
Viruses and Signalling
Influenza viruses only have a quite limited coding capacity.
Thus, these viruses have to employ functions of their
host cell for efficient replication. This of course creates
dependencies that might be useful to design novel antivi-
ral strategies by targeting host cell functions. One of the
major advantages for such an approach would be that the
virus can not easily replace the missing cellular function.
Thus there should be no or only a reduced tendency for
inhibitors of cellular functions to induce resistant virus
variants. First indications that this assumption appears to
hold true came from pioneering work from Christoph
Scholtissek and colleagues in the early 90’s [1]. In these
studies it has been demonstrated that inhibitors of
methyltransferases or broad range kinase inhibitors such
as H7 blocked influenza virus replication without the
emergence of resistant variants. 

Cell fate decisions in response to extracellular agents,
including pathogenic invaders are commonly mediated by
intracellular signalling cascades that transduce signals
into stimulus specific actions, e.g. changes in gene expres-
sion patterns, alterations in the metabolic state of the cell
or induction of programmed cell death (apoptosis). In
most cases the signal transduction within the cell is gov-
erned by kinases organized in different kinase cascades.
These signalling enzymes are at the bottleneck of the
control of cellular responses. Thus the signalling profile
allows to predict the fate that a cell is committed to. It
becomes more and more evident that viruses also misuse
cellular signalling responses to support its replication.
Here we will focus on the recent advances in the analysis
of influenza virus induced MAPK signalling pathways
and first attempts to use these mediators as targets for
antiviral intervention. 

MAP Kinase Cascades – Key Regulators of Cellular Signalling
Mitogen activated protein kinase (MAPK) cascades have
gained much attention as being critical transducers to

convert a variety of extracellular signals into a multitude
of responses [2–4]. Thereby, these pathways regulate
numerous cellular decision processes, such as prolifera-
tion and differentiation, but also cell activation and
immune responses [5]. Four different members of the
MAPK family that are organized in separate cascades
have been identified so far: ERK (extracellular signal reg-
ulated kinase), JNK (Jun-N-terminal kinase), p38 and
BMK-1/ERK5 (Big MAP kinase) [6, 4]. These MAP kinases
are activated by a dual phosphorylation event on threo-
nine and tyrosine mediated by MAP kinase kinases
(MEKs or MKKs). The MAP kinase ERK is activated by
the dual-specific kinase MEK that itself is activated by the
serine threonine kinase Raf. Raf, MEK and ERK form the
prototype module of a MAP kinase pathway and are also
known as the classical mitogenic cascade. The MAP kinas-
es p38 and JNK are activated by MKK3/6 and MKK4/7,
respectively, and are predominantly induced by proin-
flammatory cytokines and certain environmental stress
conditions. The MEK5/ERK5 module is both activated by
mitogens and certain stress inducers. There is evidence
that the different MAPK cascades are also activated upon
infection with RNA viruses, including influenza viruses.
Thus, these signalling cascades may serve different func-
tions in viral replication and host cell response.

MAP Kinase Cascades and Influenza Virus Infection: 
Opposite Roles of the JNK and ERK Pathways
Interestingly all four so far defined MAPK family mem-
bers are activated upon an influenza virus infection [7–9].
(Virginia Korte and S.L., unpublished). Recent work has
helped to get a clearer picture of the function of these
four signalling pathways in the infected cell. By the use
of specific kinase inhibitors p38 and JNK but not ERK
have been linked to virus-induced expression of RANTES,
a chemokine involved in the attraction of eosinophils dur-
ing an inflammatory response [7]. In a more recent study
using the same set of inhibitors the ERK and JNK, but
not p38 pathway were shown to be involved in the
expression of the inflammatory mediator cyclooxygenase
(COX) and phosphorylation of cytosolic phospholipase A2
(cPLA2) in bronchial epithelial cells [10]. Further, the
inhibitors of all three MAPK pathways were effective to
dose dependently-block prostaglandin E2 release by vari-
ous extents [10], indicating that viral MAPK activation
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contributes to the onset of anti-inflammatory response.
JNK and p38 activation has also been demonstrated in
vivo in mice infected with a neurovirulent influenza A
virus that caused lethal acute encephalitis, although it is
not clear whether this activity is directly virus-induced or
mediated by immunological or inflammatory responses
[11]. In this study JNK but not p38 activity had been
linked to the onset of apoptosis in the infected brain [11].
In embryonic fibroblasts from mice genetically deficient
for apoptosis-signal-regulated kinase (ASK-1) virus-
induced p38 and JNK activation was blunted concomitant
with an inhibition of caspase 3 activation and virus-
induced apoptosis [11]. ASK-1 is a ubiquitously expressed
MAPK kinase kinase that activates the MAPK kinase
4/JNK and the MAPK kinase 6/p38 cascade. These find-
ings not only identified a novel upstream component of
virus induced-MAPK signalling but also linked activity of
certain MAPKs to apoptosis induction [12]. 

The JNK subgroup of MAPKs further came into focus in
the context of an influenza virus infection since a very
early activation of activator-protein 1 (AP-1) transcrip-
tion factors [13] was observed in productively infected cells
[8]. AP-1 factors include c-Jun and ATF-2 that are phos-
phorylated by JNKs to potentiate their transcriptional
activity [13]. Both factors are phosphorylated upon
influenza virus infection [8, 14]. Accordingly, activation of
JNK was observed with different virus strains in a variety
of permissive cell lines [7, 8]. JNK activation required pro-
ductive replication and was induced by the accumulating
RNA produced by the viral polymerase. As upstream acti-
vators in the viral context the MAPK kinases MKK4 and
MKK7 have been identified. The AP-1 factors c-Jun and
ATF-2 are critical for the expression of IFNß, a most
potent antiviral cytokine [15]. Accordingly, inhibition of
the cascade by dominant-negative mutants of MKK7, JNK
or c-Jun during a virus infection resulted in impaired
transcription from the IFNß promoter and an enhanced
virus production. Thus, the JNK pathway appears to be a
crucial mediator of the antiviral response to an influenza
virus infection by co-regulating IFNß expression [8]. Inhi-
bition of such a pathway for an antiviral intervention is
not recommended since this would rather interfere with
the antiviral interferon response. 

The ERK5 MAPK pathway is also activated upon produc-
tive virus infection and stimulation with double-stranded
RNA as a mimic for viral RNA accumulation. However,
interference with virus-induced activation of ERK5 or its
upstream kinase MEK5 by expression of dominant nega-
tive mutants or antisense constructs does neither affect
viral replication efficiencies nor antiviral responses to

virus infection. Thus the ERK5 pathway is an example of
an influenza virus-induced signalling process, which does
not interfere with the outcome of virus propagation (V.
Korte and S.L., unpublished data). 

The MAP kinase ERK is also activated upon productive
influenza virus infection [7]. However, in contrast to JNK
and ERK5 it appears to serve a mechanism that is benefi-
cial for the virus [9]. Strikingly, blockade of the pathway
by specific inhibitors of the upstream kinase MEK, or
dominant-negative mutants of ERK or the MEK activator
Raf resulted in a strongly impaired growth of both,
influenza A and B type viruses [9]. Conversely, virus titers
are enhanced in cells expressing active mutants of Raf or
MEK [16, 17]. This has not only been demonstrated in cell
culture but also in vivo in infected mice expressing a con-
stitutively active form of the Raf kinase in the alveolar
epithelial cells of the lung [17]. While in the wt situation
influenza viruses primarily infect bronchiolar epithelial
cells, there is efficient replication in the alveolar layer
most exclusively in the cells carrying the transgene. As a
consequence this results in an earlier death of the trans-
genic animals [17]. This indicates that activation of the
Raf/MEK/ERK pathway, in contrast to the JNK cascade, is
required for efficient virus growth. Strikingly, inhibition
of the pathway did not affect viral RNA or protein syn-
thesis [9]. The pathway rather appears to control the active
nuclear export of the viral RNP complexes. RNPs are
readily retained in the nucleus upon blockade of the sig-
nalling pathway. Most likely this is due to an impaired
activity of the viral nuclear export protein NEP [9]. This
indicates that active RNP export is an induced rather than
a constitutive event, a hypothesis supported by a late acti-
vation of ERK in the viral life cycle. So far the detailed
mechanism of how ERK regulates export of the RNPs is
unsolved. There are two likely scenarios: Either the
process occurs directly via phosphorylation of a viral pro-
tein involved in transport or by control of a certain cellu-
lar export factor. It has been demonstrated quite early on
that influenza virus proteins, especially the NP protein
are phosphorylated and that the phosphorylation pattern
changes throughout the replication cycle or in the pres-
ence of brad range kinase inhibitors [18, 19]. Although in
the initial studies no alteration of the overall phosphory-
lation status of the NP, M and NS2 proteins was observed
in the presence of MEK inhibitors [9] there are now first
indications that certain phosphorylation sites of the NP
indeed are affected by MEK inhibition (S.P., unpublished
data). It remains to be shown whether this is of function-
al relevance for the RNP export process. It is striking that
MEK inhibitors are not toxic for the cell while more gen-
eral blockers of the active transport machinery, such as
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leptomycin B exert a high toxicity even in quite low con-
centrations. This may indicate that MEK inhibitors are no
general export blockers but only block a distinct nuclear
export pathway. Indeed there are first evidences that the
classical mitogenic cascade specifically regulates nuclear
export of certain cellular RNA-protein complexes. In LPS
treated mouse macrophages MEK-inhibition results in a
specific retention of the TNF mRNA in the nucleus [20].
This is also observed in cells deficient for Tpl-2, an acti-
vator of MEK and ERK. In these cells the failure to acti-
vate MEK and ERK by LPS again correlated with TNF
mRNA retention while other cytokines are normally
expressed [20]. Thus the ERK-pathway may regulate a spe-
cific cellular export process but leaves other export mech-
anisms unaffected. It is likely that such a specific export
pathway is employed by influenza A and B viruses. 

The finding of an antiviral action of MEK inhibitors
prompted further research showing that replication of
other viruses, such as Borna disease virus [21], Visna virus
[22] or Coxsackie B3 virus [23] is also impaired upon MEK
inhibition. 

Requirement of Raf/MEK/ERK activation for efficient
influenza virus replication may suggests that this path-
way may be a cellular target for antiviral approaches.
Besides the antiviral action against both, A and B type
viruses [16], MEK inhibitors meet two further criteria
which are a prerequisite for a potential clinical use.
Although targeting an important signalling pathway in
the cell the inhibitors showed a surprisingly little toxicity
(a) in cell culture [16, 21, 9] (b) in an in vivo mouse model
[24] and (c) in clinical trials for the use as anti-cancer agent
[25]. In the light of these findings it was hypothesized that
the mitogenic pathway may only be of major importance
during early development of an organism and may be dis-
pensable in adult tissues [25]. Another very important fea-
ture of MEK inhibitors is that they showed no tendency
to induce formation of resistant virus variants [16]. 

Although targeting of a cellular factor may still raise the
concern about side effects of a drug, it appears likely that
local administration of an agent such as a MEK inhibitor
to the primary site of influenza virus infection, the lung,
is well tolerated. Here the drug primarily affects differen-
tiated lung epithelial cells for which a proliferative sig-
nalling cascade like the Raf/MEK/ERK cascade may be
dispensable. Following this approach it was recently
demonstrated that the MEK inhibitor U0126 is effective
in reducing virus titers in the lung of infected mice after
local administration (O.P., S.P. and S.L., unpublished).

Thus, the Raf/MEK/ERK cascade may be taken as an
example for a cellular target which may be used for anti-
flu intervention without side effects or the tendency to
induce resistant virus variants.
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