063 - Moll, E.
Julius Kühn-Institut

SAS/AF-Anwendung RESI 2 für die Planung und Auswertung von Versuchen zur Resistenzz von Getreidesortimenten

SAS/AF application RESI 2 for construction of experimental design and analysis of experiments for assessing resistance in cereal cultivars

Vorgestellt werden die Wahlmöglichkeiten auf der grafischen Nutzeroberfläche der SAS/AF-Anwendung RESI 2:

- Schadbilder (Veranschaulichung der Symptome, Schätzen des Befalls, Befallsverlauf)
- Konstruktion eines randomisierten Lageplans (Blockanlage, Alpha-Anlage)
- Auswertung eines Einzelversuchs
- Auswertung einer Versuchsserie.

064 - Schubert, J.1); Habekuß, A.1); Qian, Y.2); Zhou, X.2)
1) Julius Kühn-Institut; 2) Zhejiang Universität China

Agroinfektion von Getreide mit Geminiviren – eine Alternative zur konventionellen Resistenztentestung?

Agroinfection of cereals with geminiviruses – an alternative for conventional resistance testing?

In addition to several RNA viruses, cereal crops can be infected also by DNA viruses. Most important representatives belong to the genus Mastrevirus with the type member Maize streak virus (MSV). MSV causes heavy yield losses, especially in Africa. Mastreviruses are transmitted exclusively by plant leafhoppers. Intensive evaluation work was undertaken to identify resources of resistance to the viruses but success was limited so far to some genes conferring tolerance. Since the last two decades in Central Europe the occurrence of cereal dwarf viruses has increased significantly. It is expected that global warming will extend the problems caused by these viruses. Effective insecticides are not available until now. So far, three cereal dwarf viruses are known: Barley, Wheat and Oat dwarf viruses. While under natural conditions Barley and Oat dwarf viruses are restricted to barley and oat respectively, Wheat dwarf virus also infects barley, rye, triticale and several grasses. The only known vector is the plant leafhopper Psammotettix alienus. It is expected that some other leafhopper species might transmit the virus, too.

Evaluation of natural sources of resistance using gene bank accessions is labour-intensive as plants have to be inoculated by plant leafhoppers. The aim of our work was to test whether this inoculation procedure can be improved by agroinfection with the corresponding viral constructs. For MSV as well as other DNA viruses it is known that tandem sense dimers of the virus, also incomplete tandems comprising two "Large Intergenic Regions", can be efficiently for agroinfection. All three viruses were amplified by means of "Rolling circle amplification", and the restricted and cloned products were sequenced. Based on the sequence data, incomplete tandems were produced in binary Agrobacterium tumefaciens vectors. For each virus two constructs were prepared: one in which the viral sequence was under the control of 35S-CaMV promoter, and one without the 35S-promoter. The binary vectors were transformed into A. tumefaciens EHA105.

For agroinoculation, several approaches were tested with oat, barley and wheat. First, the plants (at least 50 per variant) were injected with a bacterial suspension (with or without induction with acetosyringone). In another experiment, vacuum infiltration via roots or leaves was performed. Several plant developmental stages were tested spanning from just germinating until second true leaf. Inoculated plants were incubated overnight at 28 °C and planted the next day into soil. Plants were grown for 4-8 weeks in a greenhouse. Infection status was tested by ELISA using a polyclonal antiserum specific for the three viruses. None of the tested plants became infected when the described methods were applied. Using the “vascular puncture” method described for maize kernels by Redinbaugh et al. (2001), a limited number of plants became infected. From 60 inoculated plants of the cultivars 'Borenos' (wheat), 'Rubina' (barley), 'Cost Black' and 'Jumbo' (both oat) approximately 55 survived the inoculation procedure. One infected plant was obtained for each cultivar (2 %). Transmission of ODV to wheat or barley failed, as well as of BDV to wheat. This might be due to the limited number of inoculated plants. For ODV it was tested whether it can be transmitted by P. alienus from the agroinoculated plants back to oat. The transmission was successful; sequencing of the genome of the transmitted virus demonstrated that it was complete and that only minor changes had appeared.
For BDV and WDV, successful transmission was reported by Ramsell et al. (2009) using this procedure. Efficiency ranged from 6 % (BDV) to 11 % (WDV). By agroinoculation it was also possible to infect wheat, oat and rye with BDV at low frequency. However, the infection rate achieved is by far too low to substitute inoculation by leafhoppers. Currently some other A. tumefaciens strains with enhanced virulence are being tested for their ability to improve the infection rate.

065 - Traczweska, A.; Häffner, E.; Diederichsen, E.
Freie Universität Berlin

Rolle des Erecta-Gens bei der Ausbreitungsresistenz von Arabidopsis thaliana gegen Verticillium longisporum

Role of the erecta gene in conferring spreading resistance against *Verticillium longisporum* to *Arabidopsis thaliana*

Oilseed rape is one of the most important crops in Germany. As a consequence of the increasing cultivated area a number of diseases have gained significance. *Verticillium longisporum* is a soil-borne fungal pathogen which spreads in the xylem vessels of the host plants and causes premature ripening and yield losses. It is specialized for Brassicaceae. As there are no efficient fungicides against this disease, resistance breeding is of major importance. *Arabidopsis thaliana* is a model organism in plant genetics belonging to the Brassicaceae. It is a host of *V. longisporum* and is used to search for genetic factors influencing *V. longisporum* resistance. Resistance against *V. longisporum* can be dissected into different components. Spreading resistance is the capacity of the host to prevent systemic fungal spread in the xylem. In a preceding QTL mapping study, a region on chromosome 2 has been identified in *A. thaliana* which influences spreading resistance against *V. longisporum*. The erecta gene, encoding an LRR receptor-like kinase, colocalises to this region. The susceptible parent of the mapping population, Landsberg erecta (Ler), carries a loss-of-function erecta allele, whereas the resistant parent Burren (Bur) has a functional erecta gene. This makes erecta a candidate gene for the spreading resistance QTL. To investigate the role of erecta in conferring spreading resistance, different erecta mutants of *A. thaliana* and their corresponding wildtype lines were tested for resistance against *V. longisporum*. A greenhouse testing procedure with root-dip inoculation was applied and different disease and resistance parameters like systemic spread, stunting and chlorosis were recorded in order to assess a potential erecta influence also on other *Verticillium* resistance traits. The differences in colonisation resistance between mutants and wild type controls did not allow a clear cut decision whether erecta is responsible for the colonisation phenotype.

066 - Delbrügge, C. 1); Büttner, C. 2); Diederichsen, E. 1)
1) Freie Universität Berlin; 2) Humboldt-Universität zu Berlin

Verticillium Resistenz in verschiedenen Kulturarten – eine Literaturübersicht

Verticillium Resistance in different crop species – a literature survey

Verschiedene Arten aus der Pilzgattung *Verticillium* (Ascomycota) verursachen bei sehr vielen verschiedenen Kulturpflanzen Krankheitssymptome, die mit Ertragseinbußen einhergehen. In dieser Arbeit sollen die in der Literatur beschriebenen Resistzenzen gegen *Verticillium* in verschiedenen Kulturarten zusammengefasst und vergleichend gegenüber gestellt werden.

067 - Sharma, K.; Bruns, C.; Finckh, M.
Universität Kassel

Die Resistenzinduktion gegenüber Phytophthora infestans bei Tomaten durch BABA und Pflanzenstärkungsmittel wird durch Inokulation mit Isolatmischungen verstärkt

The effectiveness of BABA and plant strengtheners in inducing resistance in tomatoes against *Phytophthora infestans* is increased when isolate mixtures are used

Resistance against *Phytophthora infestans* is well inducible in tomato (*Lycopersicon Lycopersicon L.*). There is evidence that some plant strengtheners based on plant, fungal and compost extracts may boost up plant’s defense reactions towards pathogens through induction of resistance. While inducibility is variety and isolate specific, pathogen populations in the field are usually made up of different genotypes. A trial was conducted to compare