

Process-induced undesirable compounds: chances of non-thermal approaches

Diana Behsnilian, Peter Butz, Ralf Greiner, Ralf Lautenschlaeger

Food Technology and Bioprocess Engineering, Karlsruhe Safety and Quality of Meat, Kulmbach

Max Rubner-Institut Federal Research Institute of Nutrition and Food Germany

MST

Process-induced undesirable compounds Chances of non-thermal approaches

Outline

1 Process-induced undesirable compounds

2 Traditional thermal processes

Compounds with health concerns Current regulatory limits Strategies for inhibition or reduction of their formation

3 Non-thermal processes

Emerging technologies High pressure processing

Food Processing

Desirable effects

Safety issues	Food-borne pathogens inactivation
	Toxins inactivation
	Spoilage microorganisms and enzymes inactivation
 Nutritional issues 	Digestibility enhancement (e.g. proteins)
	Bioavailability enhancement (e.g. carotenoids)
	Anti-nutrients inactivation
Sensory issues	Palatability, flavour, texture, colour enhancement
 Convenience issues 	Ready-to-eat, semi-finished products availability
	Independence from the seasonal availability

Undesirable effects

Nutritional issues	Nutrient losses (e.g. vitamin C)
	Generation of compounds with health concerns
	(contaminants, toxicants)
Sensory issues	Generation of compounds presenting
	a negative effect on flavour, colour or texture perception

MRI – Food Technology and Bioprocess Engineering – Safety and Quality of Meat

3

60th

Contaminants in meat and meat products

Origin	Substance	
Environmental pollutants	arsenic, lead, cadmium	
	dioxin, dioxin-like polychlorinated biphenyls	
	organochlorine pesticides	
	polycyclic aromatic hydrocarbons	
Microorganism, plant and animal toxins	aflatoxins, ochratoxins; ptaquiloside; phytanic acid	
Veterinary drugs	growth promoting substances, antibiotics	
Processing and storage	polycyclic aromatic hydrocarbons	
	heterocyclic aromatic amines	
	biogenic amines	
	N-nitrosamines	
	chloropropanols and chloroesthers	
	peroxidation products of polyunsaturated fatty acids	
Food contact material	bisphenols, phtalates, perfluorinated compounds	
Andrée et al. (2010) Meat Sci. 86; Püssa (2013) Meat Sci., 95		
MRI – Food Technology and Bioprocess Engineering – Safety and Quality of Meat		

Processing and preparation methods		Toxicants
Thermal		
Conventional	boiling, steaming smoking roast, grill, fry char-grill / barbeque	furan PAH, N-N, 3-MCPD PAH, HAA, N-N, 3-MCPD PAH, HAA, N-N, 3-MCPD
Emerging technologies	microwave ohmic heating	3-MCPD ?, (furan) PAH, HAA, metal contamination
Non thermal		
Conventional	curing / salting fermentation	N-N biogenic amines
Emerging	pulsed electric fields	peroxides
technologies	high pressure	bioactive peptides
	irradiation	furan
PAH: Polycyclic Aro	matic Hydrocarbons	HAA: Heterocyclic Aromatic Amines

3-MCPD: 3-Monochlorpropane-1,2-diol (chloropropanols/esthers)

N-N: N-Nitrosamines

60th

MRI – Food Technology and Bioprocess Engineering – Safety and Quality of Meat

MST

Process-induced undesirable compounds Chances of non-thermal approaches

- 1 Process-induced undesirable compounds
 - Health concerns: contaminants or toxicants
 - Negative effect on flavour, colour or texture perception

2 Traditional thermal processes

Polycyclic Aromatic Hydrocarbons (PAH) Current regulatory limits Strategies for inhibition or reduction of their formation

Origin	Substance
Environmental pollutants	arsenic, lead, cadmium dioxin, dioxin-like polychlorinated biphenyls organochlorine pesticides polycyclic aromatic hydrocarbons (PAH)
Microorganism toxins Plant toxins Animal toxins	aflatoxins, ochratoxins ptaquiloside phytanic acid
Veterinary drugs	growth promoting substances, antibiotics
Processing and storage	PAH HAA biogenic amines N-nitrosamines (N-N) 3-MCPD
Food contact material	bisphenols, phtalates, perfluorinated compounds

Polycyclic aromatic hydrocarbons

- Incomplete combustion or pyrolysis of organic matter
 - natural sources: forest fire, volcanic eruption
 - man-made: industrial processes, burning tobacco, wood, commercial and home food preparation, e.g. smoking, drying, roasting, char-grilling, frying....
- Persistent Toxic Substances
 - highly toxic organic or carbon-based compounds
 - persistent in the environment
 - increasingly accumulate as they move up the food chain
- PAH in food: environmental (air, water, soil) and/or process-induced contaminants meat: smoked, barbecued, grilled, roasted

Benzo[a]pyrene

Benzo[b]fluoranthen

Polycyclic aromatic hydrocarbons

Ν	BaP [µg kg ⁻¹]	PAH4 [µg kg⁻¹]
777	0.3	1.4
39	1.9	5.3
53	0.6	2.3
562	0.2	1.3
123	0.05	0.4
	N 7777 399 533 562 123	N BaP [µg kg ⁻¹] 7777 0.3 399 1.9 533 0.6 5622 0.2 123 0.055

EU regulatory limits for smoked meat & meat products Commission Regulation (EU) No 1881/2006 and 835/2011*

Formation conditions and reduction strategies

- Incomplete combustion of wood or coal Smoking, char-grilling, barbecue Processing parameters
 - temperature

- type of wood
- oxygen concentration smoker type
- optimise smoking process liquid smoke flavouring

[5.0] [30.0] Pyrolisis of dripped fat

2.0 µg kg⁻¹

MRI

Pyrolisis of dripped fat Roasting and grilling Processing parameters

- temperature
- fat content /distribution
- in the meat product matrix
 - formulation

MST

MRI – Food Technology and Bioprocess Engineering – Safety and Quality of Meat

8

12.0 µg kg⁻¹

Process-induced undesirable compounds Chances of non-thermal approaches

- 1 Process-induced undesirable compounds
 - Health concerns: contaminants or toxicants
 - Negative effect on flavour, colour or texture perception
- 2 Traditional thermal processing and preparation processes
 - High temperature, e.g. pan frying or grilling over an open flame, and smoking induce the formation of toxicants
 - Formation
 Formation
 T, t
 Grilling, frying: marinades with antioxidants
 Smoking: optimise process, liquid smoke

3 Non-thermal processes

Emerging technologies High pressure processing Pressure-temperature-induced matrix modifications Process-induced undesirable compounds

Origin	Substance
Environmental pollutants	arsenic, lead, cadmium dioxin, dioxin-like polychlorinated biphenyls organochlorine pesticides polycyclic aromatic hydrocarbons (PAH)
Microorganism toxins Plant toxins Animal toxins	aflatoxins, ochratoxins ptaquiloside phytanic acid
Veterinary drugs	growth promoting substances, antibiotics
Processing and storage	PAH HAA biogenic amines N-nitrosamines (N-N) 3-MCPD
Food contact material	bisphenols, phtalates, perfluorinated compounds

Non-Thermal Emerging Technologies

60th

 Ultrasonication 	 enhance mass transport brining, curing 	Cárcel et al. (2007) McDonnel et al. (2014) Siró et al. (2009)
	- improve water holding capacity	Stadnik et al. (2008)
 Pulsed electric fields 	 enhance mass transport drying, marinating, brining, curing 	Puértolas et al. (2012) Töpfel & Heinz (2008)
	- reduction microbial load of blood	Kiessling & Töpfe (2012)
 Cold plasma 	 decontamination of surfaces sliced ready-to-eat meat product 	Rød et al. (2012)
 High pressure 		
dynamic (shock wave)	- tenderisation	Bolumar et al (2013)
static	- pasteurisation, sterilisation	

High hydrostatic pressure processing (HHP)

MRI 拳

Pressure Temperature Time Operation 100-800 MPa< 0 °C</td>->100 °Cmilliseconds-20 minutesbatch, semi-continuousapplication of pulses

Applications

- Pasteurisation
- Controlled denaturation of proteins, gelation, phase change of lipids
 innovative product design

Advantages

- Iow T inactivation
- very short t
- processing in final packaging possible

Pasteurisation		
Pathogenic target microorganisms		
E. coli, Salmonella, Li	steria	
Process parameters		
Pressure, MPa	400 - 600	
T ₀ Material, °C	< 0 - 40	
Temperature, °C	< 50	

MST

MRI – Food Technology and Bioprocess Engineering – Safety and Quality of Meat

Pressurisation effect: Quasi-adiabatic heating

Temperature increase

	ΔΤ / ΔΡ ⁰C/100 MPa
Water	3
Meat	3
Oil	7 - 9
Beef fat	6

Temperature profile

- Pressure container
 - geometry, material, insulation
 - rate of pressure build-up
 - rate of heat transfer
- Material
 - composition
 - initial temperature

Patazca et al. (2007) J.Fd. Eng.; Knoezer et al. (2010) J. Fd. Eng.

MRI – Food Technology and Bioprocess Engineering – Safety and Quality of Meat

350 L, Uhde High Pressure Technologies GmbH, Thyssen Krupp, Germany

Chemistry under pressure

Reactions with negative reaction volumes or activation volumes

- Hydrophobic interactions
- Ionic interactions
- Ionisation of water, acids phenols, amines
- Hydrogen bonds formation

> protein structure, denaturation
> pH shift
> protein structure

- Covalent bonds formation
 2+4 (Diels-Alder) and polar 2+2 cycloadditions
- Menschutkin reactions quaternisation of nitrogen, formation of sulphonium- or phosphonium salts
- Solvolysis of ethers, esters, acetals and ketals

Pressure-temperature-induced modifications

MST

Functional properties: water holding capacity, gelation Sensory properties: appearance, colour, texture

P / MPa

- < 150 dissociation of oligomeric proteins
- 150 300 >>> actin and myosin are destabilised
 - ≥ 200 >>> beginning denaturation of globular portion of myoglobin
 - ≥ 300 increased denaturation, aggregation, gelation
 - ≥ 400 >>> globular portion of myoglobin denatured, iron released, met-myoglobin responsible for greyish-brown
 - > 700 secondary structure affected; irreversible denaturation

MST

Lipids

Membrane phospholipids

phase transition liquid-crystalline to gel

P > 300 MPa Tipid oxidation

Rancidity, off-flavour

Proposed mechanisms for lipid oxidation

- Radical formation catalysed by metal ions (Fe^{+2/+3}) → Fenton like reaction
- Membrane disruption → no compartmentalisation → enzyme catalysis
- Protein-derived free radicals generated during pressurisation

Bolumar et al. (2012) Fd Chem, 134; Bolumar et al. (2014) Fd Chem, 150; Medina.-Meza et al (2014) Inn Fd Sci & Emerg Tech

Pressure-temperature-induced modifications

Texture and colour

Spreadable fermented raw sausages

Before fermentation 400 MPa, 20 °C

After fermentation

MRI – Food Technology and Bioprocess Engineering – Safety and Quality of Meat

Cooked sausages Bologna-type

Safety and Quality of Meat Lautenschlaeger (2005)

Pressure-temperature-induced modifications

Texture

Tea sausage

24 days after manufacture 18 days after HPT

Safety and Quality of Meat

Lautenschlaeger (unpublished)

MRI – Food Technology and Bioprocess Engineering – Safety and Quality of Meat

Control 600 800

MRI – Food Technology and Bioprocess Engineering – Safety and Quality of Meat

Health concerns: open questions

- + Reduction of biogenic amine formation
 - HHP a strategy to reduce the formation of BA?
- + Reduction of salt content
 - Saltiness perception is enhanced
- + Elimination of prion infectivity
 - Pressure affects a highly infectious subpopulation of scrapie prions

+ Inactivation of virus

- Human norovirus surrogates, hepatitis A are pressure sensitive
- Generation of bioactive peptides
 - Potential metabolic regulators and peptides with hormone like activities

? Allergenicity

- Some protein groups lose their immune reactivity, others remain unchanged
- New protein aggregates with weak immune reactivity may be formed

Sikes et al. (2009) Trintchev et al. (2013)

Cardone et al. (2006) Heindl et al. (2008)

Grove et al. (2006) Kovač et al. (2010)

Butz et al. (1997, 2002) Fernandez-García et al.(2003)

MST

Simonin et al.(2012)

Regulatory Status

MST

USA

- HHP approved as an intervention method for *Listeria* contaminated pre-packed ready-to-eat meat products (USDA)
- Pressure-Assisted Thermal Sterilization (PATS) processes accepted for application in the production of low acid foods (LAF) (FDA, February 2009)

EU

- HHP classified as a novel technology
- HHP processed foods could be considered as the novel foods if significant changes in the composition of the material result from the process
 - ➔ fall under the Novel Foods Regulation (EC 258/97) microbial safety, toxicological data, allergenic potential,
- HHP approved only for fruit-based preparations (800 MPa for 6 minutes at 20 °C)

Since 2001 National authorities decide on the legal status of HHP processed food

>>> A variety of HHP foods are produced and commercialised in the EU without specific approval

Commercial applications

HHP – Co	mmercial meat products	
1998	Sliced cooked ham and tapas	Spain
2001	Sliced cooked products and prosciutto - Poultry products	USA
2002	Pre-cooked chicken and beef stripes	USA
	Sliced cooked chicken, ham & turkey products and Serrano	Spain
2003	Prosciutto, salami, pancetta	Italy
2004	Cured and smoked sliced and diced ham	Germany
	Nitrite-free bacon, sausages and sliced meat	Japan
2005	Ready-to-eat meat based products	USA
	Cured meat products and Serrano	Spain
2006	Cured and cooked meat products	Canada
	Whole roasted chicken - Sliced cooked turkey and chicken	USA
	Ready-to-eat meals	Canada
2007	Chicken sausages	USA
2008	Sliced cooked pork and beef products - Pet food	USA
	Sausages and bacon	Canada
2009	Germany style cooked meat products	Canada
	Sliced ready-to-eat meats	USA
2010	Prosciutto and cured meats	Canada
	Sliced and diced products and sausages	Australia
2011	Sliced cooked pork products and sausages	Switzerland
	Prosciutto and cured meats - Sliced ready-to-eat meats	USA
	Ready to eat pork products	Rumania
	Serrano and cured meats Tonello (2012) Hyperbaric; Buckow & Bull (2012) CSIRO	Spain
MRI – Food T	echnology and Bioprocess Engineering – Safety and Quality of Meat	21

Process-induced undesirable compounds Chances of non-thermal approaches

Process-induced undesirable compounds

- Health concerns: contaminants or toxicants
- Negative effect on flavour, colour or texture perception

Traditional thermal processing and preparation processes

- High temperature, e.g. pan frying or grilling over an open flame, and smoking induce the formation of toxicants
- Formation ↓ ← → ↓ T, t
 Grilling, frying: marinades with antioxidants
 Smoking: optimise process, liquid smoke

Non-thermal emerging technologies

- More investigation towards the generation of processinduced undesirable compounds is necessary
- HHP processing is an established technology for the pasteurisation of meat products

Origin	Substance
Environmental pollutants	arsenic, lead, cadmium dioxin, dioxin-like polychlorinated biphenyls organochlorine pesticides polycyclic aromatic hydrocarbons (PAH)
Microorganism toxins Plant toxins Animal toxins	aflatoxins, ochratoxins ptaquiloside phytanic acid
Veterinary drugs	growth promoting substances, antibiotics
Processing and storage	PAH HAA biogenic amines N-nitrosamines (N-N) 3-MCPD
Food contact material	bisphenols, phtalates, perfluorinated compound

MST

22 / 23

Process-induced undesirable compounds chances of non-thermal approaches

Diana Behsnilian Peter Butz, Ralf Greiner Food Technology & Bioprocess Engineering

Ralf Lautenschlaeger Safety and Quality of Meat 4th International Summer School Raw fermented sausages & Dry-cured meat products September 16–19, 2014 International Competence Centre on Meat Quality Kulmbach, Germany Max Rubner-Institut *www.mri.de*