestock-trade. In each case, we have presented an analysis based on the average
prevalence, incidence, and cumulative incidence and recovered relations between the dynamics
of the disease and the features of underlying contact graph. We have also analysed the total

Infections on Temporal Networks

PLOS ONE | DOI:10.1371/journal.pone.0151209 April 1, 2016 10 / 12



fraction of nodes, which have been infected at some point during the observation period
depending on the infectious period τ. By considering the small-τ limit, we have observed a crit-
ical value τc, above which a disease can affect a considerable fraction of the network. This value
can be related to the well known basic reproduction number R0, which has been applied only
recently to temporal networks, using an alternative method [37].
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