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Abstract: Due to novel, improved and high-throughput detection methods, there is a 

plethora of newly identified viruses within the genus Hantavirus. Furthermore, reservoir 

host species are increasingly recognized besides representatives of the order Rodentia, now 

including members of the mammalian orders Soricomorpha/Eulipotyphla and Chiroptera. 

Despite the great interest created by emerging zoonotic viruses, there is still a gross lack of 

in vitro models, which reflect the exclusive host adaptation of most zoonotic viruses.  

The usually narrow host range and genetic diversity of hantaviruses make them an exciting 

candidate for studying virus-host interactions on a cellular level. To do so, well-characterized 

reservoir cell lines covering a wide range of bat, insectivore and rodent species are 

essential. Most currently available cell culture models display a heterologous virus-host 

relationship and are therefore only of limited value. Here, we review the recently 

established approaches to generate reservoir-derived cell culture models for the in vitro 

study of virus-host interactions. These successfully used model systems almost exclusively 

originate from bats and bat-borne viruses other than hantaviruses. Therefore we propose a 
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parallel approach for research on rodent- and insectivore-borne hantaviruses, taking the 

generation of novel rodent and insectivore cell lines from wildlife species into account. 

These cell lines would be also valuable for studies on further rodent-borne viruses, such as 

orthopox- and arenaviruses. 

Keywords: hantavirus; cell culture; zoonoses; reservoir host; virus-host interaction 

 

1. Introduction 

Emerging zoonotic viruses have received tremendous interest within recent years and are perceived 

as a major health risk for humans [1,2]. Among them are many RNA viruses from wildlife reservoirs, 

with recent examples including Severe Acute Respiratory Syndrome (SARS) and Middle East 

Respiratory Syndrome (MERS) Coronavirus (CoV) as well as Old- and New World hantaviruses [3–10]. 

In addition, recent ―pathogen hunting‖ approaches resulted in the discovery of novel paramyxo-, hepe-, 

hepaci- and hepadnaviruses in bats and rodents [11–17]. 

Hantaviruses are enveloped viruses with a segmented RNA genome of negative polarity. 

Taxonomically, these viruses belong to the genus Hantavirus within the family Bunyaviridae [18]. 

In contrast to other genera of the family Bunyaviridae, hantaviruses are harbored by small mammals, 

mainly rodents (order Rodentia). In general, each hantavirus species is thought to be carried and 

transmitted to humans by a single reservoir species. Thus, the prototype hantavirus species, the 

Hantaan virus, was exclusively detected in the striped field mouse Apodemus agrarius in Asia [19]. 

Similarly, the European Puumala virus (PUUV), causing the majority of human infections in Northern, 

Western and Central Europe, seems to be adapted to the bank vole Myodes (Clethrionomys) glareolus 

[20,21]. For other rodent-borne hantaviruses, such as Dobrava-Belgrade virus, different genotypes 

have been identified, each harbored preferentially by a defined Apodemus species [22]. In addition, 

Tula virus (TULV) was initially detected in the common vole Microtus arvalis representing the 

reservoir host, but was also molecularly detected in other vole species [23–25]. The multiple detection 

of TULV in different putative reservoirs underlines the problems of the identification of reservoir hosts 

and the necessity of comprehensive field studies in habitats with sympatrically occurring putative 

reservoir species [24,26]. 

Recently, a large number of shrews and moles (order Soricomorpha/Eulipotyphla) and bats (order 

Chiroptera) have been identified as reservoirs of additional hantaviruses [21,27–32]. The discovery of 

these highly divergent hantaviruses challenge the previous assumption of a strict virus-host 

coevolution over long time scales. Besides the virus-host coevolution hypothesis, alternative scenarios 

of host-switch events and adaptive evolution have been discussed recently [33–38]. Finally, recent 

findings of spillover infections of European hantaviruses, such as TULV and Dobrava-Belgrade virus, 

raise important questions on the host range of hantaviruses and the determinants of host specificity 

(see e.g., [24,39]). In humans, hantaviruses are known to cause a broad range of clinical disease, 

mainly affecting the renal tract: hemorrhagic fever with renal syndrome (HFRS), with its milder form, 

nephropathia epidemica (NE), or the respiratory tract: hantavirus cardiopulmonary syndrome (HCPS) 

caused by certain Old and New World hantaviruses, respectively [10,21,40]. Similarities in the clinical 
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pictures of both syndromes and overlap of clinical presentation such as pulmonary symptoms in a 

subset of patients with NE and kidney involvement in some patients with HCPS suggest that the 

previously used dichotomy of clinical presentation might be not useful to describe the clinical outcome 

of human hantavirus infections and to understand its underlying pathological processes [41–46]. 

Therefore, the term ―hantavirus disease‖ was proposed [47]. 

In contrast, in the reservoir host a hantavirus infection is usually believed to be persistent and not 

associated with (at least obvious) disease. However, field studies in bank voles indicated that 

hantavirus infection has a negative impact on over-winter survival, and histopathologic lesions in 

several organs have been observed in hantavirus-infected white-footed mice and in deer mice [48–50]. 

The causal relationship and the relevance of these observations remain, however, unknown. 

With the discovery of hantaviruses in a broad spectrum of reservoirs and the identification of 

unexpected spillover and putative host-switch events, reservoir-host centered infection models become 

of immediate interest [10,51]. In addition, public health-related questions on the potential of these 

viruses to overcome species barriers and a rational-based risk assessment arise. This assessment is not 

only restricted to the field of hantavirus research but relevant in the context of many emerging virus 

species, such as members of the families Corona- or Paramyxoviridae. These research questions 

necessitate, however, novel tools and methods that allow comparative infection studies and 

immunological evaluation of virus-host interactions among a broad species context, not only including 

wildlife, but also livestock and companion animal species. 

Until now, there is little knowledge on virus-host interaction in the natural reservoir; and currently 

available in vitro model systems do not reflect characteristics of reservoir specific virus-host 

interactions [52]. Animal infection experiments with zoonotic viruses under laboratory conditions in 

the natural reservoir hosts are limited to a small number of species and to highly specialized 

laboratories. Currently available in vivo data on the immunology of hantavirus infection in their natural 

reservoir stem from animal experiments on Norway rats, deer mice, bank voles and cotton rats (for an 

overview see [53]). However, reservoir animal models for in vivo studies are not available for the 

majority of species that harbor hantaviruses. The main reasons are difficulties in breeding and keeping 

these species under laboratory conditions. Furthermore, many rodents as well as members of the orders 

Soricomorpha/Eulipotyphla and Chiroptera are protected species; therefore they are not available in 

large numbers for animal experiments or for in vivo studies in the laboratory at all. An overview on 

model systems for the study of zoonotic viruses is presented in Table 1. 

Among all mammalian reservoir hosts, bats are most likely the order of mammals that has received 

the most attention from the virological research community in recent years [54–56]. A plethora of 

novel viruses have been identified in bats, among them many zoonotic viruses. However, most bat 

species, similar to rodents and insectivores, are not available for animal experiments, and this has 

stimulated the establishment of novel in vitro models such as bat cell lines. The generation of these cell 

lines across a broad range of species has already provided important insights into virus-host interaction 

on a cellular level and on innate immune functions, e.g., interferon response [57–63]. 

The many similarities between bat-, insectivore- and rodent-borne viruses could stimulate a 

synergistic approach for reservoir host-derived in vitro models to study hantaviruses. 
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Table 1. Overview of model systems for the study of zoonotic viruses. 

Model Advantages Disadvantages 
Value for zoonosis 

research 

Animal model, 

conventional 

(e.g., laboratory 

mouse, rat) 

Easy to maintain and 

breed 

Heterologous pathogen-host 

relationship 
Limited 

Species-specific 

reagents available 

Transfer of results to humans or 

reservoir host limited 

Animal model, 

reservoir host (natural 

reservoir host species) 

Homologous  

pathogen-host 

relationship 

Husbandry and breeding limited to 

few species High, but limited to 

few species Species-specific reagents rarely 

available 

Cell culture, 

conventional 

(e.g., Vero E6, tumor 

cell lines, HUVECs, 

monocytes, dendritic 

cells) 

Easy to culture 
Heterologous pathogen-host 

relationship 

Suitable as a basic 

model, but less 

useful for more 

complex questions 

on pathogen-host 

interaction 

Assays, reagents and 

methods available 

Accumulation of 

mutations/deregulation of 

important cellular pathways due to 

high passage numbers possible 

Cell culture, reservoir 

host-derived 

Homologous  

pathogen-host 

relationship 

Very few reservoir-derived cell 

lines available so far 

High 
Thorough characterization 

necessary 

Species-specific reagents rarely 

available 

2. What Have We Learned from Reservoir-Derived Cell Lines in the Field of Bat-Borne Viruses?  

2.1. Virus Isolation Studies  

Cell culture is the mainstay of classical virology and even in times of highly sensitive and high-

throughput detection methods, isolation of a virus in cell culture enables its thorough phenotypical 

characterization. While in the early era of virology, isolation by cell culture was routinely performed; 

it has become something of an outdated method for many years. Cell lines such as Vero cells, derived 

from the kidney of an African green monkey, are widely used for virus isolation and especially the 

subclone Vero E6 provides an excellent environment for RNA viruses to replicate due to an impaired 

IFN response [64,65]. 

Vero E6 cells have enabled the isolation of a variety of hantaviruses [29,66–70], but most novel 

identified bat-, insectivore- and rodent-borne viruses remain uncultured. Therefore, primary and 

immortalized cell lines derived from reservoir hosts could provide a benefit for virus isolation. Several 

examples provide evidence that reservoir-derived cells can be beneficial over conventional cell lines to 

isolate reservoir-borne viruses: The henipa-related paramyxovirus Cedar virus was firstly isolated in 

primary kidney cells derived from a flying fox (Pteropus alecto), the species which naturally harbors 

this virus [71]. In this study, only primary bat cells showed a cytopathic effect while several other cell 

lines, including Vero cells, did not. This cell line was also used for successful isolation of Menangle 

virus, another zoonotic paramyxovirus [72]. In addition, Zhang et al. showed isolation and replication 
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of a bat herpesvirus derived from the bat Miniopterus schreibersii in primary bat cells after 

unsuccessful isolation attempts in 14 other mammalian cell lines [73]. 

Although hantaviruses are not as hard to isolate as other zoonotic viruses (i.e., members of the 

family Coronaviridae), the number of hantavirus isolates of reservoir or human origin is still rather 

small [74]. Therefore, the use of reservoir-derived cell lines might be also beneficial for the generation 

of a more comprehensive collection of hantavirus isolates.  

2.2. Virus Evolution and Adaptation during Cell Culture Propagation 

Many hantavirus isolates have been obtained a long time ago and were propagated on conventional 

cell lines such as Vero E6 cells. Therefore, they might have accumulated adaptations to the cell lines 

on which they have been propagated and do not fully display all characteristics of the viruses found in 

the reservoir. One example that supports this consideration is the report of the attenuation of a PUUV 

strain which subsequently lost its ability to infect the natural reservoir animal after passaging due to 

the accumulation of mutations in the S segment. Here, a wild-type variant that was passaged in bank 

voles was well adapted for reproduction in the reservoir host but not in cell culture, while the strains 

propagated on Vero E6 replicated to much higher efficiency in cell culture but did not reproducibly 

infect bank voles [75]. It was further observed that hantavirus strains evolve during multiple cell 

culture passages. For example, Sundström et al. isolated PUUV strains which differed from the 

corresponding parental strain by plaque size, the ability to replicate in interferon-defective versus 

interferon-competent cell lines and the potential to induce innate immune responses [76]. 

The emergence of a stop codon within the coding sequence of the NSs open reading frame of 

TULV may represent also an adaptation of the virus to the IFN-deficient Vero E6 cell line [77]. 

Similarly, the PUUV prototype strain passaged in Vero E6 cells was demonstrated to contain two 

sequence variants, an NSs-intact variant and a stop codon containing NSs variant [78]. In contrast, the 

vole reservoir-derived PUUV and TULV strains were found to contain a conserved intact NSs open 

reading frame which might be functional in the reservoir [79]. 

2.3. Deciphering Replicative Capacity of Reservoir-Associated Viruses in Reservoir-Host Cell Lines  

Reservoir-derived cell lines are not only a suitable tool for the study of evolutionary closely linked 

virus-host combinations, but they can also be used for deciphering cross-species transmission, hinting 

at a certain species as animal reservoir or estimating replicative capacity. Examples include assessment 

of the replicative capacity of the newly emerged MERS-CoV in bat cell lines not only originating from 

the presumed reservoir host, bats of the family Vespertilionidae, but across several other bat families 

and ungulates [80,81] and identification of the MERS-CoV receptor [82]. Further, New World bat and 

cotton rat-derived cell lines were successfully used for the characterization of a sylvatic isolate of 

St. Louis encephalitis virus [83]. Bat cell lines obtained from Pipistrellus ceylonicus allowed 

propagation of a rhabdovirus pathogenic to humans, Chandipura virus, and a bat adenovirus isolated 

from Rousettus leschenaulti from India, while the cells did not support replication of a number of 

bunya-, alpha- and flaviviruses [84]. As bats have recently been identified as hosts of influenza  

viruses [85,86], bat cells were shown to be susceptible to influenza A virus infection, and importantly, 

to allow re-assortment during co-infection of two influenza viruses [87]. 
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On the other hand, reservoir-derived cell lines from bats could provide hints to a wildlife origin of 

human viruses that are already circulating in the human population for some time: For example, Huynh 

and coworkers showed replication of the human coronavirus HCoV-NL63 in immortalized lung cells 

from the North American tri-colored bat (Perimyotis subflavus) for multiple passages, suggesting an 

origin of the virus in bats [88]. 

2.4. In Vitro Studies on Virus-Host Interaction 

A main application of reservoir-derived cell lines is the investigation of virus-host interactions upon 

controlled infection experiments. Bat cell lines have already served as a valuable tool to study virus 

entry and replication among a broad range of zoonotic viruses in models representing the natural 

reservoir host. For example, two filoviruses, Ebola virus (EBOV) and Marburg virus which are 

harbored by bats in the wild, were shown to enter and replicate efficiently in a bat cell line derived 

from the Egyptian fruit bat (Rousettus aegyptiacus), indicating that this model is highly suitable to 

investigate the biology of filoviruses in cells derived from their presumed reservoir [89]. Furthermore, 

it has been shown that the glycoprotein of EBOV can interact in fruit bat and human cells in a similar 

manner and does not limit EBOV tropism to certain bat species [90]. Further, the glycoprotein of 

Lloviu virus, a filovirus from bats that has not been isolated so far, was found to mediate cellular entry 

in similar manner to other filoviruses with a tropism for bat cells derived from multiple species [91]. 

Surface glycoproteins of African henipaviruses could induce syncytium formation in a cell line derived 

from an African fruit bat, indicating a similar strategy of virus entry for both Asian and African 

henipaviruses, and providing a cell culture model for isolation of these emerging viruses [92]. 

Besides entry studies, reservoir-derived cell lines from bats could also provide insights into the 

reservoir host innate immune response to paramyxoviruses. By the use of reservoir-derived cell lines, 

it was shown that interferon production and signaling pathways are antagonized during henipavirus 

infection of fruit bat cell lines [58]. Further insight into the interferon system of bats was gained  

by characterization of the type I interferon reaction to viral infection in interferon-competent, 

immortalized cell lines from the African fruit bat Eidolon helvum [57]. 

The above-mentioned differences in the host range of hantaviruses might be driven by polymorphisms 

in the receptor molecules. Thus, closely related Microtus species (M. arvalis, M. agrestis) may have a 

similar hantavirus entry receptor, although they are phylogenetically a long time separated as reflected 

in their morphological features [24]. In addition, the tissue tropism of hantaviruses in their natural 

reservoirs might be determined by the receptor repertoire, cellular cofactors of virus replication and 

transcription, and innate immunity mechanisms. Recently, it has been shown that pathogenic 

hantaviruses in contrast to non-pathogenic hantaviruses display a different induction of microRNAs, 

essential regulators of host immune response genes, in human endothelial cells, macrophages and 

epithelial cells [93]. To study these immunological regulators in the reservoir host as well would be an 

interesting option. Therefore, bat-, insectivore- and rodent-derived cell lines would represent a 

valuable tool for identification of host factors. Moreover, such cell lines would help to understand 

innate immunity escape mechanisms that are linked to the activity of the putative NSs protein, 

exclusively identified in arvicoline, sigmodontine- and neotomine-associated hantaviruses [34]. 
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3. What Are the Obstacles to Overcome? — A Research Agenda for Reservoir-Derived Rodent 

and Insectivore Cell Lines 

It has been shown that hantaviruses can infect multiple cell types, but have a tropism to endothelial 

cells in human infection, a reason why human umbilical vein endothelial cells (HUVECs) are the main 

cell culture model for hantavirus disease in humans [94]. Further, hantaviruses can infect dendritic 

cells which are suggested to significantly contribute to hantavirus pathogenesis in humans [95]. In 

rodents, which shed the virus in saliva, urine and feces, the highest amount of hantaviral RNA is 

consistently found in the lungs [96–98]. As transmission of hantaviruses between rodents and also 

during zoonotic transmission from rodents to humans is mainly through the respiratory route, the lung 

is of interest for hantavirus infection. Indeed, we could observe PUUV hantavirus infection in human 

primary airway epithelial cells as well as in an airway epithelial cell line derived from a bank vole [99] 

Further, as the viruses are shed in the urine, renal epithelial cells could be of interest for the study of 

virus-host interactions in the natural reservoir host. One of the few reservoir-derived cell lines that are 

already available from a hantavirus reservoir host is a spontaneously immortalized cell line derived 

from the kidney of an adult bank vole [100]. Although this cell line was permissive to several 

arthropod- and rodent-borne viruses such as Vesicular stomatitis virus, vaccinia virus, cowpox virus, 

Sindbis virus, Pixuna virus, Usutu virus, Inkoo virus, and Borna disease virus, it failed to allow 

productive infection with PUUV strain Vranica, a strain that is adapted to and passaged in Vero E6 

cells. Another group isolated bank vole embryonic fibroblasts and showed that these primary cells 

were susceptible for PUUV-infection, including a wild-type PUUV strain that was only passaged in 

bank voles [101]. However, this approach is dependent on the availability of embryonic organ material 

of bank voles, which requires a successful bank vole breeding colony to continuously obtain embryos 

for the preparation of primary cells. In case of the existence of a breeding colony of a given rodent or 

insectivore species, this approach might be especially useful for studies on selected cell types,  

e.g., dendritic cells, but might be not a general option for most hantavirus-harboring species. 

To ensure the continuous availability of a cell culture model system, immortalization is an option to 

create infinite cell lines from primary cells. While in primary rodent cells spontaneous immortalization 

can occur, it is not known if bat or insectivore cells behave in the same way. Other methods of 

immortalization include retroviral systems such as lentiviral transduction of the coding sequence of 

large T antigen of SV40 or introduction and stable expression of telomerase reverse transcriptase 

protein, both attempts which have been already successfully applied for the generation of bat cell lines 

[57,81,102]. For an overview of advantages and disadvantages of primary vs. spontaneously vs. artificially 

immortalized cells, see Table 2. 

To obtain suitable tissue of reservoir hosts, ongoing research projects on small mammals can be of 

use for collection of organ material to isolate primary cells. While it is not possible to generate cell 

lines from the plethora of rodent and insectivore species in which hantaviruses are found, a pragmatic 

approach is to focus on representative species. Selection criteria for these representative species could 

be: the overall importance of the associated virus, availability of breeding colonies, and representation 

of certain families/genera. 
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Table 2. Advantages and disadvantages of primary vs. spontaneously vs. artificially 

immortalized cell culture. 

Cell characteristics Primary cells 
Spontaneously 

immortalized cells 

Artificially immortalized 

cells 

Immortalization None 
Occurs only after multiple 

passages 

Possible at low passage 

number 

Genetic 

background 

Close to in vivo 

situation 

Artificial (severe changes can 

occur upon immortalization) 

Artificial (severe changes can 

occur upon immortalization) 

Proliferative 

capacity 
Mostly low * High High 

Life span Limited, finite Not limited, infinite Not limited, infinite 

Biological 

properties 

Close to in vivo 

situation 

Dedifferentiation, more 

distant from in vivo situation 

Dedifferentiation depends on 

immortalization methods 

Selection of distinct cell types 

possible, conditional 

immortalization strategy 

feasible 

Selection of distinct cell types 

difficult 

Preferred culture 

medium  

Specialized medium 

(expensive) ** 
Standard medium Standard medium 

Properties of cell 

population 

Close to in vivo cell 

types 

Loss of distinct cell types 

during subcultivation  

Selection of distinct cell types 

possible 

Standardization 

and reproducibility 

Limited cell number, 

standardization only 

possible for some cell 

types *** 

Standardization possible due 

to unlimited amount of cells 

Standardization possible due to 

unlimited amount of cells 

* Exceptions of primary cells that have a high proliferative capacity are primary fibroblasts and HUVECs. 

They are, however, limited in their passage number. ** Exceptions include primary fibroblasts and HUVECs 

for which affordable media are widely available. *** Standardization of primary cells is possible to some 

extent given the case that cells of a low passage number can be sufficiently expanded after initial isolation, 

i.e., HUVECs. 

 

Natural reservoir host species that are available as laboratory animals, in breeding colonies or in 

enclosures (such as Norway rats, deer mice, bank voles, common voles, cotton rats or Asian house 

shrews) are of special interest: cell lines derived from these animals could be compared to the in vivo 

infection in an animal model with the associated virus species. Further, laboratory-bred populations are 

less likely to be infected with unwanted pathogens, and in most instances, stem from a genetically 

characterized background.  

If cell lines are generated from feral animals, a thorough screening for contaminants from the field 

is necessary (contaminants include bacteria and parasites such as mycoplasma or trypanosomes as well 

as viruses that might be cultured along with primary cells). Animals from which tissue material was 

obtained should be either directly tested for contamination with known pathogens or alternatively 

sentinel animals, i.e., laboratory mice are an option. Thorough screening, for example by next 

generation sequencing of organ material, can provide further assessment to ensure high-quality cell 

lines without contaminants, even for as yet unknown pathogens. Furthermore, thorough characterization 
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of the cell lines is obligatory for their use in virus infection studies. This characterization should focus 

on the following questions: Do these cells still express relevant receptors, are interferon signaling 

pathways still intact, do these cells still represent important characteristics of their cell type of origin 

(i.e., in the case of epithelial cells: are cell-cell contacts intact, do cells still form a monolayer, do they 

retain their ability to form a polarized monolayer?). Although complex, this characterization ensures a 

valid cell culture model, which can then easily be shared between different research groups and lead to 

novel insights into the highly conserved hantavirus-host interaction in the context of their natural 

reservoir. As seen in the field of bat-borne zoonoses, reservoir-derived cell lines can serve as a 

valuable in vitro tool and therefore this approach should also be used in the field of rodent- and 

insectivore-borne zoonotic viruses. Furthermore, synergistic approaches of bat-, rodent- and 

insectivore-borne viruses and their reservoirs might enable the identification of general mechanisms of 

virus persistence, conserved across a broad range of mammalian reservoir hosts. Protocols for the 

generation of bat cell lines have been established and could be adapted to the rodent and insectivore 

host [57,81,102]; an exemplary approach is presented in Figure 1. In order to mimic the natural 

infection as close as possible, generation of cell lines should focus on cell types which are a target 

during natural infection or stem from organs that are involved in virus entry, spread or shedding, such 

as epithelial cells from the respiratory or renal tract. 

Figure 1. Algorithm for the generation of reservoir-derived cell lines from bats, 

insectivores and rodents. A similar approach has already been successfully applied for the 

establishment of bat, rodent and insectivore cell lines [57,80,81,83,103,104]. 
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4. Conclusions  

In conclusion, investing in a large range of reservoir-derived cell culture models will be a promising 

tool to reveal novel aspects of the hantavirus-host relationship. Further, experience and model systems 

from the field of bat-borne zoonosis can serve as a blueprint for the hantavirus research community.  
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