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1. Introduction 

The ability to insert foreign DNA into plant cells opened plenty opportunities for the 

development of new cell lines and improved varieties for agronomic and industrial 

purposes. Despite the great advances reached there are still some limitations in plant 

biotechnology based on genetic transformation. In most cases precise engineering of target 

genomic loci is difficult. Random DNA integration and multi-copy transgene insertions 

might result in unpredictable expression or gene silencing. Furthermore, commercial 

application of plant biotechnology products rises numerous regulatory and biosafety 

concerns about possible spread of the transgenes into the environment or the presence of 

selectable marker genes. One of the molecular tools that can help to overcome these 

limitations is site-specific recombination. Several site-specific recombination systems have 

been shown to be functional in plant cells: the Cre-lox system from bactreiophage P1 (Dale 

and Ow, 1990; Odell et al., 1990, Bayley et al., 1992), the FLP-FRT system from Saccharomyces 

cerevisiae (Lyznik et al., 1993; Lloyd and Davis, 1994; Kilby et al., 1995), the R-RS system from 

Zygosaccharomyces rouxii (Onouchi et al., 1991), the Gin-gix system from bacteriophage Mu 

(Maeser and Kahmann, 1991), the CinH-RS2 system from Acetinetobacter (Moon et al., 2011), 

the ParA system from a plasmid operon parCBA (Thomson et al., 2009) and the Streptomyces 

phage phiC31 system (Kittiwongwattana et al., 2007, Rubtsova et al., 2008). Currently, Cre-

lox has become the most commonly employed site-specific recombination system. Although 

both types of recombination catalyzed by the Cre protein, site-specific integration and 

excision, found practical application (Ow, 2002; Gilbertson, 2003; Lyznik et al., 2003; Gidoni 

et al., 2008; Wang et al., 2011), the removal of lox-flanked sequences is the most widely used 

applications of Cre recombinase. The following technologies are based on excisional 

recombination: (i) regulation of gene expression, (ii) resolution of complex insertion sites to 

single copy structures, (iii) biological confinement, and (iv) elimination of selectable marker 

genes. Here we review the progress in the employment of Cre-mediated site-specific 

excisional recombination for applied plant biology and discuss in detail the advantages, 

limitations and potential improvements of technologies utilizing the Cre-lox system. 
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2. The Cre-lox site-specific recombination system: Structure, biological 
functions, mode of action 

The Cre-lox site-specific recombination system from bacteriophage P1 belongs to the 
tyrosine integrase family whose members use a conserved tyrosine residue as catalytic 
nucleophile (Grindley et al., 2006). It performs at least two functions in the P1 life cycle: (i) it 
promotes the circularization of bacteriophage DNA after infection of bacteria (Segev and 
Cohen, 1981; Hochman et al., 1983), and (ii) it maintains the phage genome as unit-copy 
plasmid by resolving dimeric plasmids during bacterial division (Austin et al., 1981). 

 

Fig. 1. The Cre-mediated recombination reaction. A: Schematic representation of the lox 
recombination site. The 13 bp inverted repeats are marked by large horizontal arrows. The 
points of the spacer region at which Cre cleaves the lox sites are denoted by small vertical 
arrows. Cre recombinase mediates inter- and intramolecular recombination leading to 
deletion (B), inversion (C) or integration (D) events. 

The Cre-lox system consists of two short DNA recognition sequences known as lox (locus of 
crossing-over) and the recombinase protein Cre. Structural studies have revealed that a 
functional lox site is composed of two 13 bp inverted repeats flanking an 8 bp spacer region 
(Hoess et al., 1982; Hoess and Abremski, 1984) (Figure 1A). The inverted repeats and 
adjacing 4 bp of the spacer region compose a Cre binding domain. The asymmetry of the 8 
bp spacer sequence determines the outcome of the recombination. The second component of 
the system, the 38 kDa Cre protein, includes two domains: a NH2-terminal domain and a 
larger COOH-terminal domain, which contains the active site of the enzyme and major 
determinants for DNA binding specificity. The Cre recombinase does not require additional 
proteins or cofactors and performs enzymatic activity under a wide variety of cellular and 
non-cellular conditions. Crystallographic analysis of Cre-DNA complexes (Guo et al., 1997; 
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Guo et al., 1999) has revealed the recombination mechanisms. The process of site-specific 
recombination involves the formation and resolution of a Holliday junction intermediate, 
during which the DNA is transiently attached to the enzyme through a phosphotyrosine 
linkage. The reaction can result in integration, inversion or excision, depending on the 
position and orientation of the recombination sites. Recombination between two lox sites in 
direct orientation on the same DNA molecule results in excision of the lox-flanked DNA 
fragment (Figure 1B). In contrast, recombination between two lox sites in inverted repeat 
leads to inversion of the intervening DNA fragment (Figure 1C). Integration results from 
recombination between two lox sites situated on different DNA molecules (Figure 1D). The 
recombination reaction is reversible. Since intramolecular excision is kinetically favoured 
over bi-molecular integration, the excision reaction is essentially irreversible. In contrast, the 
insertion products are unstable in the presence of Cre recombinase. 

3. Cre expression strategies: Efficiency and limitations 

According to the presence of the cre sequence in the plant genome and the duration of cre 
expression, approaches to combine the lox recognition sequences and Cre protein can be 
grouped into three categories: (i) constitutive, (ii) transient and (iii) temporal expression. In 
the first group, the recombinase gene is stably integrated into the plant genome and 
expressed during the whole plant life. There are at least two main possibilities to integrate 
the cre gene into lox-containing plants: cross pollination and retransformation. To follow the 
crossing strategy, cre and lox-transgenic lines are developed and subsequently crossed 
(Bayley et al., 1992; Russell et al., 1992; Hoa et al., 2002). Applying the retransformation 
strategy, the cre gene is transformed into lox-lines (Odell et al., 1990; Dale and Ow, 1991; 
Zhang et al., 2003). Constitutive expression provides high recombination efficiencies in both 
model (Dale and Ow, 1991; Russell et al., 1992) and commercial crops (Hoa et al., 2002; 
Zhang et al., 2003). However, prolonged cre expression has some limitations. It is not 
optimal for plant species that are propagated by vegetative cuttings, since the 
crossing/segregation step for the cre gene can be problematic. Furthermore, additional time 
is required to perform a second round of transformation or cross pollination. A further 
strong argument against constitutive cre expression is the possible occurrence of genetic and 
phenotypic changes caused by the Cre recombinase, which were observed in plastid and 
nuclear genomes, respectively (Hajdukiewicz et al., 2001; Coppoolse et al., 2003). 

Transient expression offers the possibility to reduce/avoid undesired side-effects caused by 
long-term persistence of the Cre protein. The following approaches have been described in 
the literature: application of the purified Cre protein and virus- or Agrobacterium tumefaciens-
mediated cre expression.  

Addition of Cre protein to induce site-specific recombination was initially demonstrated for 
animal cells (Baubonis and Sauer, 1993) and extended by Cao and co-workers (2006) to 
excise lox-flanked DNA fragments in plant culture. In theory, direct introduction of the 
recombinase protein into plant cells could be an elegant solution. In fact, the broad 
application of this method to commercial crops is highly problematic. Additional time and 
costs have to be invested to purify an enzymatically active Cre protein and to obtain optimal 
conditions for cell culture treatment. Reliable regeneration protocols from protoplasts are 
not available for several crops. Moreover, this regeneration step can introduce additional 
somaclonal variation. 
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The Cre function can be provided transiently by Agrobacterium-based vectors using T-DNA-
independent and T-DNA-dependent expression. T-DNA-independent Agrobacterium-
mediated cre expression is based on fusion of the Cre protein to the NH2 –terminus of VirE2 
and VirF proteins. Agrobacterium is able to transfer these fusions into Arabidopsis cells 
resulting in excision events, although detectable efficiency of the process was low (Vergunst 
et al., 2000). Therefore, this system might be used only for applications where rare 
recombination rates are essential. T-DNA dependent expression relies on the fact that non-
integrated copies of T-DNA may persist in the nucleus for a period of time providing 
transient expression of genes from T-DNA. The Cre recombinase gene cloned between left 
and right T-DNA borders can be delivered into plant cells by the agro-inoculation technique 
and recombine lox sites in both nuclear (Gleave et al., 1999; Kopertekh and Schiemann, 2005) 
and plastid (Lutz et al., 2006) genomes as shown in tobacco. The principle of transient 
recombinase expression via A. tumefaciens-based vectors was proved only in model plant 
species yet. 

Another possibility to deliver Cre protein without cre gene insertion into the plant genome is 
provided by the application of RNA viruses. Two Cre-virus vectors, PVX-Cre (Kopertekh et 
al., 2004a, 2004b) and TMV-Cre (Jia et al., 2006), have been shown to be functional in lox-
target N. benthamiana and N. tabacum plants. In both vectors the cre gene was integrated 
between movement and coat protein genes. Recently, the application of PVX-Cre for marker 
gene elimination in potato has been demonstrated (Kopertekh et al., 2011). In comparison to 
the A. tumefaciens transient expression system, virus vectors were more efficient in 
generating recombination events. In general, Agrobacterium- and virus-based cre expression 
is mostly suitable for vegetatively propagated species. However, the necessity to develop 
efficient agroinfiltration methods or infectious Cre-virus vectors, as well as regeneration 
protocols for plant explants might hamper a broad application of these approaches. 

To follow the temporal expression approach, a stably integrated cre gene is placed under the 
control of inducible or tissue specific promoters. To date, a regulated cre expression is 
usually combined with the autoexcision strategy. Self-excision plant transformation vectors 
contain two recognition sites and the cre gene on the same T-DNA molecule. Conditional 
expression of the cre gene results in simultaneous removal of all sequences situated between 
the lox sites. This autoexcision strategy provides several potential advantages. First, all 
components of the Cre-lox system can be incorporated into the plant genome in one 
transformation step. Second, this strategy could be employed for both generatively and 
vegetatively propagated species. Several inducible systems responsive to external stimuli 
have been reported for plants, e.g. heat-shock and β-estradiol regulated. The heat-shock 
regulated system seems to be the simplest and most familiar for use. Its function has been 
demonstrated as functional in Arabidopsis (Hoff et al., 2001), tobacco (Wang et al., 2005), 
potato (Cuellar et al., 2006), maize (Zhang et al., 2003), rice (Khattri et al., 2011) and aspen 
(Fladung and Becker, 2010). In the chemically regulated self-excision system developed by 
Zuo and associates (2001), the cre gene was combined with the XVE system which is induced 
by β-estradiol. The system was successfully applied to Arabidopsis (Zuo et al., 2001), rice 
(Sreekala et al., 2005) and tomato (Zhang et al., 2006; Zhang et al., 2009). Despite the great 
advantage of the temporally controlled recombinase expression, heat-shock and chemically 
regulated promoters require an external signal to be activated and the recombination 
frequencies are greatly dependent on the penetration of the signal into plant cells, 
respectively. 
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A promising alternative to the cre regulation described above is the use of developmentally 

inducible promoters. During the last few years a number of promoters active in different 

stages of plant development, namely in germline (Verweire et al., 2007; Van Ex et al., 2009), 

embryo (Li et al., 2007), microspore (Mlynarova et al., 2006; Luo et al., 2007), floral (Bai et al., 

2008) and seed (Odell et al., 1994; Moravčíková, et al., 2008; Kopertekh et al., 2010) tissues 

have been tested to control cre expression. High efficiency of such promoters in Arabidopsis 

(Verweire et al., 2007), tobacco (Mlynarova et al., 2006), rice (Bai et al., 2008), soybean (Lie et 

al., 2007) and oilseed rape (Kopertekh et al., 2009) makes this approach universal for model 

and agronomically important species. In addition, the employment of germline-specific 

promoters allows a more efficient transmission of the recombined status to the progeny. The 

essential feature of conditional Cre systems is a careful regulation with respect to time and 

tissue. Background Cre activation was observed for heat-shock inducible (Hoff et al., 2001; 

Wang et al., 2005) and some seed-specific promoters (Odell et al., 1994; Moravčíková, et al., 

2008), resulting in reduced efficiency of the systems. 

In summary, methodological progress in cre gene expression strategies allows to modulate 

the recombinase activity in a temporal manner. The choice between the Cre expression 

systems depends mainly on the goals of the experiment, involved plant species, and finally 

available expertise. 

4. Application of Cre-mediated excision in plant biotechnology 

The removal of lox-flanked DNA fragments by Cre recombinase is broadly used in plant 

applied research. The applications described in the literature can be grouped into four 

categories: (i) regulation of gene activity, (ii) simplification of complex transgene structures, 

(iii) complete excision of a transgene to prevent gene flow, and (iv) marker gene removal.  

4.1 Gene regulation 

Cre-mediated site-specific recombination offers an effective way to turn on or off gene 

expression in transgenic plants by removing DNA fragments located between directly 

repeated recombination sites. What are the potential uses of this technology? 

One example is the use of plants as bioreactors to produce recombinant proteins that are 

toxic to plant cells. Tremblay et al. (2007) designed transgenic Arabidopsis plants harbouring 

a Turnip Mosaic Virus (TuMV) amplicon in which a lox-flanked translational terminator 

integrated between the P1 and HCPro coding sequences prevented virus replication. After 

delivery of Cre recombinase by agroinfiltration, a PVX-Cre vector or a transgenic chemically 

inducible system, the intervening DNA fragment was eliminated resulting in virus 

accumulation. 

The same strategy was used for conditional recombinase-mediated gene expression in plant 

cell culture (Joubes et al., 2004). In a plant transformation vector, excision of the gfp coding 

sequence by heat-shock and a dexamethasone inducible Cre recombinase lead to expression 

of the gene of interest. The system was tested in N. tabacum bright yellow-2 (B-2) cells and its 

efficiency was demonstrated for the gus reporter gene and a potent inhibitor of the cell cycle 

mutant allele of the A-type cyclin-dependent kinase (CDKA). 
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Another example of recombinase-mediated gene regulation is the restoration of pollen 
fertility. Transgenic tobacco plants containing a lox-flanked stilbene synthase (sts) gene 
under control of a tapetum-specific promoter displayed the male-sterile phenotype (Bayer 
and Hess, 2005). Pollen fertility was restored after crossing with cre-expressing tobacco lines. 
This method may provide a valuable strategy for the production of hybrid plants. 

In contrast to animal systems the few reports describing Cre recombinase-mediated gene 
regulation in plant systems only demonstrate a proof of principle without practical 
application yet. 

4.2 Generation of single copy transformants by Cre-lox recombination 

During plant genetic transformation multiple T-DNA copies are often integrated at a single 
locus. Complex integration sites are commonly associated with intrachromosomal 
recombination (Srivastava et al., 1996) and transgene silencing (Wang and Waterhouse, 
2000; De Buck et al., 2001). Moreover, a single integration pattern may simplify the 
functional and structural characterization of a transgene. Therefore, single copy transgenic 
plants are more desirable for commercial practice. Several approaches such as conventional 
screening amongst a large pool of transformants (De Buck and Depicker, 2004), agrolistics 
(Hansen and Chilton, 1996), niacinamide application (De Block et al., 1997) or use of Cre-
mediated site-specific recombination (Srivastava et al., 1999) have been developed to 
select/generate single copy lines. The Cre-lox-based strategy is based on a transgene flanked 
by lox sites in opposite orientation. In case of tandem insertion of T-DNAs at a single locus, 
the Cre recombinase resolves multiple units to a single-copy insert. 

The proof of concept and successful application of the Cre-lox-based strategy was reported 
for the first time by Srivastava et al. (1999). Four transgenic wheat lox-target lines, containing 
a DNA fragment flanked by recombination sites in inverted repeats, were generated by 
particle bombardment. The Cre recombinase was provided by crossing with cre-expressing 
plants. Cre-mediated resolution of the complex T-DNA structure was observed in T2 
progeny plants for all four lines investigated. However the authors reported (i) incomplete 
resolution of complex loci in 20-40% of the T2 progenies from three lines and (ii) persistence 
of excised DNA fragment extrachromosomally in one plant. 

The strategy described above was modified to generate single-copy maize plants more 
efficiently. In comparison to the original method, the cre-expressing construct was 
introduced into lox-transgenic maize cells transiently by particle bombardment (Srivastava 
and Ow, 2001). This modification was highly efficient: 85% of regenerated plants contained 
1 to 2 copies of the introduced DNA, with 38% harbouring a single copy. In 23% of single 
copy lines recombination was performed by transient cre expression: they harboured only 
the lox-target construct. 

The Cre-mediated resolution approach was also functional in Arabidopsis. In the lox-
transformation vector two recombination sites in inverted repeat were cloned inside the T-
DNA immediately adjacent to the left and right T-DNA border ends (De Buck et al., 2007). 
Seven transgenic lines with a complex integration locus were crossed with cre-transgenic 
plants. The progeny of two hybrids demonstrated a single-copy T-DNA status without 
integration of the released DNA fragment in the plant genome. In some transformants, the 
Cre-mediated resolution of complex loci increased the transgene expression at least tenfold. 
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Based on these results an alternative transformation system to generate single copy 
transformants has been developed and proved in Arabidopsis (De Pape et al., 2009). To omit 
the crossing step between cre- and lox-plants, a lox-target construct was transferred by floral 
deep transformation into cre expressing plants. 55% of primary transformants contained a 
single copy of the introduced T-DNA. However 73% showed inversion of the DNA 
fragment between the lox sites which can result in variable transgene expression. Further 
improvement was achieved by introducing only one lox site in the transformation vector: 
70% of primary transformants harboured a single-copy of T–DNA without inversion. 

In summary, the recombinase-based resolution strategy can efficiently resolve complex 
integration patterns in important agricultural crops, particularly wheat and maize, as well as 
in the model plant A. thaliana. However, the following potential limitations have to be 
envisaged for this strategy. First, this approach may not be suitable for multiple locus 
integration events since Cre-mediated resolution can cause chromosomal deletions. Second, 
incomplete resolution of the complex locus is possible. Finally, released DNA fragment may 
be present in the plant genome. 

4.3 Transgene confinement 

One concern related to genetically modified plants is the potential effects resulting from 

transgene transfer into the environment. To address this issue several biological 

confinement strategies have been proposed. Current technologies, namely male sterility, 

chloroplast transformation, cleistogamy and transgene removal from pollen or seeds, offer 

new possibilities for biological confinement (Daniell, 2002; Keenan and Stemmer, 2002; 

Moon et al., 2009). In this chapter we will mainly describe biological confinement strategies 

based on the Cre-lox recombination system. Here, all functional transgenes are flanked by 

two recognition sites in direct orientation. Upon expression of the cre gene driven by tightly 

regulated chemically induced or tissue specific promoters, the transgene sequences are 

removed leaving only a short recognition sequence in the genome. Since gene flow occurs 

most frequently via seed or pollen dispersal, transgene removal from seed or pollen by 

developmentally regulated cre recombinase could minimize transgene transfer. 

The seed-sterile technology is based on two expression units: cre-expression unit and 

cytotoxic ribosome-inhibitor (RIP) gene expression unit (Daniell, 2002). The cre gene is 

linked with a repressor-operator (Tet) system which allows cre expression in the presence of 

tetracycline. In the second expression unit, a seed-specific late embryonic abundance (LEA) 

promoter and a RIP gene are separated by a lox-flanked “spacer sequence”. Tetracycline 

induced cre expression results in the removal of the “spacer sequence” and the fusion of 

LEA promoter and RIP gene. The RIP protein destructs the seed tissue resulting in 

production of non-viable seeds. The following potential problems are linked with this 

strategy: (i) all three components of the system (Cre, RIP and Tet) should be present together 

in one plant, (ii) the repressor-operator (Tet) system should display high efficiency in crop 

plants and the chemical inducer should penetrate the plant tissue uniformly, (iii) the seed-

specific LEA promoter can be subjected to silencing causing undesired transgene dispersal. 

In the second advanced strategy developed by Mlynarova et al. (2006), a lox-embedded 
cassette includes (i) marker gene, (ii) gene of interest and (iii) cre gene driven by the NTM 19 
microspore-specific promoter. This design allows autoexcision of all transgenes during 
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microsporogenesis without application of an additional induction factor. It was highly 
efficient in tobacco plants: only two out of 16800 seeds (0.024%) contained non-excised 
transgene sequences. Additionally, the authors did not observe premature activation or 
absence of activation for the tissue-specific Cre-system under laboratory stress conditions. 

The efficiency and reliability of recombinase-mediated confinement methods was further 
improved by the application of pollen- and seed-specific promoters and hybrid lox-FRT 
recombination sites (Luo et al., 2007). The lox-FRT fusion sequences dramatically enhanced 
the excision frequency: analysis of 25000 progeny seedlings for several transgenic tobacco 
lines revealed that transgenes in pollen or seeds were excised with 100% efficiency. Despite 
simplicity and high efficiency of the developmentally regulated Cre-system to prevent gene 
flow, the need to maintain the hemizygous status may be a great disadvantage for 
transgenic crops multiplied by seeds. 

It should be pointed out that all strategies presented in this section were only tested in 
model plants such as tobacco and Arabidopsis. Therefore, no data are available on the 
efficiency and stability of these systems in actual crop species under agronomic conditions. 

4.4 Cre-mediated excision of marker genes 

In most cases, plant transformation is inefficient and transgenic cells and regenerants must 
be selected from a great number of non-transformed cells via incorporation of selectable 
marker genes. Once plant transformation is completed, these marker genes can be 
eliminated. There are several reasons to produce marker-free plants (Hohn et al., 2001; Hare 
and Chua, 2002; Miki and McHugh, 2004; Goldstein et al., 2005): marker gene removal can 
prevent the movement of selectable markers within the environment, simplify the 
regulatory process and allow the reuse of the same marker. Different methods have been 
identified that enable marker gene removal: co-transformation (Komari et al., 1996), 
transposon-dependent repositioning (Goldsbrough et al., 1993), as well as homologous 
(Zubko et al., 2000) and site-specific recombination (Dale and Ow, 1991). Site-specific marker 
gene removal will be the main topic of this section. The plant material used has been 
ordered according to species, supposing that this structure of the chapter might help to 
compare the efficiency of different methods and to choose the optimal approach for the 
plant to be used. Table 1 provides summarised information about Cre-site-specific marker 
gene elimination systems and their efficiency in different plant species. 

The theoretical concept of Cre-mediated marker gene excision was proved in tobacco about 
twenty years ago by two research groups (Dale and Ow, 1991; Russel et al., 1992). Marker-
free plants were generated by applying the Cre recombinase constitutively either via cross-
pollination or a second round of transformation. The authors reported that re-
transformation provided much higher recombination efficiency. This principle was also 
functional in the plastid genome (Corneille et al., 2001). Both methods for constitutive cre 
expression were efficient in tobacco chloroplasts, but Agrobacterium-mediated Cre 
recombinase delivery caused plastid genome rearrangements. 

Transient expression vectors - Agrobacterium- or virus, - worked efficiently in tobacco. 
Simple cocultivation of transgenic tobacco leaves harbouring the marker gene with A. 
tumefaciens containing a cre-plasmid led to the removal of the flanked region in 0.25% of the 
regenerants (Gleave et al., 1999). In comparison to cocultivation technique, the 
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agroinfiltration method greatly increased the recombination efficiency. Regenerants without 
marker genes were obtained with a frequency of about 34%. In 14% of plants site-specific 
recombination was performed without stable recombinase integration. Delivery of the Cre 
protein by agroinfiltration was also adopted to remove marker genes from the plastid 
genome (Lutz et al., 2006). Another option to perform transient cre expression is the use of 
Cre-virus vectors. The first plant Cre-virus vector was based on PVX and demonstrated high 
recombination rates (48-82%) in N. benthamiana (Kopertekh et al., 2004b). This vector was 
also suitable to generate marker-free tobacco plants without a regeneration step (Kopertekh 
et al., 2004a). The second Cre-virus vector described is based on TMV. It was functional in N. 
tabacum plants with an efficiency of about 34% (Jia et al., 2006). 

Genotype 
Induction factor, 
expression 
system/promoter 

cre expression 
type 

Excision rate 
Gene of 
interest 

Reference 

Tobacco  
N. tabacum 

Cross-pollination, 
retransformation, 35S 
promoter 

Constitutive ND luc 
Dale and Ow, 
1991 

Tobacco  
N. tabacum 

Cross-pollination, 
retransformation, 35S 
promoter 

Constitutive 
95% 
(retransformation)

gusA 
Russell et al., 
1992 

Tobacco  
N. tabacum 

Cross-pollination, 35S 
promoter 

Constitutive 19.2% ASAL 
Chakraborti et 
al., 2008 

Tobacco  
N. tabacum 
(plastid genome) 

Cross-pollination, 
retransformation, 35S 
promoter 

Constitutive ND - 
Corneille et al., 
2001 

Tobacco 
N. benthamiana 

PVX-Cre expression 
vector 

Transient 48-82% gfp 
Kopertekh et 
al., 2004 

Tobacco 
N. tabacum 

TMV-Cre expression 
vector 

Transient 34% gusA Jia et al., 2006 

Tobacco 
N. tabacum 

A. tumefaciens-
expression vector 

Transient 0.25% gusA 
Gleave et al., 
1999 

Tobacco 
N. tabacum 
(plastid genome) 

A. tumefaciens-
expression vector 

Transient 10% bar 
Lutz et al., 
2006 

Tobacco 
N. benthamiana 

A. tumefaciens-
expression vector 

Transient 34% gfp 
Kopertekh et 
al., 2005 

Tobacco  
N. tabacum 

Heat-shock, HSP17.5E 
promoter from 
soybean 

Temporal 30-80% gusA 
Wang et al., 
2005 

A. thaliana 
Chemical induction, β-
estradiol inducible 
transactivator XVE 

Temporal 29-66% gfp Zuo et al., 2001 

A. thaliana 

Tissue-specific 
induction, AP1 and 
SDS germline specific 
promoters 

Temporal 83-100% - 
Verweire et al., 
2007 

Rice 
Cross-pollination, 35S 
promoter  

Constitutive 58% gusA Hoa et al., 2002 

Rice 
Co-cocultivation with 
a purified Cre-
recombinase protein 

Transient 26% gusA Cao et al., 2006 
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Rice 
Heat-shock, HSP17.5E 
promoter from 
soybean 

Temporal 16% gusA 
Khattri et al., 
2011 

Rice 
Chemical induction, β-
estradiol inducible 
transactivator XVE 

Temporal 29.1% gfp 
Sreekala et al., 
2005 

Maize Cross-pollination Constitutive ND cordapA Ow, 2007 

Maize 

Cross-pollination, 35S 
promoter 
Heat-shock, HSP17.5E 
promoter from 
soybean 

Constitutive 
Temporal 

ND gfp 
Zhang et al., 
2003 

Maize 
Cross-pollination, Ubi 
promoter 

Constitutive ND gusA 
Kebrach et al., 
2005 

Wheat 
Cross-pollination, 35S 
promoter 

Constitutive ND - 
Srivastava et 
al., 1999 

Potato 
Heat-shock, hsp70 
promoter from 
Drosophila melanogaster

Temporal 4.7% - 
Cuellar et al., 
2006 

Potato 
PVX-Cre expression 
vector 

Transient 20-27% gfp 
Kopertekh  
et al., 2011 

Brassica juncea 
Cross-pollination, 35S 
promoter  

Constitutive ND gusA 
Arumugam et 
al., 2007 

Brassica napus 

Tissue-specific 
induction, seed-
specific napin 
promoter from B. 
napus 

Temporal 13-81% vstI 
Kopertekh et 
al., 2009 

Soybean 

Tissue-specific 
induction, Arabidopsis 
app1 embryo-specific 
promoter 

Temporal 13% gusA, gat Li et al., 2007 

Tomato 
Chemical induction, β-
estradiol inducible 
transactivator XVE 

Temporal 15% cryIAc 
Zhang et al., 
2006 

Tomato 
Chemical induction, β-
estradiol inducible 
transactivator XVE 

Temporal ND 
atlpk2β 
 

Zhang et al., 
2009 

ND, not determined 

luc: luciferase gene 

gfp: green fluorescent protein gene 

atlpk2β: inositol polyphospate 6-/3-kinase gene 

gus: beta-glucuronidase gene 

vstI: stilbene synthase gene from Vitis vinifera 

bar: phosphinothricin acetyltransferase gene 

cryIAc: a synthetic Bacillus thuringiensis endotoxin gene 

ASAL: allium sativum leaf agglutinin gene 

gat: glyphosate acetyltransferase gene 

cordapA: dihydrodipicolinate synthase gene 

Table 1. Cre-based systems for marker gene elimination 
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Different promoters, including heat-shock and developmentally regulated ones, were tested 
in autoexcision vectors in tobacco. In the heat-shock inducible system, the Cre recombinase 
was more effective in somatic tissues in comparison to germline cells: 70-80% of the 
regenerants derived from heat-treated leaves lost lox-flanked DNA fragments, whereas only 
30-40% of seeds after heat-shock gave rise to marker-free plants (Wang et al., 2005). A 
developmentally regulated Cre-lox system based on the seed-specific napin promoter was 
more efficient in N. benthamiana plants: genetic and molecular analysis of T1 progeny 
indicated DNA excision in all transgenic lines tested (Kopertekh et al., 2010). 

Both tobacco and Arabidopsis thaliana served as model systems to test different gene 
elimination approaches. An elegant self-excision Cre-system regulated by β-estradiol was 
applied for the first time in Arabidopsis with an efficiency of 29-66% (Zuo et al., 2001). 
Furthermore, Verweire et al. (2007) reported an almost complete autoexcision driven by 
germline promoters. 

Rice has been intensively studied for Cre-mediated marker gene excision. The efficiency of 
all three categories of methods, transient, constitutive and temporal expression, has been 
evaluated. In one of the first studies on the Cre-lox system in rice, lox- and cre-constructs 
were combined by cross-fertilization of transgenic plants (Hoa et al., 2002). In the Cre-lox 
hybrids from T2 crosses a high marker gene deletion frequency of 58.3% was observed. 
Marker gene excision was also accomplished in transgenic rice cells by simple co-cultivation 
with a purified cell-permeable Cre recombinase protein (Cao et al., 2006). About 26% of 
regenerants derived from Cre-treated calli were scored as putative recombinants. However, 
no data are available about germinal inheritance of the recombined “footprint”. Thus, it is 
difficult to assess the efficiency of this of this approach properly. Marker gene excision and 
inheritance of the excised locus were observed in one transgenic rice line containing a lox-
target construct and a single copy of the cre gene under the control of the HSP17.5E heat-
shock inducible promoter (Khattri et al., 2011). An obvious drawback of this co-
transformation approach is the necessity to segregate the cre-construct after recombination. 
Sreekala et al. (2005) demonstrated the removal of the flanked fragment from the genome of 
transgenic rice in a single-step transformation by using the β–estradiol regulation of Cre. In 
total, 29% of transgenic T0 plants were marker-free or could segregate marker-free progeny. 
In the Cre-lox system controlled by a floral specific promoter complete auto-excision was 
observed in three out of eight rice lines with an efficiency of 37.5% (Bai et al., 2008). This 
approach may be considered as the most promising for the removal of unnecessary 
sequences in rice since (i) Cre expression is restricted to a special tissue, (ii) recombined lines 
can be obtained without crossing or additional treatment and (iii) this one-step 
transformation approach provides high recombination frequencies. 

Two strategies - cross-pollination and heat-shock inducible autoexcision - have been shown 
to be useful to develop transgenic maize plants harbouring only the trait gene. The crossing 
strategy worked with nearly 100% efficiency in several laboratories (Zahn et al., 2003; 
Kebrach et al., 2005). Moreover, commercial marker-free maize LYO38 was developed by 
Monsanto through sexual crossing between lox- and cre-plants following segregation of the 
cre gene in the next generation. A comparative study by Zhang et al. (2003) also 
demonstrated that autoexcision induced by heat-shock provided precise, complete and 
stable marker gene excision. 

There is less information available on Cre-mediated marker gene elimination in wheat. 
Srivastava et al. (1999) combined two potential applications of site-specific recombination in 
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one plant vector. Transgenic wheat plants harbouring a DNA fragment between mutant 
lox511 sites in opposite orientation and a marker gene between wild type lox sites in direct 
orientation were crossed with a cre-transgenic line. Some T1 plants without the selection 
marker and a reduced copy number were detected by PCR. 

The feasibility of the Cre-lox system for the removal of marker genes in Brassicaceae was 
demonstrated in two studies. In the first one, the lox sites and cre gene under control of a 
constitutive promoter were combined by cross-pollination to produce marker-free Brassica 
juncea plants (Arumugam et al., 2007). The Cre recombinase displayed low activity in 
meristematic cells. Thus, an additional regeneration step from leaf explants was necessary to 
obtain B. juncea plants without marker genes. The application of seed-specific napin 
promoter from B. napus to control the cre gene seems to be more suitable to perform the 
germline transmission of the recombination event (Kopertekh et al., 2009). Marker-free B. 
napus plants could be generated with high efficiency (13-81%). 

Two techniques, cre induction by heat-shock and PVX-Cre-expression have been optimized 
for vegetatively propagated potato. About 4% of regenerated shoots derived from heat 
treated internodes and tubes demonstrated the marker-free phenotype (Cuellar et al., 2007). 
Transient PVX-Cre-based expression resulted in a more efficient excision of the nptII gene 
cloned between recognition sites (Kopertekh et al., 2011). Excision rates of 20-27% were 
achieved by applying the particle bombardment infection method and the P19 silencing 
suppressor protein. 

In the auto-excision Cre-system developed for soybean transformation, a selectable marker 
gene was expressed at an early transformation step and then removed by the Cre 
recombinase driven by app1 embryo-specific promoter from A. thaliana (Li et al., 2007). This 
excision reaction led to the activation of the glyphosate acetyltransferase (gat) gene. It was 
shown that 13% of events exhibited complete excision of the marker gene. 

The application of a chemically-regulated autoexcision Cre-system in tomato was reported 
by Zhang et al. (2006). β-estradiol treatment resulted in the excision of cre and marker genes 
and subsequently in the fusion of the endotoxin gene cryIA with the promoter sequence. 
15% of T1 progeny plants harboured a marker-free phenotype. 

Generally, the newly designed Cre-systems have first been tested in tobacco and Arabidopsis, 
and subsequently extended to actual crops. It should be pointed out that the same Cre-
systems demonstrate higher recombination efficiencies in model species in comparison to 
agricultural crops. For example, for the β-estradiol inducible self-excision Cre system in 
Arabidopsis 29-66% efficiency was observed, whereas in rice and tomato only 30% and 15%, 
respectively. Similarly, heat-shock induction resulted in 30-80% excision rates in tobacco and 
only 4% in potato. Recently, this tendency was also demonstrated for the transient PVX-Cre 
vector. In comparison to N. benthamiana (48-82%), lower excision rates of 20-27% were 
shown for potato (Kopertekh et al., 2011).  

5. Conclusions 

Since the initial work of Dale and Ow (1990) demonstrating the functionality of the Cre-lox 
system in plant cells, a number of technologies based on site-specific recombination have 
been developed, tested and implemented into transformation protocols. All these 
technologies rely on two basic genome modifications caused by Cre recombinase: 
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integration or removal of foreign DNA fragments. In this review we focused on the 
employment of Cre-mediated elimination of transgene sequences. The literature analysis 
indicates several current trends in optimizing the recombination strategies and their 
practical application. First, future employment of the Cre-lox system will likely incorporate 
more precise temporal and spatial control of cre expression. To this end a number of 
conditional and transient excisional Cre-systems have been designed and tested during the 
last decade (see the paragraph “Cre-expression strategies: efficiency and limitations”). 
Second, the methodological progress mentioned above allowed extending the 
recombination technology from model (tobacco and Arabidopsis plants) to actual crops, 
including generatively and vegetatively propagated species, monocots and dicots. Third, the 
excisional recombination method was combined with trait genes, illustrating the 
development from laboratory experiments to practical utilization; this tendency can mainly 
be observed for the marker gene elimination technology. Among commercial traits 
combined with the Cre-lox system are modification of protein composition (Ow, 2007), 
tolerance to environmental stress (Zhang et al., 2009) as well as herbicide (Lutz et al., 2006; 
Li et al., 2007) and insect (Chakraborti et al., 2008; Zhang et al., 2006) resistance. The first 
marker-free commercial maize event LY038, which received the US regulatory approval in 
2006, provides higher lysine content (Ow, 2007). 

However, the approval process for the commercial utilization of genetically modified plants 
based on the techniques described above might require additional regulatory costs. The first 
consideration could be connected to the possible reintegration/persistence of excised DNA 
fragments. Although it is generally assumed that the elimination product is lost upon cell 
division there is one report showing the presence of deleted DNA as an extra-chromosomal 
circle in wheat cells (Srivastava and Ow, 2003). The second consideration is linked with 
possible unintended effects which might be caused by the Cre-lox system. Numerous reports 
exist that demonstrate high specificity of Cre-mediated recombination. Nevertheless, several 
articles have described undesirable Cre-mediated changes in mammalian genomes (Schmidt 
et al., 2000; Thyagarajan et al., 2000; Loonstra et al., 2001; Silver and Livingston, 2001). The 
impact of Cre activity on the plant genome is not well studied. Two types of effects have 
been described: phenotypic abnormalities and DNA rearrangements in chloroplasts. In 
petunia, tomato, tobacco and Arabidopsis aberrant phenotypes such as leaf chlorosis, growth 
retardation and reduced fertility were associated with high levels of cre expression 
(Coppoolse et al., 2003). These phenotypic abnormalities were not connected with 
chromosomal rearrangements: they always co-segregated with the cre transgene. In contrast, 
non-specific DNA recombination products have been identified in the plastid genome by 
two research groups (Corneille et al., 2001; Hajdukiewicz et al., 2001). Temporal or 
developmental regulation of the Cre activity would decrease or eliminate these side-effects 
and subsequently simplify risk assessment process. Another concern related to the Cre-lox 
application is the presence of a lox recognition site in the final product. Theoretically, non-
predicted recombination between this lox site and pseudo-lox sites in the genome can occur in 
the presence of the Cre protein. In fact, the probability of such an event is extremely low. First, 
the recombination reaction strongly depends on a sequence similarity between the introduced 
lox and genomic pseudo-lox sites. The recombination efficiency is greatly reduced when only a 
few nucleotides in the lox spacer region are different (Hoess et al., 1986). Second, the distance 
between recombination sites plays an important role: the recombination between lox sites 
located at unlinked chromosomes is less efficient (Qin et al., 1994). 
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Despite the regulatory issues described above, we expect that site-specific excisional 
recombination will become a routine method in plant biotechnology and find a broader 
application for the commercial use of crop plants. 
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