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Abstract

Swine influenza viruses (SIV) regularly cause significant disease in pigs worldwide. Since there is no causative treatment of
SIV, we tested if probiotic Enterococcus (E.) faecium NCIMB 10415 or zinc (Zn) oxide as feed supplements provide beneficial
effects upon SIV infection in piglets. Seventy-two weaned piglets were fed three different diets containing either E. faecium
or different levels of Zn (2500 ppm, Znhigh; 50 ppm, Znlow). Half of the piglets were vaccinated intramuscularly (VAC) twice
with an inactivated trivalent SIV vaccine, while all piglets were then infected intranasally with H3N2 SIV. Significantly higher
weekly weight gains were observed in the E. faecium group before virus infection, and piglets in Znhigh and E. faecium
groups gained weight after infection while those in the control group (Znlow) lost weight. Using ELISA, we found
significantly higher H3N2-specific antibody levels in the E. faecium+VAC group 2 days before and at the day of challenge
infection as well as at 4 and 6 days after challenge infection. Higher hemagglutination inhibition (HI) titers were also
observed in the Znhigh+VAC and E. faecium+VAC groups at 0, 1 and 4 days after infection. However, there were no
significant differences in virus shedding and lung lesions between the dietary groups. Using flow cytometry analysis
significantly higher activated T helper cells and cytotoxic T lymphocyte percentages in the PBMCs were detected in the
Znhigh and E. faecium groups at single time points after infection compared to the Znlow control group, but no prolonged
effect was found. In the BAL cells no influence of dietary supplementation on immune cell percentages could be detected.
Our results suggest that feeding high doses of zinc oxide and particularly E. faecium could beneficially influence humoral
immune responses after vaccination and recovery from SIV infection, but not affect virus shedding and lung pathology.

Citation:Wang Z, Burwinkel M, Chai W, Lange E, Blohm U, et al. (2014) Dietary Enterococcus faecium NCIMB 10415 and Zinc Oxide Stimulate Immune Reactions to
Trivalent Influenza Vaccination in Pigs but Do Not Affect Virological Response upon Challenge Infection. PLoS ONE 9(1): e87007. doi:10.1371/
journal.pone.0087007

Editor: Srinand Sreevatsan, University of Minnesota, United States of America

Received September 6, 2013; Accepted December 16, 2013; Published January 28, 2014

Copyright: � 2014 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by Deutsche Forschungsgemeinschaft (DFG) research consortium (SFB 852, subproject A5). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: michael.burwinkel@fu-berlin.de

Introduction

Swine influenza virus (SIV) is a major cause of acute respiratory

infections of pig populations worldwide. The causative agents are

type A influenza viruses, mainly of the H1N1, H3N2, or H1N2

subtypes. The main route of transmission is through direct contact

between infected and uninfected animals, close contacts being

particularly common during animal transport. Intensive farming

may also increase the risk of transmission as pigs are raised in

production units with high animal densities [1,2]. SIV infections

result in fever, sneezing, coughing, difficulty in breathing,

decreased appetite resulting in weight loss and poor growth [1].

SIV can cause significant production losses, especially when

complicated by secondary infections.

Porcine respiratory tract epithelial cells express sialic acid

receptors utilized by both avian and mammalian influenza viruses.

Pigs are, therefore, considered ‘‘mixing vessels’’ for new human-

avian influenza A virus reassortants with the potential to cause

significant respiratory disease or even pandemics in humans [3].

Thus, the control of SIV is of economic importance but also

paramount for public health. Since there currently is no licensed

antiviral drug available for pigs, and no sterile immunity is

achieved with current vaccines, a positive effect on prevention

and/or course of clinical disease achieved through nutritional

supplementation would be highly useful.
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The effect of zinc (Zn) and various probiotic bacteria on the

course of bacterial infections in pigs have been studied intensively

[4–6]. However, published information on the effect of feed

supplements with respect to virus infections is scarce [7,8].

Probiotic bacteria, as a part of gut microbiome, are reported to

promote host defenses and to modulate immune functions [9].

There is evidence that some specific probiotics can alter monocyte

and natural killer cell function. Evidence is also accumulating that

some probiotics can boost antibody responses to orally and

systemically administered vaccines [10,11]. E. faecium NCIMB

10415 is authorized in the EU as a probiotic feed additive for pigs

and seems a suitable probiotic that allows us to study possible

antiviral effects. It has been demonstrated that this E. faecium strain

modulates the intestinal immune system in sows and piglets and

that it affects shedding of porcine enteric viruses [12,13]. In vitro

experiments also showed direct antiviral effects of E. faecium against

enteric and non-enteric viruses. The potential mechanisms include

pathogen exclusion by means of competition for attachment as

well the induction of cytokines and signaling molecules which

might stimulate host-cell immune defense [14,15].

Zn is an essential trace element and a cofactor of more than 300

enzymes of all classes. To cover the pig’s requirement of about

50 ppm [16], it is provided as dietary supplement and added to the

diet mostly as Zn oxide (ZnO). In addition, it has also been shown

that feeding high ZnO levels (2000 to 3000 ppm) to piglets

stimulated growth and prevented post-weaning diarrhea [17,18].

However, for grower/finisher pigs high levels of zinc are typically

not sustained, as zinc toxicity is related to dietary level and

duration of feeding [16]. Published information on antiviral Zn

effects against virus is available from cell culture work and

nutritional studies in humans, but less so from studies involving

livestock [19,20]. In humans, Zn was utilized frequently in

attempts to treat various virus infections or aid in their

prophylaxis. Some results suggest that Zn can directly interact

with viral structural components and influence virus replication. It

is also widely accepted that Zn affects immune responses on the

cellular level as well as on the level of the recipient organism [21].

In cell culture studies, high Zn concentrations and the addition of

compounds that stimulate cellular import of Zn were found to

inhibit the replication of various RNA viruses, including influenza

virus [22].

Since data on the efficacy of probiotic treatment or Zn

supplementation on virus infection in vivo is limited, especially

with respect to extraintestinal effects of the feed supplements, the

aim of this study was to explore systemic effects of E. faecium and

high level Zn oxide feeding on SIV vaccination and infection. We

report on clearly demonstrable systemic effects of such treatments,

especially with regard to clinical parameters and humoral immune

responses that are increased following E. faecium and Znhigh

supplementation.

Materials and Methods

Virus, Vaccine, Feed Additives
Influenza A virus (A/swine/Bissendorf/IDT1864/03 (H3N2))

was used for challenge infections. Viral stocks were produced in

Madin-Darby canine kidney (MDCK) cells. The inactivated,

trivalent vaccine RespiporcH Flu3 (IDT Biologika GmbH, Dessau-

Rosslau, Germany), which contains the three main swine influenza

subtypes H1N1 (Haselünne/IDT2617/2003) (H3N2), H1N2

(Bakum/1832/2000) and H3N2 (Bakum/IDT1769/2003), was

used in our study. Probiotic E. faecium NCIMB 10415 was applied

as a commercial probiotic feed additive (CylactinH LBC ME10,

DSM nutritional products Ltd, Kaiseraugst, Switzerland) in a

microencapsulated form and mixed to the diets of weaned piglets

at a concentration of 16109 colony forming units (CFU)/kg feed.

ZnO was either added at a high dose (Znhigh: 2500 mg/kg diets

(pharmacological level) until the age of 56 days and then switched

to a medium dose (Znmed: 150 mg/kg diet (max. allowed EU

level), or no additional ZnO was added (Znlow: 50 mg/kg diet).

The Znlow diet represents the regular feed of the animals and the

Znlow group, therefore, was considered the control throughout the

paper.

Animals and Experimental Setup
All animal experimentation was approved by the local animal

welfare authority (Landesamt für Landwirtschaft, Lebensmittelsi-

cherheit und Fischerei, Rostock, Mecklenburg-Vorpommern,

Germany) under the registration number 44/12. Piglets (n = 72)

were raised at the Institut für Tierernährung, Freie Universität

Berlin and weaned at the age of 28 days of age. Pigs were then

randomly assigned to three different diets (Znlow, Znhigh or E.

faecium) and kept in groups of 6 (2 pens per diet). High Zn levels

were fed only until the age of 56 days in order to avoid toxic effects

and the diet was then reduced to medium levels (Znmed). Half of

the piglets (one pen per treatment) were vaccinated intramuscu-

larly (VAC) twice on day 35 and 56 with the commercial SIV

vaccine. In total, there were 6 treatment groups containing 12

piglets each. Five days before virus infection, all piglets were

transported to the BSL3* facility at the Friedrich-Loeffler-Institut,

Insel Riems, where they were housed in HEPA-filtered isolation

units at a constant 27uC. All pigs were tested for the presence of

SIV antibodies by a commercially available ELISA targeting the

viral nucleoprotein (ID ScreenH Influenza A competition, ID.vet,

Grabels, France) prior to infection. At 63 days of age, all piglets

were inoculated by the intranasal route with 261 ml of SIV H3N2

with a titer of 106.3 TCID50/ml using a LMA MADTM intranasal

mucosal atomization device (Teleflex Medical GmbH, Kernen,

Germany). Half of the piglets from each group were killed on 1

and 6 dpi, respectively, by i.v. injection of 0.1 ml/kg body mass

T61H (Intervet Deutschland GmbH, Unterschleißheim, Germany)

after intramuscular induction of anesthesia with 20–30 mg/kg

body mass ketamine (UrsotaminH, Serumwerk Bernburg AG,

Bernburg, Germany and 1–2 mg/kg body mass azaperon

(StresnilTM, Janssen-Cilag GmbH, Neuss, Germany).

Clinical Follow-up and Sampling
During the experiment, animals were clinically monitored daily

for the development of clinical signs including fever, fatigue,

anorexia, dyspnea and cough. Body weights were recorded weekly

after weaning before infection and at necropsy on 1 and 6 dpi after

exsanguination. Blood samples were taken daily after the second

vaccination for serological analyses. Nasal, buccal and fecal swabs

were collected daily for the analysis of virus shedding. At the day of

necropsy, samples were taken from the nasal turbinates and lungs

(apical, middle and accessory lobes). Samples of all organs were

prepared for histological analysis.

Gross Pathology and Histopathology
At necropsy, the lungs were immediately examined macroscop-

ically and photographs taken for further analysis. For histopathol-

ogy, small sections of organs were fixed in 10% buffered formalin.

Fixed tissues were dehydrated, embedded in paraffin and 5 mm
sections were cut for histological examination. Lung sections from

the portion most consistently affected by gross lesions (well-

demarcated purple dark red areas of tissue consolidation) were

stained using a hematoxylin/eosin (H&E) standard staining

protocol [23] and examined microscopically. Examination of

E. faecium and Zinc against Swine Influenza Virus
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tissue sections from this study was conducted in a blinded fashion

by a veterinary pathologist. Lesion severity was scored by the

distribution of lesions within the sections examined as follows: 0 -

no visible changes; 1 - mild changes, minimally different from the

normal; 2 - moderate changes; 3 - severe and diffusely distributed

changes.

Serology
The development of an influenza virus-specific immune

response was analyzed by ID ScreenH Influenza A competition

ELISA. The optical density (OD) of the reaction was measured at

450 nm (OD450 nm) with a microplate reader (Tecan, Crailsheim,

Germany). Results were reported as a ratio of the OD450 nm of the

sample and the negative control (OD450 nm ‘‘S’’/OD450 nm ‘‘N’’)

included in the kit (positive cut-off: S/N=0.55). Hemagglutination

inhibition (HI) assay was performed using a solution of 0.5%

chicken erythrocytes in 0.9% NaCl and 8 hemagglutinating units

of A/swine/Bissendorf/IDT1864. Sera were pretreated with

receptor destroying enzyme (Cholera filtrate; Sigma-Aldrich, St.

Louis, USA) to remove nonspecific inhibitors and adsorbed onto

chicken erythrocytes to remove unspecific agglutinating factors.

Tests were performed according to standard procedures in twofold

dilutions starting at 1:20.

Differential Cell Count
To evaluate changes of cellular composition in the peripheral

blood after SIV infection, 150 ml of whole blood were analyzed

using an automated XT-2000iV hematology analyser (Sysmex

Corporation, Hyogo, Japan) and the number of neutrophils,

lymphocytes, and monocytes were determined.

Viral RNA Quantification from Swabs
Nasal, buccal and fecal swabs were taken, placed in vials

containing serum-free cell-culture medium, and stored at 280uC
until further analysis. Viral RNA was extracted from nasal and

buccal swabs taken at 0, 2, 4, 6 dpi and from fecal swabs at 3 dpi

using the MagAttractH DNA Mini M48 Kit (Qiagen, Hilden,

Germany) on the KingFisher Flex Magnetic Particle Processors

(Thermo Fisher Scientific, Waltham, USA). Swabs were eluted in

1 mL serum-free cell-culture media of which 100 ml were used for

RNA extraction into 100 ml AVE buffer. Real-time reverse

transcriptase RT-qPCR for quantification of SIV copy numbers

was performed using a pan-Influenza A-M1.2 assay [24] and an

in vitro-transcribed RNA standard.

Flow Cytometry
Peripheral blood mononuclear cells (PBMCs) were subjected to

multicolor immunostaining with porcine cell surface markers for

flow cytometry analysis using a BD FACSCantoTM (BD Biosci-

ences, Heidelberg, Germany). Each heparinized blood sample

(50 ml) was stained with antibody mix 1 (Table S1). Respective

isotypes were also included in the assay. After incubation for

15 min in the dark at 4uC, cells were washed with fluorescence-

activated cell sorting (FACS) buffer (0.1% BSA, 0.035% sodium

bicarbonate and 0.02% sodium azide in HBSS) and centrifuged

for 5 min at 7006g. Then, antibody mix 2, mix 3 or mix 4 were

added and cells were washed and centrifuged. After the last wash

step, contaminating erythrocytes were lysed by osmosis with

distilled water and samples analyzed. Lung mononuclear cells

were isolated from freshly euthanized piglets after removal of lungs

with trachea and bronchus. The left lungs were lavaged with

50 ml of PBS (pH 7.4) using a flexible tube and the collected

bronchoalveolar lavage (BAL) samples were centrifuged at 3006g

for 10 min at 4uC. The pellet was resuspended in FACS buffer

and stained as described above. Results from flow cytometry were

analyzed using FlowJoTM software (Treestar, Ashland, USA).

Based on cd-T cell receptor (gdTCR), CD3, CD4, CD8, CD2 and

CD21 staining characteristics, each subpopulation was then

further grouped as follows: cd-T cells (gdTCR+CD3+CD2+CD8+);

T-helper (Th) cells (gdTCR2CD3+CD4+CD82); activated T

helper cells (gdTCR2CD3+CD4+CD82CD25high); cytotoxic T

lymphocytes (CTLs) (gdTCR2CD3+CD42CD8+); Th/memory

cells (gdTCR2CD3+CD4+CD8+); natural killer (NK) cells

(gdTCR2CD32CD42CD8high); antibody-forming and/or mem-

ory B cells (gdTCR2CD32CD2+CD212).

Statistical Analysis
Results were analyzed by a mixed model with fixed effects (time,

diet, time*diet (ELISA and HI assay data); diet, vaccination,

diet*vaccination (lesion score data); time, diet, vaccination,

time*diet, time*vaccination, diet*vaccination, time*diet*vaccina-

tion (qRT-PCR, blood count, flow cytometry data)) and one

random effect (animal). Post-hoc tests (LSD) were applied in case

of significant effects. Calculations were performed with SPSSH
Version 21 (IBM, Armonk, NY, USA) and GraphPad Prism 5

(GraphPad Software Inc., La Jolla, CA, USA).

Results

Clinical Symptoms and Weight Gains
Clinically, SIV infection caused only mild symptoms (Figure 1)

with fever ($40uC) only sporadically observed. Average body

temperatures were lowest in the E. faecium+VAC group throughout

the observation period after SIV infection, with mean tempera-

tures spiking in the vaccinated Znlow group on 2 dpi (Figure 1).

Significantly higher weekly weight gains were recorded before

infection in the E. faecium groups in the period from 39 to 46 and

from 46 to 53 days of age, regardless of vaccination (Figure S1A).

Comparing the body weights after exsanguination, mean body

weights in all vaccinated and non-vaccinated Znhigh and E. faecium

fed groups increased after SIV infection from 1 dpi to 6 dpi, while

the weights declined in the Znlow groups at those time points

(Figure S1B).

Gross and Histopathology
Vaccination resulted in reduced frequency of parenchymal

consolidation in the lungs of piglets in all diet groups (Figure 2A).

Non-vaccinated animals showed more macroscopic (Figure 2B–D)

and microscopic lesions at 6 dpi (Figure 3). The right middle lung

lobes exhibited the highest frequency and extent of lesions

macroscopically; therefore, sections from this lobe were further

analyzed and scored after histopathologic examination. Affected

pigs presented with mild (score 1) to severe (score 3) interstitial

bronchopneumonia that was dominated by lymphocytic infiltra-

tion (Figure 4). Sporadically, bronchioles and alveoli contained

cellular debris with lymphocytes, fewer histiocytes and scattered

neutrophils accompanied by bronchiolar epithelial degeneration

and necrosis. In the vaccinated groups, a reduced frequency of

moderate (score 2) peribronchial lesions and a prevention of severe

(score 3) interstitial lungs lesion was observed. Although no

significant differences between different diets were apparent in

vaccinated and non-vaccinated animals, vaccinated animals that

had received E. faecium in the diet showed the lowest lesion scores

(Figure 3).

E. faecium and Zinc against Swine Influenza Virus
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Virus Shedding
Virus shedding was analyzed by qRT-PCR in nasal and buccal

swabs before infection and at 2, 4 and 6 dpi (Figure 5) and in fecal

swabs from 3 dpi. No virus genomes were detectable in samples

before infection and in the fecal swabs (data not shown).

Vaccinated animals had approximately 10- to 100-fold reduced

viral loads when compared to non-vaccinated animals in both

nasal and buccal swabs (Figure 5). There were no significant

differences, however, between dietary treatment groups, although,

again, a tendency towards lower virus shedding from the nose was

observed for E. faecium-treated animals.

Figure 1. Body temperatures. Individual body temperatures were measured rectally daily after infection. Each bar represents the mean value 6
standard deviation from 6 pigs. A significant difference is shown for the E. faecium+VAC compared to Znlow+VAC group (**: P,0.01).
doi:10.1371/journal.pone.0087007.g001

Figure 2. Exemplary gross lesions in lungs after SIV infection. (A) Lung from a vaccinated piglet at 6 dpi. (B) Lung from a non-vaccinated
piglet at 6 dpi. (C and D) Detailed pictures of lung B showing focal areas of tissue consolidation (arrows).
doi:10.1371/journal.pone.0087007.g002
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Humoral Immune Responses
All vaccinated piglets had developed antibodies as detected with

the NP protein ELISA at the day of infection and 7 days after the

second vaccination, (Figure 6). Significantly higher H3N2-specific

antibodies could be detected in the E. faecium+VAC groups

compared to the Znlow+VAC groups 2 days before (P,0.001) and

on the day of challenge infection (P= 0.008) as well as on 4

(P = 0.038) and 6 dpi (P = 0.017). The ELISA results were

confirmed by an HI assay (Figure 7). Again, we found a general

effect of feeding E. faecium and the Znhigh diet in the vaccinated

animals. Significantly higher antibody titers were detected in the

E. faecium+VAC groups on the day of SIV infection (0 dpi,

P,0.05), 1 dpi (P,0.05) and 4 dpi (P,0.05). Significantly higher

antibodies were also detected in the Znhigh+VAC groups on the

day of SIV infection (P,0.05), 1 dpi (P,0.01) and 4 dpi (P,0.05).

For the non-vaccinated piglets, antibodies could barely be detected

at 6 dpi by either method.

Cellular Immune Responses
Hematological parameters in peripheral blood were examined

after SIV infection using an automated analyzer. As shown in

Table 1, the numbers of monocytes and lymphocytes showed no

differences between the groups, whereas reduced numbers of

neutrophils were observed in the Znhigh groups.

Flow cytometry of immune cell phenotypes of PBMC subpop-

ulations was performed from 0 dpi to 6 dpi (f2). Virus infection led

to a slight decrease in the frequency of Th cells until 6 dpi. In

contrast, increased percentages of CTLs, Th/memory cells,

antibody-forming and/or memory B cells, and NK cells were

observed until 6 dpi in both vaccinated and non-vaccinated

animals.

Regarding dietary effect, no significant differences between

treatment groups were observed for any subpopulation before

infection (Figure S2, 0 dpi). After challenge infection, significant

differences were found at single time points. Higher CTL

percentages (P,0.05) were found in the Znhigh+VAC group

compared to the control Znlow+VAC group at 5 dpi. In non-

vaccinated groups, higher CD4+CD8+ T cell percentages (P,0.05)

were found in the E. faecium group compared to the Znlow group at

2 dpi. Finally, significantly lower antibody-producing and/or

memory B cell numbers were observed in the E. faecium group

compared to the Znlow group (P,0.05) at 1 dpi in non-vaccinated

pigs.

Immune cell phenotypes of BAL cells were examined after

necropsy on 1 dpi and 6 dpi. We observed an increase in

percentages of gamma delta T-cell, activated B-cell and activated

T-cell at 6 dpi after infection compared to 1 dpi, but no influence

of vaccination and dietary treatment (Figure S3).

Discussion

In this study, we investigated effects of feed supplementation

with E. faecium or higher dietary ZnO levels on vaccination against

and challenge with swine influenza A virus. Clinical follow-up,

virological outcome, as well as humoral immune and cellular

immune responses were recorded analyzed. To our knowledge,

such information is the first to be collected and described in pigs,

or any livestock, and, therefore, provides an important contribu-

Figure 3. Microscopical examination of lung sections. (A and C) H&E stained lung of a vaccinated piglet with normal bronchial epithelial
lining and absence of infiltrates of inflammatory cells. (B and D) H&E stained lung of a non-vaccinated piglet with extensive infiltration of
predominantly lymphocytes in the interstitium and around bronchi and bronchioli.
doi:10.1371/journal.pone.0087007.g003
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tion with respect to the assessment of the usefulness, or lack

thereof, of feed supplementation on an important viral disease.

Challenge infection with H3N2 SIV caused mild symptoms,

which is in line with observations from other studies [25] and

confirms the importance of good sanitary status, as provided

during the experimentation here, in the prevention of secondary

infections. The observation of significantly higher body weight

gains in the E. faecium treatment groups after weaning and before

infection was also made in other studies [12,26], whereas a

growth-promoting effect of the Znhigh diet as observed by others

[26–28] could not be confirmed. Comparing body weights after

challenge infection, it appeared that mean body weights of piglets

in all Znhigh and E. faecium increased from 1 dpi to 6 dpi, while it

decreased in the Znlow groups (Figure S1B). These results might

indicate a better and faster recovery from infection and anorexia

of reduced duration in the probiotic and Znhigh groups.

The most prominent finding obtained in this study was the

development of higher SIV-specific ELISA and HI antibody levels

in the Znhigh and particularly E. faecium treated vaccine groups two

days before as well as on the day of virus infection (Figures 6 and

7). The increased antibody response to vaccination in the group

receiving the higher Zn level diet compared to the Znlow diet

group might indicate that a suboptimal Zn supply in the Znlow

group was restored, since it has been shown that a Zn deficiency

impairs B-cell function [29]. It is also possible that a normal

antibody response in the Znlow group was improved by the

additional Zn supply, although this has not been shown elsewhere

yet. The data also demonstrate that dietary supplementation with

E. faecium was able to boost antibody levels. Similar observations

were also made in a previous study using another probiotic strain

[30]. However, we and others can only speculate about possible

mechanisms of how antibody titers to a vaccine applied

parenterally might be enhanced by oral probiotics. We applied

the influenza vaccine intramuscularly and we assume that immune

responses were mainly generated in the tributary (axillary) lymph

nodes. Some communication must, therefore, exist between

probiotic bacteria in the gut and the cells initiating immune

responses at a distant site to explain the observed effect. It was

previously argued that (subcellular) fragments of probiotics may

enter the bloodstream and as such have a very direct albeit weak

adjuvant effect at a distant lymph node [11]. Another possible

explanation could be that during feed intake some probiotic

fragments might be inhaled and/or directly get in contact with

epithelial cells in the nasopharynx and induce cytokines or other

signaling molecules with an adjuvant effect. Interestingly the E.

faecium group diet was based on the Znlow diet, thus, not only could

a possible lack of Zn be compensated by the probiotic supplement

but also there could be a possible synergistic effect between E.

faecium and optimal or elevated Zn for the induction of even higher

antibody levels.

Lungs from non-vaccinated animals showed more extensive

macroscopical lesions (Figures 2 and 3) than those from non-

vaccinated animals. Microscopical evaluation revealed that

vaccination reduced the severity of microscopic lesions (Figure 4).

However, a dietary influence on these observations was not

apparent.

Our data also shows that vaccination did not result in sterile

immunity but reduced the number of animals shedding virus as

Figure 4. Pathohistological lesion scoring. Scores of lung lesions in the right middle lobes (0 - no visible changes; 1 - mild changes, minimally
different from the normal; 2 - moderate changes; 3 - severe and diffusely distributed changes).
doi:10.1371/journal.pone.0087007.g004
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well as the amount of virus shed from the nose and buccal sites

(Figure 5). Fecal shedding was also tested but, in agreement with

the literature [31], no virus could be detected. Despite higher

antibody levels, a stronger reduction of virus shedding was not

achieved by E. faecium or Znhigh supplementation in vaccinated

animals. As reported by others [32,33], an increase in antibody

levels does not necessarily mean that these antibodies exhibit high

specificity or affinity. This is especially true for antibodies induced

by inactivated vaccines where, unlike following live vaccine

administration or natural infection, virus is not delivered to

secondary lymphatic organs and presented by dendritic cells to

elicit optimal virus-neutralizing antibody responses.

Hematology revealed transiently reduced neutrophil numbers in

both vaccinated and non-vaccinated animals receiving the Znhigh

Figure 5. SIV antibody ELISA. SIV-specific antibodies were detected in swine sera by competition ELISA targeting NP from 22 dpi to 6 dpi. The
dotted line indicates the threshold above which values are considered positive.
doi:10.1371/journal.pone.0087007.g005

Figure 6. Hemagglutination inhibition (HI) antibody titers. Twofold serum dilutions starting at 1:20 were examined. Values $80 (dotted line)
are considered positive.
doi:10.1371/journal.pone.0087007.g006
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diet. Zn-induced neutropenia has been described in man [34].

Obviously, in this study, neutrophil numbers were still sufficient to

avoid negative effects on the course of SIV infection. It needs to be

emphasized that the Znhigh diet was reduced to a Znmed diet

(150 ppm) before infection to reduce the possibility of toxic effects.

We, therefore, cannot rule out that, if continued, the high Zn doses

might have had negative effects on health of the individuals.

According to the literature on cellular immune responses, CD4+

and CD8+ T cells as well as antibody-producing B cells make an

important contribution to the control of influenza virus replication

and virus clearance during infection [35,36]. Th cells primarily

stimulate antibody and cytokine production and proliferation of

CTLs. The CTL response is mainly directed against the more

conserved influenza virus proteins, M and NP. Consequently, a

robust CTL response can also confer protection against heterol-

ogous influenza A virus challenge [35,37]. Inactivated vaccines are

poor inducers of cellular immune responses [38], and, accordingly,

we observed no effect of vaccination on cellular immune

responses. We found a slight decrease in Th cells and a

concomitant equally slight increase of CTL and antibody-

producing B cell percentages from 1 to 6 dpi in PBMCs.

Regarding dietary effects, we found significant differences between

the E. faecium and Znhigh groups and the control Znlow group only

at single time points but no prolonged effect. We also compared

the percentages of immune cell phenotypes in cells of the BAL

fluid after necropsy, since the proliferation responses in peripheral

blood does not fully reflect those at the site of infection [39]. We

found increased percentages of gamma delta T-cells, activated B-

cells and activated T-cells at 6 dpi compared to those on 1 dpi in

vaccinated and non-vaccinated animals, but no influence of

Figure 7. qRT-PCR. Virus shedding in nasal (A) and buccal swabs (B). SIV genome copy numbers were detected in swab eluates. All swabs taken at
the day of infection (0 dpi) were negative (not shown).
doi:10.1371/journal.pone.0087007.g007
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dietary treatment. Thus it seems that E. faecium and Zn

supplementation neither systemically nor locally changed the

cellular immune response to SIV infection substantially.

In summary, the results presented here suggest that high doses

of ZnO and particularly E. faecium can increase humoral immune

responses following SIV vaccination and support recovery from

clinical illness. However, the increased responses do not signifi-

cantly affect virus shedding or the development of lung lesions

after challenge infection. However, if used in combination with an

appropriate vaccine, feed supplementation with ZnO and/or E.

faecium might be suitable to improve antibody responses and to

help reducing virus shedding.

Supporting Information

Figure S1 Animal weight analyses. (A) Mean weekly weight

gain before virus infection. Each bar represents the mean value 6

standard deviation from 12 pigs (**: P,0.01. ***: P,0.001). (B)
Mean body weights on the indicated day after virus. Weights were

measured after exsanguination.

(TIF)

Figure S2 Comparison of immune cell subsets of
PBMCs. Percentages of Th cells (A, B), CTLs (C, D), Th/
memory cells (E, F), antibody-forming/memory B cells. (G, H)

and NK cells (I, J) in PBMCs from day 0 to 6 dpi. Each bar

represents the mean value 6 standard deviation from 6 pigs (*:

P,0.05).

(TIF)

Figure S3 Comparison of immune BAL cell subsets.
Percentages of Th cells (CD4+CD82); CTLs (CD42CD8+); Th/

memory cells (CD4+CD8+); gamma delta T cells (CD2+CD8+);

antibody-producing and/or memory B cells (CD2+CD212);

activated Th cells (CD82CD25high), and NK cells (CD32CD8high)

at 1 dpi and 6 dpi in vaccinated (upper panel) and non-vaccinated

(lower panel) animals.

(TIF)

Table S1 Primary and secondary antibodies used for
flow cytometry staining.

(DOCX)
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