CHAPTER 23

Cherry green ring mottle virus

W. Jelkmann, M. Rott, and J. K. Uyemoto

Introduction

The disease, cherry green ring mottle (CGRM), was first reported in 1937 affecting sour cherry (Prunus cerasus) trees in Michigan, U.S.A. and described as a viral disease in 1951 (Rasmussen et al., 1951). Rough bark and cherry vein yellow spot diseases, are known to be caused by the same viral agent (Kegler, 1968; Milbraith, 1960). Cherry green ring mottle virus (CGRMV) infects several Prunus species, including sweet cherry (P. avium L.), sour cherry (P. cerasus L.), oriental flowering cherry (P. serrulata L.), peach (P. persica (L.) Batsch), nectarine (P. persica var. nectarine), and apricot (P. armeniaca L.). The disease has been found after indexing of symptomless sweet cherry trees in New York, Wisconsin, Oregon, and Washington in the United States and in British Columbia and Ontario, Canada as well as in several European countries, Africa, New Zealand, and Japan (Gentil et al., 2002; Isogai et al., 2004; Parker et al., 1976; Rasmussen et al., 1951; Rouag et al., 2008; Sipahioglu et al., 2008). The complete nucleotide sequence of the CGRMV genome was determined after cDNA cloning of double-stranded RNA template extracted from infected peach leaves. Sequence and genome structure comparisons with other filamentous viruses showed that CGRMV was most similar to Apple stem pitting virus (Zhang et al., 1998). CGRMV is an unassigned species in the family Betaflexiviridae (Adams et al., 2005). Serological assays were developed using antisera raised from purified virus particles (Zagula et al., 1989) or chimeric fusion coat protein expressed in E. coli (Zhang et al., 1998). However, due to the limited performance of the obtained antisera in ELISA assays, virus detection by RT-PCR is currently the laboratory method of choice for routine purposes (Zhang and Uyemoto, 2008).

Taxonomic Position and Nucleotide Sequence

The complete genomic sequence of CGRMV was determined from an isolate originating from 'Shirofugen' flowering cherry in California, and inducing typical green ring mottle symptoms on 'Kawazan' flowering cherry (Zhang et al., 1998). The complete sequence of a European isolate of CGRMV, identified in a cherry tree displaying symptoms of the cherry necrotic mottle leaf disease, was determined by Gentit et al. (2002). The two CGRMV sequences share an overall nucleotide sequence similarity of 83%. The genome of CGRMV is 8,372 nt in length, excluding a 3' poly (A) tail, and harbors open reading frames (ORFs) coding for a replicase protein, a triple gene block (TGB), the coat protein (CP), and two small additional proteins of unknown function. Currently, CGRMV is listed as an unclassified species of the Family Betaflexiviridae (Adams et al., 2004, 2005) and is most closely related to Cherry necrotic mottle virus (CNRMV) and Cherry mottle virus (CRMV), which are also unclassified species of the Betaflexiviridae. The genomic organization of the three viruses is unique compared with other members of the Betaflexiviridae, with ORFs nested and in alternative reading frames within the first TGB and CP ORFs, and may represent ultimately a new genus. Overall nucleotide sequence identity to CNRMV and CRMV is about 67%. Additional phylogenetic analysis indicates that these viruses are most similar to Apple stem pitting virus (genus Foveavirus) and close to members of the Carlaviridae and Potexvirus genera (Adams et al., 2004; Martelli and Jelkmann, 1998).

Economic Impact and Disease Symptoms

Among cultivated cherry trees, green ring mottle disease is the most important in the sour cherry cultivar 'Montmorency', with infected fruit often not marketable. The virus can be found in several commercially grown cultivars of sweet cherry, but whether there are any associated economic losses is still unknown. However, there is some suggestion that infected sweet cherry trees are slightly stunted compared to healthy ones (Parker et al., 1976). Leaf symptoms, consisting of green islands and rings cast against a yellow mottle background, are ephemeral in nature, appearing 4–6 weeks after petal fall and lasting 2–3 weeks. Leaf lamina develops a chlorotic constriction along midribs and major veins. Fruits are misshapen and fruit flesh is pitted, necrotic, and bitter in taste. The green and yellow leaf symptoms appear in the 'Duke' cherry (P. cerasus × P. avium) cultivars 'Late Duke,' 'May Duke,' and 'Reine Hortense' (Parker et al., 1976). Symptoms also occur in English 'Morello' sour cherry (leaves with chlorotic constrictions) and in Japanese flowering cherry (P. serrulata cvs. 'Kwanzan' and 'Shirofugen'), which show characteristic twisting and curling of leaves (Fig. 23.1) with mild to severe leaf vein necrosis and epinasty, shoot stunting, roughen and cracked bark, stem pitting, and terminal dieback of shoots, and in mazzard cherry trees as stem pitting (J. Uyemoto, unpublished data). Overall, latent infections of CGRMV are the norm in most Prunus species. For example, the virus is symptomless in several cultivars of sweet cherry (P. avium cvs. 'Bing,' 'Lambert,' 'Black Republican,' 'Napoleon,' and 'Deacon'); in peach ('Halehaven,' 'Sunhaven,' 'Richhaven,' 'Glohaven,' 'Suneling,' and 'Rio Oso Gem'); nectarine; apricot; Nanking cherry (P. tomentosa); and the cherry rootstock, P. mahaleb. Moreover, infections in sweet
cherry and peach trees are reported as commonplace. Several unpublished observations by P. R. Fridlund on the influence of virus strains, environmental conditions, and different cherry cultivars on symptom expression have been reviewed by Parker et al. (1976).

Host Range
Natural infections of CGRMV occur on sour cherry (Prunus cerasus), oriental flowering cherry (P. serrulata), sweet cherry (P. avium), and several other Prunus species, including peach (P. persica), nectarine (P. persica var. nectarina), and apricot (P. armeniaca). The virus has been transmitted experimentally to P. mahaleb and P. tomentosa but could not be graft transmitted to almond (Prunus amygdalus) (Parker et al., 1976; Zhang et al., 1998). CGRMV was not mechanically transmitted to any of the herbaceous plants tested, including Nicotiana tabacum L. cvs. Xanthi and Xanthi nc, Turkish, and Havana 425; N. benthamiana; N. glauca; N. clevelandii; N. occidentalis Wheeler ’No.1’ and ’37B’; Chenopodium quinoa Willd.; C. amaranthicolor Coste & Reyn.; Cucumis sativus L. cv. National Pickling; Lycopersicon esculentum Mill.; Gomphrena globosa L.; and Cucurbita maxima cv. Buttercup and Butternuss squash.

Transmission
CGRMV has no known vector and is not seed-transmitted (Fridlund, 1966; Gilmer and Brase, 1962). The virus is transmitted by common vegetative propagation practices, such as grafting and by root grafts between healthy and diseased trees (Barksdale, 1959; Milbrath, 1966). Attempts to transmit the virus mechanically to herbaceous hosts have been unsuccessful in different studies (Parker et al., 1976; Zhang et al., 1998).

Geographical Distribution and Epidemiology
It has been suggested that CGRMV originated from western North America, since CGRMV was initially associated almost exclusively with cherry clones originating from this area. Many cultivars of sweet cherry and peach are universally infected, which would indicate that the original sources were infected or that these cultivars were grafted onto infected rootstocks. CGRMV infects cultivated Prunus species worldwide. The virus is introduced onto new sites solely by planting infected stocks. From there, secondary spread, involving healthy trees in closest proximity to infected ones, may occur through root graft transmissions.

Detection
In biological assays, CGRMV is reliably detected on ‘Kwanzan’ and ‘Shirofugen’ flowering cherry trees. Diagnostic leaf, shoot, bark, and stem symptoms develop in 2–3 months post-inoculation. Serology-based detection assays have been developed by Hauber and Ramsdell (1989), Zagula et al. (1989), and Zhang et al. (1998), but are limited in scope due to paucity of commercially available antiserum.

More recently, molecular assays have been developed (Li and Mock, 2005; Rott and Jelkmann, 2004; Zhang et al., 2000; Zhang and Uyemoto, 2008) for large scale assays. The RT-PCR assays are sensitive, rapid, and reliable. General and specific primer pairs have been developed to detect and identify various CGRMV strains. There is no indication of irregular distribution of the virus in the tree. Different protocols have been published for effective extraction of total RNAs prior to PCR avoiding inhibition of enzymatic reactions by ethidium bromide or polysaccharide compounds (Rott and Jelkmann, 2001; Zhang and Uyemoto, 2008). Such extractions can also be achieved by commercially available RNA extraction kits.

Control
Use of virus-free propagation material and prompt removal of infected trees are the most effective means of limiting spread (EPPO, 2001). Infected trees in production orchards may be destroyed to avoid spread via root contact.

REFERENCES
detection of five cherry viruses from sweet cherry trees in Japan.
Kegler, H. 1968. Latente viren bei obstgehölzen. der neue deutsche
Obstbau 10:114.
Li, R., and Mock, R. 2005. An improved reverse transcription-
polymerase chain reaction (RT-PCR) assay for the detection of two
Milbrath, J. A. 1960. The epinasty virus reaction of Kwanza and
Milbrath, J. A. 1966. Severe fruit necrosis of sour cherry caused by
Parker, K. G., Friuldend, P. R., and Gilmer, R. M. 1976. Green ring
mottle. Pages 193-199 in: Virus Diseases and Noninfectious Dis-
orders of Stone Fruits in North America. R. M. Gilmer, J. D. Moore,
G. Nyland, M. F. Welsh, and T. S. Pine, eds. Agricultural Research
Service, Washington, DC.
Rasmussen, E. J., Berkeley, G. H., Cation, D., Hikdebrand, E. M., Keitt,
G. W., and Moore, J. D. 1951. Green ring mottle. Pages 159-161 in:
Virus Diseases and Other Disorders with Virus-like Symptoms of
Cochran, F. P. Cullinan, and R. J. Haskell, eds. U.S. Department of
Agriculture, Washington, DC.
Rott, M. E., and Jelkmann, W. 2001. Characterization and detection of
several filamentous viruses of cherry: adaptation of an alternative
cloning method (DOP-PCR), and modification of an RNA extraction
Sipahioglu, H. M., Usta, M., and Ocak, M. 2008. Occurrence of
Cherry green ring mottle virus in Turkey. Plant Pathol. 57:392.
serology and some properties of a mechanically transmissible virus
associated with green ring mottle disease in peach and cherry.
Phytopathology 79:451-456.
Pages 259-266 in: Characterization, Diagnosis & Management of Plant
Viruses. Volume 2: Horticultural Crops. Stadium Press, Houston, TX, USA.
Zhang, Y. P., Kirkpatrick, B. C., Smart, C. D., and Uyemoto, J. K.
1998. cDNA cloning and molecular characterization of cherry
Comparison of Cherry green ring mottle virus strains using
RT-PCR and coat protein sequence phylogeny. J. Plant Pathol.
82:49-53.