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Classical swine fever (CSF) is among the most detrimental diseases for the swine
industry worldwide. Infected wild boar populations can play a crucial role in CSF
epidemiology and controlling wild reservoirs is of utmost importance for preventing
domestic outbreaks. Oral mass vaccination (OMV) has been implemented to control
CSF in wild boars and limit the spill over to domestic pigs. This retrospective overview of
vaccination experiences illustrates the potential for that option. The C-strain live vaccine
was confirmed to be highly efficacious and palatable baits were developed for oral
delivery in free ranging wild boars. The first field trials were performed in Germany in the
1990’s and allowed deploying oral baits at a large scale. The delivery process was further
improved during the 2000’s among different European countries. Optimal deployment
has to be early regarding disease emergence and correctly designed regarding the
landscape structure and the natural food sources that can compete with oral baits. OMV
deployment is also highly dependent on a local veterinary support working closely with
hunters, wildlife and forestry agencies. Vaccination has been the most efficient strategy
for CSF control in free ranging wild boar when vaccination is wide spread and lasting
for a sufficient period of time. Alternative disease control strategies such as intensified
hunting or creating physical boundaries such as fences have been, in contrast, seldom
satisfactory and reliable. However, monitoring outbreaks has been challenging during
and after vaccination deployment since OMV results in a low probability to detect
virus-positive animals and the live-vaccine currently available does not allow serological
differentiation of infected from vaccinated animals. The development of a new marker
vaccine and companion test is thus a promising option for better monitoring outbreaks
during OMV deployment as well as help to better determine when to stop vaccination
efforts. After rabies in red fox, the use of OMV against CSF in European wild boar can be
considered as a second example of successful disease control in wildlife. The 30 years
of disease control experience included in this review may provide options for improving
future disease management within wild populations.

Keywords: Pestivirus, wildlife, diseases, management, surveillance, Sus scrofa

Frontiers in Microbiology | www.frontiersin.org 1 October 2015 | Volume 6 | Article 1141

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://dx.doi.org/10.3389/fmicb.2015.01141
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fmicb.2015.01141
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2015.01141&domain=pdf&date_stamp=2015-10-23
http://journal.frontiersin.org/article/10.3389/fmicb.2015.01141/abstract
http://loop.frontiersin.org/people/204668/overview
http://loop.frontiersin.org/people/245544/overview
http://loop.frontiersin.org/people/266350/overview
http://loop.frontiersin.org/people/281844/overview
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Rossi et al. Review wild boar vaccination

INTRODUCTION

Classical swine fever (CSF) is a major threat to commercial pig
production worldwide (Edwards et al., 2000). Thismulti-systemic
disease can affect both domestic pigs and wild boar such that
outbreaks among wild boar can significantly impact commercial
pig farms. CSF outbreaks among wild boars present a constant
threat of introduction into domestic pigs. In Germany during
the 1990’s, approximately two thirds of primary outbreaks among
domestic pigs were attributed to direct or indirect contact with
CSF infected wild boar (Fritzemeier et al., 2000).

Generally, control of wildlife reservoirs is a significant
challenge (Delahay et al., 2009; Gortázar et al., 2015). To combat
infectious diseases, vaccination is often used to decrease the
proportion of susceptible animals in a population below a
threshold needed for disease maintenance among that population
(Rupprecht et al., 2003; Blancou et al., 2009).

Different vaccination approaches for wild boar have been
developed and tested, some of them directly under field
conditions (e.g., lyophilized vaccines in Russia), others under
experimental conditions (Kaden et al., 2000). Under experimental
conditions, live attenuated vaccines showed high efficacy and
complete safety upon oral immunization of individual animals
(Kaden et al., 2000). To deliver the vaccines on a larger scale,
oral bait formulations were subsequently developed and tested by
Kaden et al. (2000) during the 1990’s. These baits were suitable
for oral mass vaccination (OMV) and in the following years the
approach was considered as a satisfactory option for improving
CSF virus (CSFV) control in wild boar inWestern Europe (EFSA,
2008; von Rüden et al., 2008; Rossi et al., 2010).

However, upon implementation of large scale oral CSF
vaccination, it was discovered that the vaccination process and
design need further improvement and was subsequently revisited.
As a consequence, adaptations were introduced in all areas
of CSF control in wild boar including the baiting strategy,
population management, and surveillance design (Rossi et al.,
2014). This review addresses and summarizes multiple aspects of
oral vaccination of wild boar including its successes and failures,
its drawbacks and advantages.

VACCINATION TOOLS

Vaccines
Several CSFV vaccines are available and have been used
successfully to control the disease in multiple countries
worldwide (van Oirschot, 2003; Greiser-Wilke and Moennig,
2004; Blome et al., 2006; Luo et al., 2014). The most widely
used vaccines are conventional live attenuated vaccines including
the well-known lapinised “Chinese” C-strain or its derivatives,
and the Thiverval strain. These vaccines have shown outstanding
efficacy and safety, but do not allow serological differentiation of
infected animals from vaccinated ones; for this reason, vaccinated
animals are subject to trade restrictions. To overcome these
limitations, marker vaccines have been developed based on
different vector platforms and expression systems (for review
see Beer et al., 2007; Dong and Chen, 2007; Blome et al., 2013).

These approaches allow differentiation for field detection of virus
infection versus vaccination (DIVA; van Oirschot, 2003; Leifer
et al., 2009).

Live Attenuated Vaccines
These traditional live attenuated vaccines have been used
worldwide in eradication campaigns both intramuscularly (IM)
in domestic pigs and in oral bait formulations in wild boar (Kaden
and Lange, 2001). IM application of these vaccines confers
protection a few days after immunization (van Oirschot, 2003),
before neutralizing antibodies are detected. Antibody detection
is typically possible within 2 weeks after vaccination (Kaden and
Lange, 2001; Vandeputte et al., 2001). Upon oral immunization,
protection is usually conferred within 2 weeks or less (Kaden
and Lange, 2001; Blome et al., 2012; Renson et al., 2013),
depending on the virulence the pathogenic strain the individual
is exposed to. Duration of immunity is at least 6–10 months
regardless of the route of administration (intramuscular or
oral; Kaden and Lange, 2001). Indications exist that immunity
might be even life-long. In the European Union (EU), oral
vaccination of wild boar has proven to be very effective for the
eradication of the virus (EFSA, 2008). The major drawback of
live vaccines is that it is impossible to differentiate antibodies
induced by field virus infections from antibodies induced by
vaccination.

Marker Vaccines
Baculovirus-expressed E2 recombinant protein subunit vaccines
were the first generation of non-replicative marker vaccines for
CSF. The efficacy of these two available E2 sub unit vaccines
was extensively studied and was determined to be lower than
the efficacy of classic C-strain vaccines (Uttenthal et al., 2001).
Vaccination could not prevent the “carrier sow syndrome” and
subsequently the late onset of CSF (Depner et al., 2001). An
additional drawback of this vaccine is that it cannot be used
for oral vaccination in baits. In recent years, new approaches
have been used to develop marker vaccines that allow a DIVA
principle while having the advantages of live vaccines (Beer
et al., 2007; Blome et al., 2013). Two promising candidates,
pestivirus chimera “CP7_E2alf” and flc11, were then compared
within an EU-funded research project to decide which would
be followed up for licensing. Based on the comparative trial
and pre-existing data on safety and efficacy, “CP7_E2alf” was
chosen for further assessment and marketing (Blome et al.,
2012).

Regarding the BVDV/CSFV chimera “CP7_E2alf,” which
carries the CSFV E2 and a BVDV backbone (Reimann et al.,
2004), immunization and challenge trials showed that after a
single intramuscular or oral vaccination, the antibody titers
were stable for a minimum of 6 months and full protection
from lethal challenge infection was observed. In follow-up
experiments, this vaccine proved to be safe and efficacious
against challenge with CSFV strains of different genotypes
and virulence. The vaccine preparation for intra-muscular use
has been recently registered in the EU (Suvaxyn CSF Marker,
Zoetis), and there is supportive data showing potential for oral
vaccination development.
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Diagnostic Tools
For the diagnosis of CSF in wild boar and monitoring following
oral vaccination, all methods used for domestic pigs may
be used (Blome et al., 2006). These techniques include both
direct (virus isolation, antigen detection, genome detection)
and indirect (antibody) test systems.The commercial E2-ELISA
displays a sensitivity that is in general quite similar to the
virus neutralization test (VNT). The specificity is usually
high, between 98 and >99.5%. However, cross-reactions may
occur with ruminant pestiviruses, especially BDV. Moreover,
poor quality of samples derived from wild boar can lead
to false positive and negative reactions, especially in ELISA
(EFSA, 2008). In recent years, a combination of commercial
E2 antibody ELISAs and CSFV specific real-time RT-PCRs
has been used to monitor wild boar populations. As CSFV
does not present different serotypes, no problems in detecting
antibodies against different strains are anticipated (for testing
different genotypes see Schroeder et al., 2012). Suitable sample
matrices are blood or serum, different organs and even swab
samples (Anonymous, 2002; Petrov et al., 2014). Virus isolation
in susceptible cell cultures and neutralization tests have been
employed as confirmatory assays for CSFV and CSFV specific
neutralizing antibodies, respectively. For C-strain vaccination
scenarios, sampling and testing strategies have been developed
that allow targeted testing (Kaden et al., 2006). Live attenuated
vaccine strains such as the C-strain or CP7_E2alf show a
very limited replication even in the target host (Koenig et al.,
2007). However, highly sensitive detection techniques such
as real-time RT-PCR can lead to vaccine virus detection in
blood and organs from wild boars that have received oral
vaccination (Blome et al., 2011). To rapidly differentiate these
detections from field virus infection (genetic DIVA), specific
real-time RT-PCR systems have been developed for different
C-strain variants and marker vaccine CP7_E2alf (Li et al.,
2007; Huang et al., 2009; Leifer et al., 2009). While traditional
live attenuated vaccines do not allow a serological DIVA
concept, CP7_E2alf has a marker system that is based on
the detection of CSFV Erns antibodies. Animals vaccinated
with CP7_E2alf will carry CSFV E2 but not CSFV Erns
antibodies while field virus infected animals will also show CSFV
Erns responses. At present, one Erns ELISA is commercially
available (PrioCHECK CSFV Erns, Thermofisher) and additional
approaches are currently under development based on either
ELISA or Luminex technology (e.g., Aebischer et al., 2013; Xia
et al., 2015).

Baits
For a feasible oral immunization scheme, a suitable delivery
vehicle in the form of bait is needed. Such baits need to fulfill
a wide range of requirements. The most obvious requirement is
the acceptance of the bait by the target species. Bait detectability
(odor, color), palatability (taste), and uptake must all be
considered. Wild boars are omnivores and consume a wide range
of foods, but can have very clear preferences for certain food
items such as acorns (Brandt et al., 2006; Ballesteros et al., 2011).
During initial bait studies with wild boars kept in enclosures,
no clear preference were observed between different aromas

tested (e.g., apple, corn, almond, hazelnut, truffle, potatoes). This
was also confirmed during subsequent field studies with free-
ranging wild boars (Schuster, 1996). The animals tend to prefer
baits containing plant-derived compounds, especially corn meal,
over animal-derived compounds (Schuster, 1996). Based on these
studies, the present commercial bait matrix that accompanies
the Riemser Schweinepestoralvakzine (IDT Biologika, former
Riemser Arzneimittel) consists of corn meal, paraffin wax,
milk powder, aroma (almond), and hardened coconut oil. To
assess bait uptake, bait markers can be incorporated in the
bait matrix or the blister. During initial field trials, tetracycline
was used (Kaden et al., 2000). However, bait markers efficient
in this species (i.e., tetracycline, iophenoxic acid, rhodamine)
are supposed at risk for human health, since wild boar are
hunted and consumed by people (Ballesteros et al., 2013; Sage
et al., 2013) and subsequently increase the overall cost of
vaccination, which compromises the use of chemical markers
at a large scale in natural populations (EFSA, 2008; Anses,
2012). Beef tallow which was used in the original bait, was
removed from the bait matrix because regulatory requirements
limited the use of certain bait materials (e.g., products derived
from terrestrial animals; tissues that may transmit spongiform
encephalopathy). The bait has a relatively low melting point
(30◦C) and is therefore not suitable for distribution in areas
during periods with high elevated temperatures. To protect
the liquid vaccine against environmental factors, including the
bait matrix, the formulated vaccine (1.6 ml) is filled in a
vaccine container after vaccine production. Subsequently, the
PVC vaccine container (20 mm × 20 mm × 7 mm) is sealed
with an aluminum foil and incorporated into the bait matrix
(40 mm × 40 mm × 15 mm). For CSFV it is important that
the vaccine is released in the oral cavity so that it can be taken
up by the tonsils to initiate the immune response. Therefore,
to release the vaccine in the oral cavity of the wild boar, the
animal needs to perforate the vaccine container with its teeth.
If baits are too small, it could be swallowed without chewing
and the vaccine blister will not be perforated. However, the
present bait may be too big for piglets (<4 months of age) to
consume. Faust (2007) observed that piglets only played with
the baits and showed an incomplete uptake. In this case, the
vaccine was not released into the oral cavity, resulting in a
failed vaccination attempt in juvenile wild boar. Also, shape
and texture can influence bait handling and possibly result
in increased vaccine spillage (e.g., dripping on the ground).
Several baits composition and shapes were tested in piglets
during a former European collaborative project but did not result
in a better uptake in that age class in continental European
countries. This may be due to the low palatability of baits in
comparison with the natural food available during spring and
summer when juvenile wild boars are still piglets (Sage et al.,
2011; see An Adapted Bait Delivery Process). A field trial for
wild boar vaccination in Italy with the new live marker vaccine
“CP7_E2alf” and the classic IDT

R© bait gave results similar to
oral vaccination campaigns with C-strain which is encouraging
for future vaccination applications even though the commercial
version of the oral marker vaccine is not yet available (Feliziani
et al., 2014).
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DEPLOYMENT CHALLENGES

A Short History of Oral Mass Vaccination
There is always a big gap between the development of vaccination
tools by researchers and the deployment of vaccination in
the field (van Oirschot, 2003). First, research results have to
be translated into industrial products. Then, field trials are
needed to assess the efficacy of the bait delivery process (see
An Adapted Bait Delivery Process and Assessing Vaccination
Efficacy) and allowing an official vaccine registration (OIE
[World Organisation for Animal Health], 2012). After that, the
process has to be adjusted to the specific local environmental
conditions (An Adapted Bait Delivery Process). Regarding the
C-strain, the only available oral vaccine currently available on
the market, the industrial production and field trials were
mainly implemented in Germany during the 1990’s and early
2000’s by Kaden (1998), Kaden et al. (2000, 2002, 2003,
2004, 2005) and the IDT

R© company. Once the strategy is
officially adopted, many practical problems must be solved
before deployment including prerequisite and exhaustive census
of the vaccination grounds, organizing the logistics for frozen
or cold transportation and storage of several thousands of
vaccine-baits within isolated areas, delivering the technical
information to hunters and controlling bait distribution and
consumption in the field. Stop-hunting 1 week before and
during bait distributions has been implemented to avoid animal
disturbance and to limit the risk of false PCR-positive results
(Louguet et al., 2005). Vaccine-baits alone are relatively cheap
(around 1 euro per bait) so the cost of treating one square
kilometer of forest averages 400–500 euro per year. However,
significant secondary costs are associated with the management
of endemically infected areas such as testing of hunter killed
animals and incidentally discovered carcasses for CSF serology
and virology, the compensation for carcass destruction (CSF
positive carcasses to CSF virology are destroyed), the control
of carcass identification and trade. During the 2000’s in France
the total cost of CSF management in wild boar was estimated
around 1500 euro per square kilometer of treated forest and
per year. Since the early 2000’s, the use of OMV is officially
supported by the European communities (Council Directive
2001/89/EC) and has been adopted in many countries as part of
their emergency plan with an important proportion of success
including Germany, Luxembourg, France, Slovakia, Bulgaria,
and Latvia (EFSA, 2008; Pol et al., 2008) (Table 1). However,
many challenges have to be still addressed for improving the
baits delivery process, monitoring and efficacy (see further
sections).

An Adapted Bait Delivery Process
Currently, bait distribution is provided by hunters (i.e., by hand
delivery) on feeding grounds. Attempts to distribute baits by
aircraft were completed (Kaden et al., 2002), but are not generally
used, possibly due to high costs (EFSA, 2008). Furthermore,
several field studies confirmed that wild boar are omnivorous and
opportunistic animals that need to be pre-baited before vaccine
delivery in order to limit bait uptake by non-target species (e.g.,
red fox, badgers, martens, birds, etc; Sage et al., 2011; Ballesteros

et al., 2013). The C-strain vaccine bait has been classical delivered
under ground to target wild boar specifically (Kaden et al.,
2002) and to protect live-vaccine against damage due to hot
temperatures and consecutive efficacy loss. However, recent
behavioral studies using camera traps and different delivery
process demonstrated that baits put under ground may decrease
wild boar uptake (especially in juvenile boar) while not effectively
preventing the consumption by non-target species (Sage et al.,
2011). Low bait uptake in piglets less than 6 months old has
been a constant problem in previous vaccination attempts (Sage
et al., 2011) and the consecutive low vaccination rates in that
age class (Rossi et al., 2011; Calenge and Rossi, 2014) have
been a well know factor decreasing vaccination efficacy in both
human and animal populations (Anderson and May, 1990; see
Retrospective Analyses based on Hunting Data). Interestingly,
using specific feeders for excluding big animals did not improved
the bait uptake in piglets (Sage et al., 2010) and small baits
that were efficiently consumed by piglets in Spain (Ballesteros
et al., 2009) were poorly consumed in continental European
areas, possibly as a result of different food availability between
continental and Mediterranean ecosystems during summertime
(Sage et al., 2010, 2011). The current vaccination process is based
on three double campaigns in spring, summer, and autumn;
each campaign comprising two vaccine-baits-distribution spaced
by 28 days, aiming at maximizing antibody titters (by booster
vaccination) and the proportion of vaccinated juvenile wild boars
(Kaden et al., 2004; EFSA, 2008). However, recent retrospective
studies, taking into account wild boar demography and spatial
structure, confirmed that bait uptake in juvenile wild boar less
than 1 year is always very low in summer (∼5%) and autumn
(<30%) compared to spring (40–70%). This explains why 1 year
is necessary for reaching a maximum seroprevalence in wild boar
populations within these areas (Calenge and Rossi, 2014). The
classic vaccination process corresponds to the delivery of about
40 baits per vaccination ground and a density of one to two
vaccination ground per square kilometer of treated forest (EFSA,
2008). The vaccination effort and the percentage of vaccinated
wild boar are correlated until an optimum (i.e., 1.25 baiting
places per km2 in North-eastern France) but vaccination efficacy
is strongly influenced by the season and year in relation to
natural food competing with feed stations and baits (Calenge
and Rossi, 2014). Thus, it is probable that uncontrolled factors
(i.e., temperature, rain fall, population dynamics, etc) generate
huge variations in the vaccination success even though the baiting
process is conserved or intensified from year to year. Finally,
vaccination success relies on the delimitation of the vaccinated
area, which we further discuss in Sections “Assessing Vaccination
Efficacy and Alternative or Complementary Strategies.”

Monitoring CSF within Vaccinated Areas
Monitoring CSF outbreaks when vaccinating with the C-strain
vaccine has been challenging during the past deployment
attempts, since the non-marker vaccine (C-strain) strongly
impacts the performance and significance of the diagnostic
tools. First, antibodies targeting the C-strain and the wild CSFV
strains cannot be differentiated using serological tests (Beer et al.,
2007; Dong and Chen, 2007; Blome et al., 2013). Therefore,
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TABLE 1 | Documented classical swine fever (CSF) outbreaks in wild boar in Europe and management measures including oral mass vaccination (OMV).

Period Country and
region

Reference Infected area
(max)

Vaccinated
area (max)

Outbreak
period

Vaccination
period

Restriction
period

Vaccination
treatment

1992–2002 Germany,
Lower Saxony

Kaden et al.,
2000, 2002
FLI

6278 km2 1300 km2

(1993–1994)
5736 km2

(1997–2004)

12/1992
13.06.2002

10/1993
08/2004

12/1992
12/2004

Field trials
Two campaigns a
year

1999–2002 Germany,
Saxony Anhalt

FLI 709 km2 3365 km2 12.10.1999
19.09.2000

12/1999
11/2001

12.10.1999
31.12.2002

Field trials
Two campaigns a
year

2001–2002 Germany,
Saarland

FLI 275 km2 645 km2 26.01.2001
13.06.2002

03/2002
10/2003

01/2001
06/2004

Field trials
Two campaigns a
year

2002 Germany,
Northrhine-
Westphalia

EURL CSF-DB 759 km2 1531 km2 22.04.2002
14.10.2002

08/2002
10/2004

08/2002
09/2004

Field trials
Two campaigns a
year

2005–2007 Germany,
Northrhine-
Westphalia

EURL CSF-DB 1993 km2 1993 km2 07.10.2005
04.05.2007

12/2005
03/2010

10/2005
03/2010

Three campaigns
a year

1999–2002 Germany, M-W
Pomerania

Kaden et al.,
2004
FLI

12928 km2 13942 km2 01.03.1993
21.07.2000

12/1994
06/2002

01.03.1993
31.12.2002

Field trials
Two campaigns a
year

1995–1997 Germany,
Brandenburg

Kern and
Lahrmann, 2000
FLI

5059 km2 9173 km2 14.03.1995
26.04.2000

04/1995
04/2001

14.03.1995
31.12.2002

Field trials
Two campaigns a
year

1999–2001 Germany,
Baden-
Württemberg

Köppel et al.,
2007
FLI

703 km2 1291 km2 30.09.1998
19.11.1999

08/1999
10/2001

30.09.1998
31.12.2002

Three campaigns
a year

1997–2002 Italy,
Varese

Zanardi et al.,
2003

370 km2 None 05/1997
12/2000

– 05/1997
02/2002

No OMV
limited collective
hunting

1985–1990 Italy, Tuscany
South

Rutili et al., 1998
OIE

3800 km2 None 10/1985
11/1990

– 10/1985
11/1990

No OMV
“Intensified”
hunting

1992–1995 Italy, Tuscany
North

Rutili et al., 1998
OIE

304 km2 None 01/04/1992
01/08/1992

– 01/04/1992
12/1995

No OMV limited
collective hunting

1995–1996 Italy,
Piacenza

Rutili et al., 1998
OIE

75 km2 None 09/1995
01/1996

– Not
documented

No OMV
limited collective
hunting

1998–2000 Swiss, Ticino Schnyder et al.,
2002, OIE

166 km2

(risk area)
No vaccination
done

05/1998
01/2000

– 05/1998
01/2001
(OIE)

No OMV limited
collective hunting

1999–2003 Germany,
Rhineland-
Palatinate,
Eifel

von Rüden et al.,
2008
EURL CSF-DB

8568 km2 8600 km2 05.01.1999
24.03.2003

02/2002
03/2005

01/1999
03/2008

Three vaccination
campaigns a year

2002–2004 Germany
Rhineland-
Palatinate,
Palatinate

von Rüden et al.,
2008
EURL CSF-DB

4833 km2 4300 km2 23.10.1998
12.11.2004

01/2003
02/2006

06/2005
02/2008

Three vaccination
campaigns a year

2009 Germany,
Right-Side of
the Rhine

EURL CSF-DB 5038 km2 5038 km2 01/2009
07/2009

02/2009
04/2010

01/2009
06/2012

Three vaccination
campaigns a year

2009 Germany,
Rhineland-
Palatinate,
Palatinate

EURL CSF-DB 862 km2 862 km2 02.03.2009
30.04.2009

03/2009
04/2010

02/2009
06/2012

Three vaccination
campaigns a year

1992–1997 France, Vosges
du Nord

Rossi et al.,
2005a,b

No OMV 01/1992
01/1997

– 01/1992
12/2000

No OMV
normal collective
hunting

(Continued)
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TABLE 1 | Contineud

Period Country and
region

Reference Infected area
(max)

Vaccinated
area (max)

Outbreak
period

Vaccination
period

Restriction
period

Vaccination
treatment

2002–2003 Luxembourg,
whole country

SANCO
10257/2003,
Brauer et al.,
2006
EURL CSF-DB

2592 km2 2592 km2 11/2001
08/2002

03/2003
09/2005

11/2002
09/2005

Three vaccination
campaigns a year

2003 France
Thionville

Pol et al., 2008 200 km2 No OMV 04/2002
07/2002

– 04/2003
03/2005

No OMV limited
collective hunting

2003–2007 France, Vosges
du Nord

Pol et al., 2008;
Rossi et al.,
2010; Calenge
and Rossi, 2014
EURL CSF-DB

2890 km2 2890 km2

(1250)
14/04/2003
01/05/2007

08/2004
06/2010

09/2004
11/2011

Three vaccination
campaigns a year

2005–2008 Slovakia EURL CSF-DB
ADNS
SCoFCAH

9897 km2 9897 km2 07/2004
05/2008

02/2005
11/2010

07/2004
06/2011

Three vaccination
campaigns a year

2004–2009 Bulgaria, EURL CSF-DB
ADNS, WAHID
SCoFCAH

35887 km2 35887 km2 05/2004
09/2009

07/2005
To date

05/2004
To date

Three vaccination
campaigns a year

2007–2009 Hungary ADNS
SCoFCAH

∼4500 km2 01/2007
10/2009

01/2007
09/2012

No OMV

2006–2007 Romania ADNS
SCoFCAH

63247 km2 63247 km2 01/2006
11/2007

05/2007
12/2011

01/2006
09/2012

Three vaccination
campaigns a year

2002 Belgium EURL CSF-DB
ADNS

743 km2 – 11/2002
11/2002

– 11/2002
01/2004

No OMV

2012–to date Latvia ADNS
SCoFCAH

∼9000 km2 ∼5000 km2 16.11.2012–to
date (last
reported case
26.03.2015)

05/2013–to date 16.11.2012–to
date

Three vaccination
campaigns a year

FLI, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Germany; EURL CSF-DB, European database for Classical swine fever; OIE, world organization
for animal health; SANCO, European Commission Directorate-General for Health and Consumers; ADNS, European Animal Disease Notification System; SCoFCAH,
European Standing Committee on the Food Chain and Animal Health.

during OMV, seroprevalence is indicative of an average level
of population immunity but not of CSF circulation (Kaden
et al., 2006; Calenge and Rossi, 2014). Second, the proportion
of viropositive individuals is very low in vaccinated populations,
which compromises the probability of virus detection even
though hunting bags are exhaustively examined within infected
areas, (i.e., representing several thousands samples per year;
van Oirschot, 2003; Rossi et al., 2010) using highly sensitive
PCR tools (Blome et al., 2006). Additionally, among sparse
PCR-positive results, false positive may occur after several
vaccination campaigns, corresponding to C-train genome traces
(in spleen samples), which interfere also with monitoring efficacy
and justified the development of DIVA-PCR we yet described
in Section “Diagnostic Tools” (Blome et al., 2011). After the
completion of vaccination, seroprevalence remains high for some
years, so that CSF circulation cannot be correctly monitored;
surveillance has thus to be maintained for at least 3 years
after OMV completion even though no more cases are detected
(Kaden et al., 2006; Rossi et al., 2014; Saubusse et al., accepted).
The longitudinal monitoring of capture-marked-recaptured wild
boar may help in better interpreting wild boar immune response,
but is also spatially limited and time consuming (Rossi et al.,
2011; Saubusse et al., accepted). The future development of a
new marker vaccine would help to improve outbreak monitoring

within vaccinated areas, since antibodies from vaccinated and
infected animals could be differentiated using companion
serological tests.

ASSESSING VACCINATION EFFICACY

Retrospective Analyses based on
Hunting Data
At the Outbreak Level
Vaccination success was determined through retrospective
studies based on field hunting data collected in Germany,
Luxembourg, and France, which showed evidence of a significant
increase of seroprevalence up to 60% and a quick decrease
of viroprevalence under 1% within vaccinated areas within
1–6 years (Kaden et al., 2002, 2003; von Rüden et al., 2008;
Rossi et al., 2010). Nevertheless, vaccination success has not been
complete as CSFV has been spreading in spite of vaccination in
continuous forested areas (Kaden et al., 2002) and CSFV may re-
emerge after disappearance of the virus for several years (EFSA,
2008). Such problems possibly arose because (i) vaccination areas
were too small compared to the actual area at risk of disease
spread (i.e., the whole connected forested areas), (ii) juvenile
were not correctly immunized during the critical average age
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of infection, (iii) vaccination was not maintained for enough
time (EFSA, 2008). Retrospective analyses performed in France
highlighted that, vaccination is not necessarily preventing CSF
spread within connected forested areas, due to the fact emergency
vaccination is not effective enough to break the chain of
transmission immediately. Nevertheless, proactive vaccination,
when performed within a 24 km width buffer vaccination area
surrounding the virus wave front (i.e., corresponding to 1 year
virus spreading average distance), is able to limit further disease
persistence possibly by preventing the re-invasion between
neighboring sub-populations (Rossi et al., 2010). These results
are logical since a maximum seroprevalence is ultimately reached
after 1 year of deployment (i.e., after a complete cycle of
three double vaccine distributions was achieved; Rossi et al.,
2010). An accurate delimitation of infected and vaccinated areas,
according to landscape/forest structure and existing barriers, is
thus considered as a critical step for controlling CSFV in wild
boar using vaccination (EFSA, 2008).

At the European Level
As previously discussed by Rossi et al. (2005a) and Kramer-
Schadt et al. (2009), the dimension of the risk areas (in square
km2), which depends on forest extend and structure, has been
the main factor influencing outbreaks duration from 1985 up
to 2009 (R2 = 0.46, p < 0.001, Table 1 and Figure 1), When
OMV was performed three times a year, the average outbreaks
duration decreased (OMVeffect = −13 months, ±10.8, p = 0.22),
but at the same time, the average delay between the last
viropositive result and the end of restrictions measures increased
(OMVeffect = +12.9, ±5.1, p = 0.02); possibly as a result of the
confusing effect of OMV on serological and PCR results (see
Deployment Challenges). Thus, OMV has not reduced the cost
of CSF management, but it has been the only strategy preventing
outbreaks re-emergence in large connected forested areas in
Europe [e.g., Palatinate (Ge) and Vosges du Nord (Fr)] (EFSA,
2008; Table 1).

Modeling Efficacy
The epidemiological modeling of wildlife diseases is a tool used to
support disease control and mitigation measures. Mathematical
models from population ecology demonstrate the principle of
OMV in wildlife (Anderson et al., 1981). The approach focuses
the estimation of a minimum population proportions that should
be protected against infection during an OMV program to halt
the spread of CSF. Along with early field trials of OMV such
models proposed an average 40–50% population level immunity
as sufficient to stop CSF spread (Hone et al., 1992; Guberti et al.,
1998). However, the models relied on critical simplifications that
may have led to an underestimation of the threshold population
immunity. The infectious periodmay differ between infected wild
boar individuals because immunocompetency varies according to
age and body condition, and the occurrence of rare chronic (i.e.,
long-lasting) infection is a critical factor regarding CSF dynamics
(Kramer-Schadt et al., 2009) and vaccination efficacy (Lange et al.,
2012), which could not be caught by average simplest models.
Moreover, most of the wild boar populations subjected to OMV
are big and distributed over large connected areal (Rossi et al.,

FIGURE 1 | Duration of outbreak (number of months with viropositive
results) as a function of infected areas and of the vaccination
treatment over 24 “fade out” outbreaks (1985 to 2009). Green circles
correspond to non-vaccinated areas, blue circles correspond to primary field
trials using two simple or double campaigns a year (before 2002), pink circle
correspond to the current oral mass vaccination (OMV) scheme using three
double campaigns a year (mainly after 2002). The line is representing the
average linear regression linking the duration of outbreak to infected areas.

2005a). Thus, the assumption of sufficiently contact within the
complete population on the temporal scale of an individual CSF
infection was not biologically reasonable and spatially explicit
models were required for better understanding the persistence
patterns of CSF in the wild. Next step to support OMV planning
was the application of stochastic meta-population modeling
that suggested a useful population level immunity of 60%
(EFSA, 2008) in line with field estimates from vaccination areas.
More recent research, implementing individual-based models of
wild-boars moving and getting infected in a spatially explicit
habitat landscape, were finally implemented for testing different
vaccination strategies (Lange et al., 2012). These last models
highlighted that the probability of CSFV eradication particularly
relied on the implementation of preventive vaccination and the
maintenance of vaccination effort for at least 5 years (Lange
et al., 2012). A possible next modeling step could be to take into
account the temporal and spatial variation of vaccination efficacy
(Calenge and Rossi, 2014).

Virus Evolution under Vaccination
Pressure
Classical swine fever virus can be assigned to three genotypes
with three to four sub-genotypes each. These genotypes do not
translate into serotypes that pose a problem in diagnostics or
vaccination. Over the last decade, mainly strains of genotype
2, especially 2.1 and 2.3 were circulating in Europe. In the
wild boar, only subtype 2.3 was prevalent (for review see Beer

Frontiers in Microbiology | www.frontiersin.org 7 October 2015 | Volume 6 | Article 1141

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Rossi et al. Review wild boar vaccination

et al., 2015). In general, CSFV is exceptionally stable for an
RNA virus (Vanderhallen et al., 1999), and mass application
of the C-strain did not induce a detectable evolution of the
virus in the wild (see below). Indeed, due to this observed
genetic stability, even a single point mutation could be considered
relevant for molecular epidemiological studies of CSF outbreaks.
The evidence of separate evolution of the two outbreaks in
the 1990–2000’s traced one outbreak to the strain Rostock and
the other to the strain Uelzen in France and Germany. This
has shown that environmental factors including absence of a
forest continuum between two regions have a real contribution
to containment of the disease (Pol et al., 2008; Simon et al.,
2013). More recently, full genome sequencing has been carried
out to investigate the evolution of the CSFV during a long-term
outbreak within the wild boar population in the Vosges du Nord
mountains region. The samples were chosen based on the results
of partial sequencing (Simon et al., 2013) and the availability of
temporal and spatial data in relation to the application of the C
strain vaccine. It was demonstrated that the identified clusters
were associated with the presence of barriers including roads,
rivers, or railways rather than to a viral strategy to escape to the
vaccine immune response.

ALTERNATIVE OR COMPLEMENTARY
STRATEGIES

What about the Depopulation Option?
During the 1980’s and early 1990’s, the “pre-vaccination era,” wild
boar density was considered to be the main factor favoring virus
emergence and endemic persistence; reaching a threshold value
of about 1 wild boar per km2 was recommended for achieving
virus eradication according to a pure density-dependent
argument and assuming a high virulence of virus strains (Hone
et al., 1992; Guberti et al., 1998). At that time, CSF control in
wild boar was supposed to be achieved through depopulation
only, such as used in domestic pigs, and depopulation was
expected to be performed by increasing hunting pressure
and/or destroying trap-captured animals (EFSA, 2008). Such
depopulation strategy was even recommended by the European
experts and the former EU legislation to the member states faced
with CSF in wild boar (Alexandrov et al., 2011; 91/685/CEE,
Art. 6, par. 5, letter e). In practice, the depopulation strategy
has never been satisfactory for controlling outbreaks in wild
populations, and was even considered as an aggravating factor
for CSF spread and persistence by some authors (Laddomada,
2000; Artois et al., 2002; Schnyder et al., 2002). Many reasons
could explain the failure of the depopulation strategy, even if
the density-dependent approach had been effective, including
(i) wild boar density at which the virus could fade out was
probably lower than that which could be achieved through
hunting, (ii) the exact population size and density of the involved
wild boar population were rarely known, and (iii) the low
acceptability of depopulation among hunters, especially when
targeting females and very young piglets (EFSA, 2008). In the
field, it is likely that the infected populations were managed
according to typical hunting strategies, focused on maintaining

or increasing a populations’ size, with moderate hunting pressure
on reproducing females (Gamelon et al., 2012; Keuling et al.,
2013). One may even fear that the actual hunting pressure
during the early stage of the outbreaks was actually lower
than before CSFV emergence due to the lethality induced by
the virus and the difficulty of hunting sparse animals (Rossi
et al., 2005a). Additional “depopulation tools” such as trap-
capture or poisoning, were sometimes carried out in the field
in Europe (Alexandrov et al., 2011), but trapping is not cost-
effective for the large-scale management of wild boar and
poisoning has been considered unacceptable for both animal
welfare and human safety in Europe (EFSA, 2008). Finally, more
recent studies suggested that the density-dependent approach
was not effective for eradication of CSF given that: (i) wild
boar density is not the main factor driving CSF persistence
which rather relys on landscape structure (related to the total
population size at risk) and the moderate virulence of virus
strains involved in wild outbreaks (Rossi et al., 2005a; Kramer-
Schadt et al., 2009), (ii) increasing hunting pressure might
increase population turnover and increase the risk of disease
persistence in naïve piglets (EFSA, 2008), (iii) hunting is
known to increase home range size and could thus contribute
to increasing the mixing and disease transmission between
social groups or subpopulations (Keuling et al., 2008; Saïd
et al., 2012). It is notable that the depopulation strategy was
again addressed by the European communities regarding the
management of African Swine Fever (ASF) recently emerging
in the European wild boar; depopulation was not considered
as an suitable option given its lack of efficacy, in spite of
a lack of available vaccine (EFSA, 2014; Gavier-Widén et al.,
2015).

Restraining Wild Boar Movements and
CSF Spread
The intrinsic spreading of CSF within natural wild boar
populations relies mainly on the forest structure and the
presence of physical barriers. Due to the forest habitat of
the species, the main factor influencing CSF spread (and
persistence) within wild boar populations is the connectivity
(∼distance) between neighbor forest patches (Rossi et al., 2005a,
2010). Physical barriers may also participate in limiting animal
movements, especially fenced motorways and major rivers or
lakes (Laddomada, 2000; Schnyder et al., 2002; Rossi et al.,
2010). However, the efficacy of barriers for preventing animal
movements depends on their nature and/or the combination
with the forest structure (Martin et al., 2013). The reliability
and practicability of erecting fences for preventing disease
spread in wild boar has been addressed regarding both CSF
and ASF control in Europe (EFSA, 2008, 2014). In theory,
this solution is attractive especially when OMV is not possible,
but in practice it has been found poorly satisfactory (e.g.,
the recent spread of ASF in Lithuania in spite of huge
fencing efforts, EFSA, 2014). The main problems with using
fences include that: (i) it is costly, (ii) it takes time to
build during which diseases may spread further, (iii) our
knowledge about the exact position of the wave front of a
wildlife disease at time t is not always accurate, (iv) wild
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boar are very good at damaging fences and fences must
be regularly checked and fixed, which is costly and seldom
achieved. As discussed previously, collective hunting is expected
to increase animal home range and dispersal, thus hunting bans
or banning of hunting dogs during collective hunting has been
implemented around physical barriers to limit the risk disease
spread out of infected areas (Louguet et al., 2005; Rossi et al.,
2011). Nevertheless, hunting restrictions do not prevent natural
seasonal movements of wild boars, which are often unrelated
to human activities (Siat et al., 2010). Finally, a main aspect
for control of CSF spread in wild boar is the prevention of
direct and indirect contacts between wild boar and domestic
pigs, which relies essentially on (i) biosecurity measures and swill
feeding control at pig farms (ii) control of wild boar feeding,
carcass trade and viscera releases (Laddomada, 2000; EFSA,
2008).

CONCLUSION

Wild boar vaccination against CSF has been applied for
more than 15 years in the EU using a highly efficient live
attenuated vaccine, the C strain-Riems, delivered in baits.
While intensifying hunting or erecting fences has not been
adequate for preventing disease spread or persistence, OMV
has proved to be effective in maintaining herd immunity and
achieving CSF control; it is the only available method for
CSF eradication in large forested areas. On the other hand,
CSF may also be quickly eradicated without vaccination in
small forested areas (<1000 km2) well delimited by physical
barriers by establishing hunting restrictions to avoid disease
spread (e.g., Thionville in France and Ticino in Switzerland).
Obviously, CSF control is also dependant on the precautionary
measures taken for carcasses control and pig farm biosecurity.
An integrated strategy is preferred to a single one to maximize
the chance of success and also combining other strategies with
vaccination should be considered. It is interesting to note that
intensified hunting, feeding bans and fencing were recently
re-evaluated as possible management measures for controlling
ASF in Europe and were not considered to be adequate since

now, given past experience during CSF outbreaks (EFSA, 2008,
2014).

The current OMVmethod relies on multiple bait distributions
per year which represents a huge collective effort. Thus, it
relies on the involvement of the stakeholders including hunters,
wildlife agencies, local, and central veterinary services, and local
and reference laboratories. Efforts must be coordinated between
neighboring regions or countries when sharing the same forested
areas, wild boar populations and outbreaks. Management success
relies not only on baiting intensity or the number of vaccination
campaigns. First, the landscape structure (forest and barriers)
has to be considered for determination of the infected areas and
development of a monitoring scheme. This enables quick and
proactive deployment of OMV (24 km buffer area). Second, a
multiple-year application of OMV is necessary to prevent CSF
re-emergence. Furthermore, OMV does not generate genetic
evolution of the virus strains.

Oral mass vaccination is costly during and after OMV
deployment; carcass monitoring and restrictions last for several
years after vaccination due to the confounding effect of non-
marker vaccine on surveillance hunting data. Diagnostic tools
have to be reliable and adapted for this purpose. Future outbreaks
could be addressed and controlled more rapidly using oral
marker vaccine (which is validated but not yet commercially
available) and companion serological tools (which have to be
validated). Even if the youngest piglets cannot eat the baits,
experience of the last years of vaccination showed that they were
protected by maternally derived antibodies. Therefore, applying
repeated vaccination for adult females could avoid this possible
failure in vaccination programs.
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