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The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection
or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of
electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique
depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost,
portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on
specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in
secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by
the instrument may originate from mechanical energy such as sound waves (ultrasound – US), ‘photon’ radiation (X-ray-computed
tomography – CT, dual-energy X-ray absorptiometry – DXA) or radio frequency waves (magnetic resonance imaging – MRI). The
signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or
distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most
accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions.
CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D)
image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal
selection programs in a stepwise approach.
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Implications

The ability to accurately and precisely measure body or car-
cass composition is important for performance testing,
grading and finally the selection or payment of meat-
producing animals. Advances especially in non-invasive
techniques are mainly based on the development of elec-
tronic and computer-driven methods in order to provide
objective phenotypic data. This review provides a summary
of the recent developments in the application of dual-energy
X-ray absorptiometry, X-ray computed tomography, magnetic
resonance imaging and ultrasound.

Introduction

Although meat consumption in Europe and worldwide is not
increasing at the same rate, meat from farm animals will
continue to be the major source of protein for human nutri-
tion throughout the world (OECD/Food and Agriculture
Organization of the United Nations, 2014). In order to pro-
vide a fair and comparable payment for farmers, it is neces-
sary to base the classification of carcasses or meat-producing
animals on harmonized procedures with the least impact on
the quality and quantity of the products for human con-
sumption. Non-invasive grading or classification procedures
have preference over invasive procedures like dissection or
chemical analysis. The ability to accurately and precisely† E-mail: Armin.Scholz@lvg.vetmed.uni-muenchen.de
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measure body composition or carcass composition is also
important for applications related to PHENOTYPING in per-
formance testing and breeding programs or scientific studies
focusing on growth, nutrition, genetics, housing and beha-
vior or farm animal well-being.

Background

Humans started to classify or select animals with the
domestication of wild animals thousands of years ago. This
classification and selection process was (and still is) mainly
based on visual and tactile appraisal with a preference for
less-aggressive and easily fed animals. Apart from selection
procedures based on the form, size, weight, speed, behavior,
fertility, antlers, horns or coat color, it took thousands of
years until ‘more’ scientifically based procedures for farm
animal evaluation or classification were invented. In almost all
cases, farm or wild animals had or have to be sacrificed in order
to be able to process the products for human consumption or
utilization – with the exception of milk, egg, wool, work,
company or manure. Tissue dissection, however, is still the main
European reference standard for the approval of carcass classi-
fication procedures or formulas (Nissen et al., 20061).
First ‘non-invasive imaging’ methods on farm animals

were tested by Kronacher and Hogreve (1936) and Hogreve
(1938) using X-radiography in order to study the pelvis shape
of different pig breeds and the adipose tissue deposition of
fattening pigs, respectively. The first studies using the specific
velocity of ultrasound (US; >20 kHz) in different body tissues
were started in meat-producing farm animals by Temple et al.
(1956). More than 30 years ago, the first papers dealing with
X-ray-based computed tomography (CT; Skjervold et al., 1981)
and nuclear magnetic resonance imaging (tomography – MRI:
Groeneveld et al., 1983; even earlier spectroscopy, Casey and
Miles, 1974) for the evaluation of meat or carcass and body
composition of farm animals were published. Early attempts to
cope automatically with MRI inhomogeneity were made by
Scholz et al. (1993) using a cluster analysis for the segmentation
into fat and muscle tissue of pigs in vivo only after defining a
region of interest of the body part MR scanned. The first dual-
energy X-ray absorptiometry (DXA) studies – especially
regarding farm animal body composition – started with Mitchell
et al. (1996).
Since then, technical progress continued providing ‘bigger,

quicker and smarter’ non-invasive imaging or scanning
devices for the determination of body and/or carcass com-
position measurements in farm animal selection programs.
Besides Australia, New Zealand, Norway and the United
Kingdom, quite a few countries like, for example, Austria,
Canada, Denmark, France, Germany, Hungary, Ireland,
Spain, Sweden and the United States of America use(d) CT (e.g.
Junkuszew and Ringdorfer, 2005; Romvari et al., 2006; Font-i
-Furnols and Gispert, 2009; Vester-Christensen et al., 2009;
Picouet et al., 2010) or MRI (e.g. Mitchell et al., 2001; Collewet
et al., 2005; Monziols et al., 2006; Margeta et al., 2007;

Baulain, 2013) as the reference technology for carcass grading
in abattoirs (e.g. Branscheid et al., 2011; Daumas et al., 2013)
or for performance testing in farm animal breeding programs
(e.g. sheep: von Korn et al., 2005; Baulain et al., 2011; rabbits:
Nagy et al., 2010; Gyovai et al., 2012; Szendrő et al., 2012;
pigs: McEvoy et al., 2009; Kremer et al., 2012, 2013; broiler:
Davenel et al., 2000; Milisits et al., 2013; laying hens: Szentirmai
et al., 2013; and turkeys: Andrássy-Baka et al., 2003).
Owing to changes in carcass confirmation caused by

breeding progress in various farm animal populations, differ-
ences among breeds/species themselves or gender-specific
carcass composition, there is a steady need for newly derived or
adapted formulas for the (S)EUROP classification in carcass
grading (Baulain et al., 2003; Branscheid et al., 2011; Monziols
et al., 2013) or for performance testing (Tholen et al., 2003;
Bernau et al., 2013 and 2015). This is necessary as long as no
whole-body or whole-carcass information would be used
(Kongsro et al., 2008).

Non-invasive techniques for body/carcass composition
measurements

A common feature of non-invasive techniques for body or
carcass composition measurements is that they work with
electromagnetic or mechanical energies, which are able to
pass completely or partially through body or carcass tissues
such as muscle (lean meat = protein+water), adipose tissue
(fat, lipids) and bone. Figure 1 summarizes the different (electro-
magnetic) energy levels that are being used for a number of
non-invasive measurement techniques.
All techniques shown in Figure 1 rely on specific device-

driven signals, which interact with tissues in the body or
carcass at the atomic or molecular level, resulting in sec-
ondary or attenuated signals detected by the instruments
and analyzed quantitatively. The signal (energy) produced by
the instrument may be in the form of sound waves (US),
X-radiation (e.g. CT and DXA) or radio frequency (RF) waves
(MRI). The signals detected by these instruments are processed
to measure, for example, tissue depths, areas, volumes or dis-
tributions of fat, muscle (water, protein) and partly bone or
bone mineral (Table 1).
In many cases, these metrology results have to be com-

pared with or validated against a (SI) reference standard
directly derived from the carcass. The difference between the
arithmetic mean from the non-invasive technique and the
arithmetic mean of the reference provides a measure of BIAS
or trueness. In addition, the (adjusted) coefficient of deter-
mination or regression coefficient (R²) combined with an
error term or term of uncertainty serves as a statistically
defined term of accuracy (i.e. precision). For example, partly
depending on the statistical modeling procedure, the root
mean squared error of estimation and/or prediction or (cross)
validation sometimes standardized as residual standard
deviation (root mean squared error divided by the standard
deviation of the reference mean) provide information about
the uncertainty if compared with a reference technique
(Johansen et al., 2007, e.g. Table 2). A standard description1References before 2010 in Supplementary Material S1.
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is provided by ISO 5725 (https://www.iso.org/obp/ui/#iso:std:
iso:5725:-1:ed-1:v1:en). If two techniques are being com-
pared without a ‘gold standard’ or ‘true’ reference, an
improved Bland–Altman analysis might be the first choice as
the statistical procedure (Liao and Capen, 2011).
Several publications summarize further invasive or non-

invasive methods that are not considered in this review.
Simeonova et al. (2012), for example, provide a recent
review focusing on methods for determining pig body

composition, especially on protein deposition during growth.
All ‘radiology’ applications reviewed in this paper are based
on the inventions and findings of a number of scientists and
engineers summarized in the book Classic Papers in Modern
Diagnostic Radiology.

DXA
Both the techniques, CT and DXA, are based on the mea-
surement of the attenuation of X-rays (photons) passing
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Figure 1 Overview of imaging methods.

Table 1 Traits determined by non-invasive techniques

Non-invasive technique Trait

Dual-energy X-ray absorptiometry (DXA) Photon number passage (tissue level)
X-ray attenuation coefficient from two energy levels

Bone mineral content
Bone mineral area
Bone mineral density
Soft tissue mass
Lean tissue mass
Fat tissue mass

Whole-body and regional data
Computed tomography (CT) Photon number passage (tissue level)

X-ray attenuation in Hounsfield units (HU)
Tissue areas or volumes depending on anatomical position and HU
Regional and whole-body data

Magnetic resonance imaging (MRI) Nuclear magnetic resonance pattern (atomic level)
Energy level (net magnetization) of nuclei with uneven proton and neutron number
Longitudinal and transversal relaxation times
Proton density

Tissue areas or volumes depending on anatomical position and (arbitrary) signal intensities
Regional and whole-body data

Ultrasound imaging (US) Speed of (ultra) sound (tissue level)
Mechanical energy level v. electrical energy level
Signal amplitude, signal brightness
Regional distances, areas, volumes
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through a body (in vivo) or a carcass (postmortem). Tissues or
elements in the body or carcass are characterized by specific
mass attenuation coefficients, depending on the photon
energy level being applied for the measurement. DXA and a
combination of DXA and CT (dual-energy X-ray computed
tomography – DECT; see Johnson, 2009; Magnusson et al.,
2011) are based on the application of two different X-ray
photon energy levels (high and low), whereas CT works
(simplified) only with one (monochromatic) X-ray photon
energy level (Kalender, 1988). The ratio (by using the natural
logarithm = ln) of the attenuated (I) and the initial X-ray
photon number (IO) for the low (L) and the high (H) energy
levels provides the so-called R value (X-ray attenuation
coefficient). This R value is – depending on the energy levels
used – a unique trait for a certain element or compound
tissues, such as bone mineral, soft, lean or fat tissues
(Crabtree et al., 2007; Wang et al., 2010). Different genera-
tions of DXA (or CT) machines use either pencil or fan-beam
technology. The fan-beam technology has been extended to
a so-called cone-beam or a flash-beam technique. A whole-
body scan with a rather slow but very accurate pencil-beam
scanner could take up to 35 min, whereas a whole-body
scan with a high-speed cone-beam scanner takes <3 min.
Different manufacturers of DXA (or DECT) scanners use different
approaches to create a high and a low X-ray energy levels
(Ulzheimer and Flohr, 2009). Therefore, DXA needs cross-
validation for transferring composition results among devices
and software modes (Plank, 2005; Scholz et al., 2007 and 2013;
Hull et al., 2009; Lösel et al., 2010). In addition, DXA as an
indirect tool (Dunshea et al., 2007; Scholz and Mitchell, 2010;
Hunter et al., 2011) does not provide a measure of the lean
meat percentage. It is still necessary to determine the accuracy
of DXA by reference dissection or chemical analysis. The whole-
body/carcass composition estimate is available immediately
after the scan is completed. Alone, a regional analysis in order
to quantify the 2D tissue distribution requires manual
manipulation time, depending on the number and anatomical
specification of the regions of interest.
DXA studies have been performed on a large variety of

farm animal species such as pigs (or pork): Mitchell et al.
(2000 and 2003); Scholz et al. (2002); Suster et al. (2004);

Marcoux et al. (2005); Scholz and Förster (2006); Latorre
et al. (2008); Kremer et al. (2012, 2013); Kogelman et al.
(2013); chicken/broiler/eggs: Swennen et al. (2004); Schrei-
weis et al. (2005); England et al. (2012); Salas et al. (2012);
turkeys: Schöllhorn and Scholz (2007); sheep (or lamb car-
casses): Mercier et al. (2006); Hopkins et al. (2008), Pon-
nampalam et al. (2008); Pearce et al. (2009); Hunter et al.
(2011); Scholz et al. (2013); calves/calf carcasses: Bascom
(2002); Scholz et al. (2003); Hampe et al. (2005); fish: Wood
(2004), or beef: Ribeiro et al. (2011); as well as in the wool and
meat industry: Kröger et al. (2006) and Ho et al. (2013).
The accuracy of DXA measurements comparing pigs,

lambs, calves and turkeys has been summarized recently by
Scholz et al. (2013). To our knowledge, this is the only
comparison performed always with the same GE Lunar DPX-
IQ (GE Healthcare, Oskar-Schlemmer-Strasse 11, D-80807
München) machine (Table 2). Accuracies for turkeys
(n = 100) measured with the same GE Lunar DPX IQ pencil-
beam scanner comparing DXA carcass with chemical analysis
data resulted in the following coefficients of determination
as are for fat (%): R 2 = 0.74 (√m.s.e. = 2.11), fat (g):
R 2 = 0.86 (√m.s.e. = 254), protein+water v. soft lean (%):
R2 = 0.69 (√m.s.e. = 2.33) and protein+water v. soft lean
(g): R2 = 0.99 (√m.s.e. = 178) (data from Kreuzer, 2008). The
accuracy (low R2, high r.s.d.) for lean meat percentage in calves
(Table 2) is rather low due to the relatively low variability in the
lean meat percentage of the young calves in comparison with
the relatively high variability of the lean tissue weight especially
in vivo. The error (inaccuracy) is even inflated during reference
dissection, especially by the individual butcher effect (Nissen
et al., 2006). The relatively low absolute amount of fat leads
to relatively large errors in percentage values for lean and fat
tissues. The main difference among calves originates from dif-
ferent BWs causing variations in lean tissue weight. Bascom
(2002) concluded that DXA is not suitable for the prediction of
the percentage of carcass fat or carcass CP in Jersey calves
(adjusted R2< 0.1), although it is unclear what was done
during that study in terms of the DXA analysis. Dunshea et al.
(2007) found higher prediction accuracies for chemically deter-
mined reference carcass composition in sheep with R² of 0.98
for lean weight and of 0.94 for lean percentage. In addition,

Table 2 Relationship between carcass composition from dissection and DXA carcass or in vivo body composition, depending on species (pig, sheep,
cattle) studied (all whole-body DXA data from the same GE Lunar DPX-IQ scanner1)

Pig (n = 61) Lamb (n = 93) Calf (n = 34)
R 2 (√m.s.e./s.d.) R 2 (√m.s.e./s.d.) R 2 (√m.s.e./s.d.)

Dissection v. DXA Carcass In vivo Carcass In vivo Carcass In vivo

Reference CV CV CV

FAT (%) 0.19 0.80 (0.46) 0.74 (0.46) 0.22 0.73 (0.52) 0.51 (0.69) 0.14 0.28 (0.86) 0.003 (1.02)
FAT (g) 0.28 0.90 (0.32) 0.89 (0.43) 0.31 0.83 (0.42) 0.71 (0.27) 0.23 0.64 (0.78) 0.42 (0.39)
Meat (%)/soft lean (%) 0.05 0.70 (0.57) 0.65 (0.64) 0.04 0.57 (0.66) 0.50 (0.70) 0.04 0.53 (0.69) 0.09 (0.97)
Meat (g)/soft lean (g) 0.14 0.94 (0.39) 0.82 (0.55) 0.10 0.88 (0.35) 0.57 (0.33) 0.23 0.98 (0.13) 0.94 (0.12)

DXA = dual-energy X-ray absorptiometry.
1This is the only known comparison for the three livestock species using the same DXA device always to compare carcass and in vivo data with reference dissection,
modified from Scholz et al. (2013).
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Hunter et al. (2011) stated that DXA-derived estimates of total
and individual tissue masses are highly related to, and can be
used to predict, chemical composition in vivo or of whole
carcasses and carcass halves (in sheep). An adjustment of
the prediction equations, however, depends in all cases on the
manufacturer (General Electrics, Hologic, Norland, Diagnostic
Medical Systems), species, age or weight, software mode and
animal positioning on the scan table.

CT
Contrary to DXA and DECT, CT works with only one (mono-
chromatic) X-ray level (Kalender, 2006). The mass attenua-
tion coefficient of the object (tissue) of interest is
transformed into the so-called Hounsfield units (HU) or CT
values by taking the mass attenuation for water and air into
account. The almost-fixed range of HU for a given tissue
could be used for (fully) automated image segmentation,
distinguishing among the body tissue fat, muscle (water) and
bone (Glasbey et al., 1999; Johansen et al., 2007; Bünger
et al., 2011; Gjerlaug-Enger et al., 2012; Font-i-Furnols et al.,
2013; Jay et al., 2013; Judas and Petzet, 2013; Monziols
et al., 2013). There is, however, for in vivo studies, some
overlap between fat and mammary tissue or fat and lung
tissue on one side of the HU scale, and bone or muscle, as
well as internal organs such as liver, tumor tissue and blood
on the upper side of the HU scale. It has to be considered,
additionally, that differences in CT protocols may lead to
variations of up to 20% in the HU values, especially for (bone
containing) tissues with densities >1.1 g/cm3 (Zurl et al.,
2014). As described above, tissue segmentation, for exam-
ple, by threshold setting is based on assumptions of specific
mass attenuation coefficients for different body or carcass
tissues, which are calculated as HU. It is, however, not
always given – not alone depending on the tissue tempera-
ture (Szabó and Babinszky, 2008) – that muscle tissue is
detected automatically as muscle tissue (or meat≠meat,
fat≠ fat) when comparing different CT machines using the
same individual(s) (Bünger et al., 2011). Besides small
variations for non-adipose tissue (HU = +49 to +52), there
is variation in CT values or HU of the adipose tissue within
growing pigs. The mean adipose tissue HUs for all pigs
(n = 9) in a study by McEvoy et al. (2008) were −90, −98
and −101 at mean BWs of 51.4, 93.8 and 124.1 kg,
respectively. Owing to the anatomical structure of farm ani-
mals (or fish: Nanton et al., 2007; Kolstad et al., 2008),
however, CT, like DXA, is very well-suited for the dis-
crimination between bone and soft tissues in sheep, chicken,
rabbits, beef including buffalo and goose liver in vivo (sheep:
Johansen et al., 2007; Kvame and Vangen, 2007; Navajas
et al., 2007; Macfarlane et al., 2009; Bünger et al., 2011; Ho
et al., 2013; chicken: Milisits et al., 2013; Szentirmai et al.,
2013; rabbits: Nagy et al., 2010; beef: Hollo et al., 2008;
Navajas et al., 2010; buffalo carcass: Holló et al., 2014;
goose liver in vivo: Locsmandi et al., 2005). Milisits et al.
(2013) and Szentirmai et al. (2013), for example, provided a
so-called fat index for determining the body fat content in
broiler chicken and laying hens, respectively, by calculating

the ratio of the number of fat pixels within the HU range from
−20 to −200 to the total number of pixels with HU values for
muscle, water and fat between −200 and +200. The muscle
index provided additionally by Milisits et al. (2013) uses the
number of muscle pixels within the HU range from +20 to
+200, instead of the fat pixel HU range. The variation found
by Chang et al. (2011) for various points of visceral and
subcutaneous fat in minipigs lies in the range of the above-
defined HU threshold values for ‘chicken’ fat (−20 and
−200), with −108.80 ± 5.77 as the lowest mean value
(± s.d.) for subcutaneous fat and with −119.41 ± 6.90 as the
highest HU value for visceral fat. Johansen et al. (2007)
provided the following HU thresholds for tissue segmenta-
tion in lambs: bone v. soft tissue ‘kC’ = 296; soft tissue v.
background noise (air) ‘kA’ = − 156 and fat v. muscle ‘kB’
= 10. The sum of pixels within these thresholds served as
estimates of fat and muscle tissue, although according to the
thresholds mentioned water was included into the fat tissue.
The latest machines are now the so-called multi-slice spiral

(or helical) CTs based on a rotating X-ray source and an array
of X-ray photon sensors on the opposite side of the CT gantry
(Ulzheimer and Flohr, 2009). Especially for CT, the develop-
ment of technology occurs at a breathtaking speed. It took
only about 10 years from single-slice to multi-slice machines to
be developed (Kopp et al., 2000), with now more than 100
slices for one rotation. The body region covered increased from
about 1 cm to more than 10 cm/s, whereas the minimal slice
thickness decreased from 5mm to <0.5 mm at the same time
(Kalender, 2006). In addition, the gantry size now reaches up to
90 cm providing space for bigger (heavier) farm animals.
After semi-automatic image analysis using OsiriX (Rosset

et al., 2004) or ATAR (Animal Tomogram Analysis Routines)
software (Haynes et al., 2010; Bünger et al., 2011; Jay et al.,
2013), fat, muscle and bone areas can be calculated within
the slices of interest. The traits (phenotypes) calculated serve
as the basis for the prediction of carcass and tissue weights
or volumes and proportions of muscle, fat and bone
in combination with additional linear measurements for
2D gigot muscularity, loin eye muscle area and 2D loin
eye muscularity and finally as basis for breeding value
estimation (Bünger et al., 2011). Present developments aim
at whole-body spiral scanning in order to measure the above
traits instead of having to predict them, leading additionally to
3D gigot muscularity and 3D loin eye muscularity. The 3D
information can even help to include the retailer into the
development of new products by applying ‘PorkCAD’, a new
‘design butcher’ (Virtual Slaughterhouse) system based on
a virtual pig created from CT scanning as suggested by Laursen
et al. (2013).
Somewhat different approaches and assumptions among

the European colleagues from Denmark, France, Hungaria,
Ireland, Norway, Sweden, Spain and United Kingdom led to
different solutions for carcass grading, and especially for-
mulas for the prediction of the lean meat percentage, which
is or should be the basis for the payment of producers (Szabó
and Babinszky, 2009). There is, for example, a discussion
going on whether meat yield should be determined on the
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basis of scale weight or on the basis of CT volume (Olsen and
Christensen, 2013 v. Daumas et al., 2013). Scale weight
would require assumptions or knowledge about the ‘true’ CT
density of lean meat (Daumas et al., 2013). Differences in the
calculation of CT densities for lean meat result in different
lean meat weights for similar lean meat volumes, making the
harmonization among different countries or among various
CT scanners more complicated (Daumas et al., 2013; Olsen
and Christensen, 2013).
Correspondingly, CT studies post mortem are also aiming

to determine the salt content in the dry-cured ham, because
the changing NaCl and H2O proportions lead to modified
X-ray attenuations (Fulladosa et al., 2010); whereas Frisullo
et al. (2010) used micro-CT for the rapid estimation of
intramuscular fat (IMF) in beef and for the description of the
fat microstructure. Anton et al. (2013) compared chemical
analysis or dissection with CT in order to determine the IMF
and carcass fat content of beef in a study focusing on the
thyroglobulin (TG) polymorphism. They calculated correla-
tions between IMF (% from Soxhlet analysis) and CT fat (%)
in musculus longissimus dorsi, and between dissected fat (%)
of the right carcass-half and CT fat (%) between the 11th and
13th rib joint of 0.71 and 0.96 (P< 0.001), respectively. In
this context, Jose et al. (2009) stated that CT scanning does
not negatively affect the quality of (beef or lamb) meat,
especially in terms of color. Kongsro and Gjerlaug-Enger
(2013) – in pigs – and Clelland et al. (2013) – in sheep –

started using CT for the measurement of meat quality (IMF
content) in vivo. The regression coefficients between CT IMF
in vivo (+ further variables) and IMF in the carcass loin eye
reached values of adjusted R2⩽ 0.71 (r.m.s.e. ⩾ 0.36) for
Texel lambs, whereas a significantly lower relationship
between IMF and CT intensity values was found (R 2 = 0.18;
RMSEP = 0.48) according to Kongsro and Gjerlaug-Enger
(2013) in pigs. In contrast to the US study by Jiao et al.
(2014), the relatively low level of IMF and small variation in
the Duroc boars studied in comparison with ordinary
slaughtered pigs may have led to low prediction accuracies
based on CT signal intensities. Font-i-Furnols et al. (2013)
describe a further method to determine IMF in pork loins
using CT. The best prediction of IMF resulted from ordinary
linear regression analysis when data from two tomograms
were used (R 2 = 0.83 and RMSEPCV = 0.46%). However,
genomic selection for IMF improvement based on NIR
derived IMF might be a more promising approach according
to Gjerlaug-Enger et al. (2014).
Deeper insights into the physiological role of IMF in com-

parison with intermuscular fat (adipose tissue) are provided
by Hausman et al. (2014).

MRI
The principle of MRI relies on the net magnetization of
spinning nuclei with uneven proton and neutron numbers
and RF-induced 3D-coded voltage readings with tissue-
specific relaxation times depending on spin-lattice (T1) and
spin–spin (T2) interactions combined with the proton
density (Laurent et al., 2000; Baulain and Henning, 2001;

Mitchell et al., 2001). In addition, T1 and T2 depend on the
magnetic field strength (Kato et al., 2005). Furthermore, the
effect of dehydration plays a crucial role not alone in (dry)
cured ham and can be used for MRI applications by taking
advantage of changing T1 and T2 relaxation times, which
depend on the salt content in the ham (Fantazzini
et al., 2009).
A combination of magnetic field produced either by a

ferromagnetic, electromagnetic or superconducting system
with a field strength between 0.1 and 7 T and so-called
gradient coils with a corresponding RF frequency (Larmor
frequency) sequence creates a number of cross-sectional
images with a 3D voxel definition for the x-, y- and z-axis
direction. A Fourier transformation helps in recalculating the
signal information from the spectral domain into pixel (or
voxel)-wise signal intensity values in a ‘gray scale domain’
visible on the ‘computer’ screen. For a T1-weighted sequence
with a TR (time between two consecutive RF pulse signals or
between successive excitations) of 300 ms and a TE (time
between echoes = between middle of exciting RF pulse
signal and middle of spin echo production) of 17 ms, the fat
tissue containing pixels have rather high signal intensities,
whereas the non-fat pixels show lower signal intensities. This
pattern, however, changes on chilled objects (Monziols et al.,
2005 and 2006). As shown in Figure 2, a T1-weighted
sequence would show dark pixels (low signal intensity) for
fat tissue and brighter pixels for lean meat tissue (relatively
higher signal intensity).
The above-mentioned Larmor (resonance) frequency dif-

fers depending on the isotope of interest and the magnetic
field strength. Because the isotope 1H has the largest relative
sensitivity and highest natural frequency compared with 2H
and 3H, proton or 1H nuclear MRI is the most often used
method, and is even applied for the study of pork pie (Gaunt
et al., 2013).
Usually, an MRI or also a CT (DECT) scan starts with a so-

called scout or localizer image sequence in order to be able
to define the ‘slice’ positions and directions as targeted. After
successful image acquisition and data storage, a quantitative
image analysis is required in order to measure – either in the
most simple way – the regions of interest (distances or areas)
or calculate – after a more challenging segmentation pro-
cedure – the volumes of interest relevant for body or carcass
composition measurements. Based on T1 mapping, Kullberg
et al. (2006 and 2007), for example, described a fully auto-
mated protocol for MR image analysis, focusing on the seg-
mentation of visceral and subcutaneous fat in humans,
whereas Addeman et al. (2015) suggested a so-called fat
fraction mapping for the automatic determination of sub-
cutaneous adipose and intra-abdominal adipose tissue
within the total adipose tissue.
Various free or commercial software packages are avail-

able in order to automate image segmentation into muscle/
lean meat, fat, bone and, if necessary, gastrointestinal tract/
abdominal content (Figure 3). This procedure can be stan-
dardized more easily for CT images than for MRI images,
because of the ‘unique’ application of HU for tissues like
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bone, muscle (water) and fat. Signals within MR images
depend on the tissue-specific relaxation times T1 and T2,
including proton density, and on various technical conditions
and sequence settings such as the magnetic field strength,
the RF pulse sequence(s), slice thickness, distance between

slices, number of acquisitions and the specification of (body)
coil used.
A relatively new non-invasive (but non-imaging) method

‘QMR’ – quantitative magnetic resonance – is still in the
evaluation phase for farm animals (Mitchell et al., 2012).

in vivo carcass

T1  weighted sequence

1H Magnetic Resonance Imaging

Characteristics of isotopes (1H)

Figure 2 Differences in NMR proton characteristics depending on body temperature (left: lamb in vivo ~37°C, right: lamb carcass chilled <8°C, free
software DicomWorks, ©Philippe PUECH).

automatic, semi-automatic or manual
segmentation into muscle, fat or bone volumes

no “unique” signal intensities

1H Magnetic Resonance Imaging

Virtual dissection of a lamb
(data from Kremer 2013)

Figure 3 Examples for image analysis and 3D re-calculation (left software used: sliceOmatic, Tomovision Inc.; right software used: 3D DOCTOR, Able Inc.,
data from Kremer, 2013).
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US scanning/imaging
Information retrieval by measuring the velocity of sound is
the only method among the methods described in this study
that depends on mechanical energy fluctuations. The general
principle is based on the partial reflection of (longitudinal) US
waves from the interface between different media and/or
body tissues (>20 kHz, Scholz and Baulain, 2009; Halliwell,
2010; Scholz and Mitchell, 2010; Pathak et al., 2011).
Different tissues have different (sound) attenuation coef-

ficients depending on the frequency for the creation of the US
(waves), whereas the speed of longitudinal sound waves
increases with the density of the material the sound wave is
travelling through (Halliwell, 2010; Culjat et al., 2012).
Because the density of (body) tissues is also temperature-
dependent, it makes a difference if a (chilled) carcass or a
living animal is ‘ultrasonographed’. The speed of US is
1403 m/s in water of a temperature of 0°C and 1472 m/s in
water of a temperature of 17°C (Vogt et al., 2008). Van de
Sompel et al. (2012) obtained a calculated speed of US of
1524 m/s in water with a temperature of 37°C for a salinity of
0% at 0 meter below water.
Because of the accelerated technical improvement of

real-time linear-phased array ultrasonic transducers and
scanners, this technique has become the most common
technology for (farm) animal body and carcass composition
assessment (Starck et al., 2001; Mitchell and Scholz, 2009,
Scholz and Baulain, 2009).
Two-dimensional US images from so-called B-mode

(brightness) devices provide information about adipose tis-
sue depots and cross-sectional areas of muscles, whereas

A-mode devices (amplitude) can be used for simple distance
measurements of fat or muscle (meat) layers. Real-time
B-mode information (2D or 3D images) result from rapid
electronic switching or phased array transducers (a number
of piezoelectric elements) of different shapes (Starck et al.,
2001). At present, most of the US devices for performance
testing use (linear) phased array transducers to convert
electronic energy to high-frequency ultrasonic (mechanical)
energy that travels through the animal body in short pulses.
As soon as ultrasonic waves meet at an interface between
two tissues that differ in acoustical properties, a part of the
(longitudinal) ultrasonic waves are reflected back to the
receiver probe (the phased array transducer). Variations in
fat, muscle or bone tissue depths or in the distribution of, for
example, intermuscular and especially IMF result in time
differences in reflected ultrasonic wave signals affected
additionally by absorption and refraction (scatter) of the
mechanical energy (Starck et al., 2001). These effects com-
bined with variations caused by the expertise of the testing
person, age/weight of the animal and the behavior of the
animal tested lead in some cases to a challenging inter-
pretation of the US imaging or scanning results, as can be
seen from Figure 4. They make the measurement of areas or
even volumes (weights) less accurate in comparison with
MRI or CT. Depending on the transducer and on the scan
settings in terms of frequency, it might be the case that the
measurement of, for example, the loin eye area becomes
almost impossible and requires a lot of educated ‘anatomical’
guessing in order to provide reasonable data (Figure 4).
Related to the above measurement site on the (beef) animal,

Fat depth:       ~ 50 mm

Muscle depth: ~ 45 mm?

Loin eye
48.9 cm2

Loin eye
?

Fat depth:       ~ 20 mm

Muscle depth: ~ 50 mm?

Figure 4 Comparison of ‘obese’ and ‘standard’ pigs (using a variable 2.5 to 5 MHz ‘backfat’ 17-cm transducer).
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Harangi (2013) stated for Charolais bulls that the relation-
ship between ultrasound rib eye area (UREA) and ‘plani-
meter’ carcass rib eye area (CREA) was higher when
measured between the 12th and 13th rib instead of between
the 11th and 12th rib with R 2 of 0.91 and 0.84 (CV 2.16% v.
5.3%), respectively. Török et al. (2009) found slightly mod-
ified relationships between UREA and CREA for four different
beef breeds (Limousin R 2 = 0.92, Charolais R 2 = 0.64,
Angus and Simmental R 2 = 0.55).
It must always be considered that the attenuation of

ultrasonic energy increases with a rising frequency, whereas
the tissue penetration depth of the ultrasonic energy waves
decreases with increasing attenuation. Therefore, probes
with a frequency between 2 and 5 MHz will be used for
measurements, including muscle depth or muscle area
(volume), whereas probes with frequency >5 MHz (up to
7.5 MHz) will be used for ‘subcutaneous’ scanning where
deeper muscle regions are not of interest (Schröder and
Staufenbiel, 2006; Pillen and van Alfen, 2011).
As muscle tissue has a higher US attenuation than fat

tissue, US technology is widely used in farm animal perfor-
mance testing (Stouffer, 2004; Pathak et al., 2011; Ayuso
et al., 2013), obesity diagnostics (Barbero et al., 2013), body
condition scoring (Schröder and Staufenbiel, 2006) or for
carcass grading (Branscheid et al., 2011).

Application in existing breeding programs

The above-mentioned practical applications of US measure-
ments of live animals and carcasses are being extended to
genetic selection programs (Müller and Polten, 2004; Kleczek
et al., 2009; Emenheiser et al., 2010; Case et al., 2012;
Maximini et al., 2012; Harangi, 2013), by including in vivo
IMF (uIMF) measurements in Duroc pigs (Maignel et al.,
2010), and, for example, in Angus cattle (Ravagnolo et al.,
2010), Nelore cattle (Bonin et al., 2010) or Angus–Brahman
crossbred cattle (Elzo et al., 2010).
As ‘…heritability is a simple dimension less measure of

the importance of genetic factors in explaining the differ-
ences between individuals, and it allows an immediate
comparison of the same trait across populations and of dif-
ferent traits within a population’ (Visscher et al., 2008), we
use that (additive) genetic variance indicator in the following
comparisons of different traits derived from non-invasive
techniques (Tables 3 and 4). Heritability estimates for uIMF
were rather low with h 2 = 0.12 for Angus in Urugay

(Ravagnolo et al., 2010) in contrast with very high (most
likely overestimated) h 2 of 0.78 for a very variable Angus–
Brahman population in Florida (Elzo et al., 2010). Suther
(2009) summarizes a number of earlier studies and shows a
similar range of heritability estimates for marbling (IMF) in
beef cattle (Table 3).
Expectedly, real-time US data of muscle depth in sheep or

breast muscle thickness in broilers showed medium-to-high
direct heritability estimates between 0.2 and 0.51 (Jones
et al., 2004, Wolf and Jones, 2007; Grosso et al., 2010,
Maximini et al., 2012; Table 4), whereas heritability esti-
mates – depending on age – varied in a similar range
between 0.31 and 0.42 for loin muscle (or rib eye) area
(between 12th and 13th ribs) in Bos indicus (Bonin et al.,
2010; Pinheiro et al., 2011), Angus–Brahman (Elzo et al.,
2010) and multi-breed beef cattle (Jeyaruban and Johnston,
2014). Heritability estimates for back fat thickness (between
12th and 13th ribs) showed slightly lower values ranging
from 0.06 to 0.32 (Bonin et al., 2010; Elzo et al., 2010;
Pinheiro et al., 2011) as well as for rump fat thickness with
values from 0.26 to 0.29 (alone Pinheiro et al., 2011). The
advantage of US scanning can be concluded from the above
references. US is the only method among the reviewed ones
that can be applied in (beef) cattle (Drennan et al., 2009)
without size restrictions as there exist for CT, DXA and MRI.
Besides US, CT alone is being used in practical farm animal

breeding programs, especially for the selection of body
composition traits in pigs and sheep. In this context, CT is,
meanwhile, declared as ‘part of the routine genetic selection
programs in modern times’ (Ley, 2013). This, however, is true
for only a very few breeding organizations or CT service
(research) units in the world so far – such as, for example, for
sheep selection in Australia, New Zealand and United Kingdom
(e.g. Lambe et al., 2008; Arthur et al., 2011, Bünger et al., 2011)
or pig (and sheep) selection in Norway (e.g. Kvame et al., 2006;
Kongsro et al., 2008; Gjerlaug-Enger et al., 2012). Gjerlaug-
Enger et al. 2012 estimated heritabilities for CT lean meat
percentage (LMP) between 0.5 and 0.57 (Table 4).
Therefore, the available high additive genetic variance for

lean meat percentage in both Norwegian pig breeds based
on in vivo whole-body CT measurement makes that techni-
que very efficient for selection decisions without having to
sacrifice potential breeding animals. At present, the capacity
of modern CT machines allows the acquisition of more than
1100 slices per farm animal (e.g. male or female breeding
pigs) in an actual whole-body scanning time of less than a

Table 3 Examples of heritability estimates (h 2, s.e.) for intramuscular fat determined by US in vivo

Non-invasive Trait Technique Species Breed h² (s.e.) Reference

Intramuscular fat (%) US Cattle Angus 0.12 (0.03) Ravagnolo et al. (2010)
Angus–Brahman 0.78 (0.09) Elzo et al. (2010)
Diverse 0.12−0.88 Suther (2009)1

Pig Duroc 0.54 (0.11) Jiao et al. (2014)

US = ultrasound imaging.
1References before 2010 in Supplementary Material S1.
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minute in vivo (Gjerlaug-Enger et al., 2012). Handling,
scanning and image analysis for one potential breeding boar
or gilt under performance testing takes, in the meantime,
only about 15 min. Image analysis is fully automated using
MatLab® (The MathWorks Inc., Natick, MA, USA) proce-
dures, especially adapted to CT volume information. A total
of 24 boars tested per day is a routine application at Topigs-
Norsvin facilities. Information from 1100 slices per potential
breeding boar are processed for the body composition phe-
notypes like lean meat (kg, %), fat (kg, %), bone (kg, %),
primal cuts (kg), live and ‘carcass’ weight (kg), as well as
carcass yield (%) (Gjerlaug-Enger et al., 2012).
Slightly modified approaches serve for sheep selection

programs at the SRUC (Scotland, UK) in Edinburgh. Routine
application at the SRUC covers three important body regions
such as thorax (transversal slice at thoracic vertebra 8), loin

(lumbar vertebra 5) and gigot (ischium – back of the pelvis)
of breeding sheep (Bünger et al., 2011).
Maximini et al. (2012) compared genetic (across breeds)

parameters for phenotypes derived from either CT or US in
five Austrian sheep breeds. They found moderate h² esti-
mates for US scan traits for eye muscle depth (0.28) and for
fat depth (0.29), whereas CT traits showed higher (across
breed) h 2 estimates for fat (0.36 and 0.40), but not for the
eye muscle area (0.24) (Table 4). Among other unknown
reasons, these slightly problematic across-breed heritability
estimates (Visscher et al., 2008) led Austrian sheep breeders
to abandon CT in favor for US (Fürst-Waltl and Grill, 2013).
In contrast with Maximini et al. (2012), Karamichou et al.

(2006) found, for all CT tissue areas, moderate-to-high her-
itability estimates between 0.23 and 0.76. The heritability
estimates for CT fat areas started at 0.5, whereas the

Table 4 Examples of heritability estimates (h², s.e.) for body composition traits determined by DXA, CT or US1

Non-invasive trait Technique Species Breed h² (s.e.) Reference

Lean meat (%) CT Pig Duroc 0.57 (0.05) Gjerlaug-Enger et al., 2012
Landrace 0.50 (0.05)

Fat (%) DXA Pig F2 with Göttinger Minipig 0.57 (0.14) Kogelman et al., 2013
Lean Meat (g) CT Sheep Charolais, Suffolk, Texel 0.47, 0.45, 0.46 (0.09) Jones et al. (2004)2

Norwegian White 0.57 (0.16) Kvame and Vangen (2007)
Scottish Blackface 0.48 (0.17) Karamichou et al. (2006)

DXA Pig F2 with Göttinger Minipig 0.71 (0.14) Kogelman et al. (2013)
Fat (g) CT Sheep Charolais Suffolk, Texel 0.38, 0.41, 0.40 (0.09) Jones et al. (2004)

Norwegian White 0.29 (0.13) Kvame and Vangen (2007)
Scottish Blackface 0.6 (0.28) Karamichou et al. (2006)

DXA Pig F2 with Göttinger Minipig 0.43 (0.13) Kogelman et al. (2013)
Bone mineral (g) DXA Pig F2 with Göttinger Minipig 0.76 (0.15) Kogelman et al. (2013)
Bone mass (g) CT Sheep Norwegian White 0.51 (0.15) Kvame and Vangen (2007)

Scottish Blackface 0.14 (0.11) Karamichou et al. (2006)
Bone mineral density (g/cm²) DXA Pig F2 with Göttinger Minipig 0.92 (0.16) Kogelman et al. (2013)
Loin eye area (cm²) CT Sheep Scottish Blackface 0.33 (0.12) Karamichou et al. (2006)

Five diverse Austrian 0.24 (0.03) Maximini et al. (2012)
US Cattle Nellore 0.31 to 0.34 (0.03) Caetano et al. (2013)

Hanwoo 0.09 to 0.24 (0.09 to 0.16) Lee et al. (2014)
Pig Duroc, Landrace, Yorkshire 0.21 to 0.22 (<0.01) Choi et al. (2013)

Fat area (cm²) CT Sheep Scottish Blackface 0.5 to 0.76 (0.08 to 0.22) Karamichou et al. (2006)
five diverse Austrian 0.36 to 0.4 (0.03) Maximini et al.( 2012)

Muscle depth (mm, cm) US Sheep Charolais Suffolk, Texel 0.30, 0.32, 0.29 (0.01 to 0.02) Jones et al., 2004
Norwegian White 0.28 (0.05) Kvame & Vangen, 2007
five diverse Austrian 0.28 (0.05) Maximini et al. (2012)
Broiler commercial line 0.28 to 0.51 (0.02) de Genova Gaya (2013)

Pig Duroc 0.39 (0.09) Jiao et al. (2014)
Fat depth (mm, cm) US Sheep Charolais, Suffolk, Texel 0.34, 0.35, 0.38 (0.01 to 0.02) Jones et al. (2004)

Norwegian White 0.44 (0.06) Kvame and Vangen (2007)
five diverse Austrian 0.29 (0.05) Maximini et al. (2012)

Cattle Angus 0.26 to 0.46 (0.03 to 0.08) MacNeil and Northcutt (2008)
Nellore 0.23 (0.02) Caetano et al. (2013)
Hanwoo 0.05 to 0.47 (0.06 to 0.15) Lee et al. (2014)

Pig Duroc 0.58 (0.09) Jiao et al. (2014)
Duroc, Landrace, Yorkshire 0.32, 0.41, 0.38 (<0.01) Choi et al. (2013)

CT = computed tomography; DXA = dual-energy X-ray absorptiometry; US = ultrasound.
1Many more studies with ‘US’ heritability estimates exist.
2References before 2010 in Supplementary Material S1.
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estimates for loin eye muscle area showed an average value
of 0.33 for the univariate model (Table 4). Meanwhile, sheep
breeders from New Zealand advocated the combination of
US and CT in a stage breeding design because ‘selection of
meat sheep on CT measurements will increase genetic pro-
gress, compared with selection on US measurements alone’
(Bünger et al., 2011). In this context, Moore et al. (2011)
demonstrated that, for sheep, combining CT with US scan-
ning would increase the estimated breeding value (EBV)
accuracy by 6% to 20% in comparison with US scanning
alone, thus supporting the great benefit of CT. These calcu-
lations are derived from US prediction accuracies (R 2) in the
order of 0.65 and 0.50 for fat (kg) and muscle (kg), respec-
tively, with heritabilities for US-measured muscle and fat
depth of 0.24 to 0.32 and 0.19 to 0.38, respectively (Jones
et al., 2004; Bünger et al., 2011; Mortimer et al., 2014),
whereas accuracies of CT-based predictions in meat sheep
for fat and muscle weight are significantly higher with
R 2 = 0.99 (r.s.d. = 434 g) and 0.97 (r.s.d. = 611 g),
respectively, combined with expected corresponding herit-
abilities between 0.4 and 0.5 (Young et al., 2001) or between
0.35 and 0.45 (Jones et al., 2004).
Neither DXA nor MRI are being actively used in commer-

cial breeding programs so far, although Kogelman et al.
(2013) estimated ‘heritability’ estimates in a F2 pig popula-
tion originating from crosses of Duroc or Yorkshire and
Göttinger Minipig. The heritability estimate for DXA lean
mass, of 0.71, is higher than that for DXA fat mass, of 0.43.
This observation corresponds with the order of the sheep CT
heritability estimates for lean and fat mass, with the excep-
tion of h² estimates for the Scottish Blackface (Table 4).

Harmonization and comparison of techniques

Reference (volume) phantoms could help making different CT
machines comparable (Christensen and Angel, 2013). The
same is true for DXA, because different machines within or
among different manufacturers use various settings in order
to measure the X-ray attenuation coefficient (R value) based
on the specific X-ray attenuation of body tissues for high-
and low-energy levels (Wood, 2004; Plank, 2005; Lösel et al.,
2010). It is even more difficult with MRI, because there
are no standardized signal intensities describing one or the
other tissue (Baulain and Henning, 2001; Mitchell et al.,
2001; Kremer et al., 2012 and 2013; Collewet et al.,
2013; Addeman et al., 2015; Pérez-Palacios et al., 2014). In
addition, not only the velocity of sound depends on the
surrounding temperature of body/carcass tissues but also
the attenuation of X-rays (Szabó and Babinszky, 2008), and
the electromagnetic patterns of protons lead to different
results for in vivo and postmortem (carcass) measurements
within the same animal.
The objective of all imaging techniques is to achieve an

optimum signal-to-noise ratio combined with small voxel
sizes for discrete image segmentation into the body tissues
(structures) of interest (Hanna and Cuschieri, 2001). Chemical
shift or partial volume effects must be considered when

interpreting the accuracy of MRI-derived body/carcass compo-
sition estimates (Monziols et al., 2005). Monziols et al. (2006)
found an increase in estimation accuracy (higher R2, lower
residual standard deviation) for muscle or fat weight and per-
centage with an increase in body regions (slices) analyzed. If the
most relevant body regions are accounted for, or even the
whole body, according to the Cavaleri method, MRI, like CT
(and DXA), is a very useful tool for growth- or obesity-related
studies, because there is no need for serial slaughter anymore
(Cavaleri method: Gong et al., 2000; Glasbey and Robinson,
2002; Baulain et al., 2003; Mandarim-De-Lacerda, 2003; Vogt
et al., 2007; Szabó and Babinsky, 2009; Arthur et al., 2011).
Only a very few studies exist where DXA measurements

are being compared with MRI (Vogt et al., 2007; Brand-
berg, 2009; Bernau et al., 2015). Vogt et al. (2007) found a
relationship of R 2 = 0.95 between whole-body fat mea-
surements performed by DXA (pencil-beam scanner) and
by MRI (1.5 T) in human probands, whereas DXA (GE
Lunar DPX-L) underestimated the total fat weights com-
pared with both CT −5.23 kg (1.71 kg) and MRI −4.67 kg
(2.38 kg) in another study on human probands, summar-
ized in the thesis by Brandberg (2009). Bernau et al.
(2015) showed for 20 intact boars that both, MRI and
DXA, can be used with high accuracy (R 2 = 0.88 or 0.91,
r.m.s.e. = 0.9% or 0.82%, respectively) to predict lean meat
percentage from dissection. The combination of both techni-
ques resulted in an R2 of 0.95 (with r.m.s.e. = 0.61%).
Mitchell and Scholz (2009) could additionally show that the
relationship between DXA measurements and the corre-
sponding reference carcass traits was higher than the
relationship between US measurements and the same
corresponding reference carcass traits with a correlation
of r = − 0.85 (−0.87) for DXA lean % v. carcass fat % in
comparison with a corresponding relationship for US fat-free
mass % v. carcass fat %, with r = −0.69 (−0.74) for pigs
with a BW of 110 or 100 kg, respectively. These findings
were supported by Suster et al. (2004), who reported that
DXA measurement values are more closely related with
chemically determined carcass values than are carcass P2
back fat measurements performed using a ruler. DXA
(or whole-body/carcass MRI/CT) covers the total amount
or percentage of body fat or lean meat, whereas US- or
ruler-based back fat measurements can only account for
subcutaneous fat layers on a limited number of body regions,
and therefore cannot account for all the differences in the
distribution of fat layers when comparing different farm
animal breeds or genotypes, for example.
Table 5 summarizes studies with the ‘closest’ published

relationships between lean meat percentage (LMP) from
dissection and the four techniques (DXA, CT, MRI and US)
reviewed in this study. All data originate from pigs
(carcasses/in vivo) for two reasons. First, pigs still have a
relatively high variability in body or carcass composition,
especially in the subcutaneous fat layer, and, second, rea-
sonable data for the four techniques in the review exist
mainly for pigs, followed by sheep and to some extent by
poultry or fish.
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Conclusion for imaging/non-invasive methods

If sufficient automatic procedures are available, the ‘Cavalieri’
method, or even better a whole-body scan, is the preferred
CT or MRI imaging procedure, because whole-body infor-
mation does not require breed, species or age-/weight-specific
prediction equations.
For performance testing, a combination of the variousmethods

listed below might be optimal based on cost and accuracy:

(1) If radiation and the high investment price are not an
issue, then use a ‘New Generation’ spiral, multi-slice CT
for the measurement of body/carcass composition.

(2) If 3D information (e.g. carcass cuts, muscle or fat
volumes) is not required, use DXA.

(3) If radiation is an issue, use MRI. Anesthesia is required in
most cases (1–3)!

(4) If a ‘quick’ and ‘easy’ answer is the objective, use
A-mode US and for little more B-mode. In all cases (1–4),
a scale is very useful!

According to Kallweit (1992), one could still conclude that
‘There are advantages and disadvantages of individual sys-
tems in their present state...’ as summarized in Table 6. ‘...
The rapid progress in technical development may lead to
further improvements in the future.’ Actually, nothing has
changed in the past 20 years .

Present and potential future applications – non-invasive
measurements of new exactly measured ‘phenotypes’ to be
associated with new ‘genotypes’ and/or fairer payment types
The future of non-invasive techniques or imaging will certainly
consider ‘new’ phenotypes, which are of interest for animal

Table 5 Comparison of non-invasive techniques (reference: lean meat % from dissection)

Accuracy (alone for pigs)

R 2 r.m.s.e. R 2 r.m.s.e.

Method Reference tissue Carcass In vivo Scan time whole body X-radition exposure (mrem)

CT Lean meat (%) <0.99 >0.54 <0.94 >1.00 5 to 30 s 9 to 15
MRI Lean meat (%) <0.98 >0.62 <0.87 >1.20 15 to 30 min None
DXA Lean meat (%) <0.91 >0.82 <0.72 >1.75 7 to 13 min 0.03 to 0.06
US Lean meat (%) <0.77 >0.70 <0.53 >1.95 – None

CT = computed tomography; MRI = magnetic resonance imaging; DXA = dual-energy X-ray absorptiometry; US = ultrasound.
Carcass: CT data from Judas et al. (2005), Romvari et al. (2006), Vester-Christensen et al. (2009), Monziols et al. (2013); MRI data from Baulain and Henning (2001),
Mitchell et al. (2001), Baulain et al. (2003), Collewet et al. (2005); Monziols et al. (2006); DXA data from Bernau et al. (2015); Dunshea et al. (2007) (ewes and wheters:
% chemical lean: R 2 = 0.94); and US data from Branscheid et al. (2011).
In vivo: CT data from Romvari et al. (2005) (no error terms provided); MRI data from Baulain and Henning (2001) (R 2 = 0.91, r.m.s.e. = 1.90% in lambs), Mitchell et al.
(2001), Scholz (2002); DXA data from Scholz and Förster (2006), Mitchell et al. (2002) (pigs: R² = 0.84 for chemical lean %); and US data from Youssao et al. (2002),
Doeschl-Wilson et al. (2005).
References before 2010 in Supplementary Material S1.

Table 6 Advantages and disadvantages of non-invasive techniques for the determination of body or carcass composition

Advantages Disadvantages

Dual-energy X-ray absorptiometry (DXA) Easy handling
Low radiation
Medium price
Quick data analysis
Regional data analysis

Alone 2D information (so far)
No direct data for lean meat (in vivo)

Computed tomography (CT) Very high anatomical resolution
High speed
Whole-body 3D data
Automatic data analysis

X-radiation exposure
Expensive

Magnetic resonance imaging (MRI) Excellent soft tissue differentiation
Whole-body 3D data
Functional imaging
No radiation

Expensive (if high field strength magnet)
Rather slow (whole body)
Availability (farm animal sector)

Ultrasound imaging (US) Portable, extensive database for some species
Reasonably priced
No radiation
Real time, online
No size limit, no sedation/anesthesia

Less accurate anatomical resolution
Image analysis not easily automated
No whole-body information
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breeders, and need attention for next generations of farm ani-
mals, such as lean meat and fat deposition efficiency (Martinsen
et al., 2014). Most often these will be traits, which could not be
recorded routinely without the application of non-invasive tech-
niques like, for example, traits related to leg health. New select-
able leg health traits could be bone mineral content or bone
mineral density derived by DXA and/or CT (Charuta et al., 2012;
Laenoi et al., 2012; Rangkasenee et al., 2013, Rothammer et al.,
2014) or osteochondrosis scores as suggested by Aasmundstad
et al. (2013), with a promising heritability estimate of 0.31
(±0.09). Several groups are already trying to implement meat and
partially fat quality (water proportion in fat) measurements
in vivo. Beef cattle breeders have been using US imaging in order
to measure muscle marbling for several years now, whereas CT
scanning is being studied in order to measure the IMF content in
sheep and pigs during performance testing in vivo, without
sacrificing the potential high EBV sire or dam breeding animals.
More futuristic, but not less relevant, traits could be the volume of
(internal) organs as an indicator of the metabolic capacity of
breeding animals or a number of morphological traits under
indirect selection pressure by present or future breeding objec-
tives (Kongsro personal communication 2012 to 2014, Carabús
et al., 2013). Bünger (personal communication 2013 and 2014)
suggests to including more 3D information about muscularity of
the gigot, as well as the longissimus dorsi muscles or other body
parts, for UK sheep breeding programs. Other traits could be, for
example, the number of vertebrae counted using CT (Donaldson
et al., 2013), the gut or rumen size as an indicator of greenhouse
gas output (Goopy et al., 2014) and, for example, pelvic dimen-
sions as indictors for ease of lambing.
In addition, the combination of exact phenotypic data

derived from non-invasive techniques in combination with
(whole) genome data will provide more knowledge and
deeper insight into the control of growth and body/carcass
composition of farm animals (Cavanagh et al., 2010;
Rothammer et al., 2014). In particular, phenotypic traits,
which are difficult and expensive to measure as the ones
derived from the non-invasive techniques discussed in this
review, will provide extra value for genomic selection (Hayes
et al., 2013).
In general, it seems that non-invasive (imaging) methods

have become common practice in the growing scientific
community and partly in breeding organizations and abat-
toirs, like the development of an on-line CT for carcass
classification in Denmark.
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