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Hepatitis E virus (HEV) is one of the most common causes of acute hepatitis in tropical and temperate climates. Tropical geno-
types 1 and 2 are associated with food-borne and waterborne transmission. Zoonotic reservoirs (mainly pigs, wild boar, and
deer) are considered for genotypes 3 and 4, which exist in temperate climates. In view of the association of several zoonotic vi-
ruses with bats, we analyzed 3,869 bat specimens from 85 different species and from five continents for hepevirus RNA. HEVs
were detected in African, Central American, and European bats, forming a novel phylogenetic clade in the family Hepeviridae.
Bat hepeviruses were highly diversified and comparable to human HEV in sequence variation. No evidence for the transmission
of bat hepeviruses to humans was found in over 90,000 human blood donations and individual patient sera. Full-genome analy-
sis of one representative virus confirmed formal classification within the family Hepeviridae. Sequence- and distance-based taxo-
nomic evaluations suggested that bat hepeviruses constitute a distinct genus within the family Hepeviridae and that at least three

other genera comprising human, rodent, and avian hepeviruses can be designated. This may imply that hepeviruses invaded
mammalian hosts nonrecently and underwent speciation according to their host restrictions. Human HEV-related viruses in
farmed and peridomestic animals might represent secondary acquisitions of human viruses, rather than animal precursors caus-

ally involved in the evolution of human HEV.

third of the world’s human population may have been in-
fected with hepatitis E virus (HEV), the prototype of the fam-
ily Hepeviridae (59). HEVs are small, nonenveloped viruses with
an approximately 7,200-nucleotide (nt) positive-sense, single-
stranded RNA genome. Human HEV is classified into four geno-
types (41). Following food-borne and waterborne fecal-oral infec-
tion, clinical symptoms range from asymptomatic to severe
hepatitis (57). Hepatitis B virus and HEV constitute the most
common causes of acute hepatitis in developing countries (57). In
industrialized countries, hepatitis E has long been considered rare,
but there is now a growing body of evidence suggesting that par-
ticularly HEV genotypes 3 and 4 constitute major etiologies of
acute viral hepatitis (13). Moreover, HEV was found to be present
in blood donors at rates between 0.07% in Chinese blood donors
and 19.5% in Japanese donors with elevated liver enzyme levels
(27, 63) as well as in plasma fractionation pools at rates of up to
10% (5). HEV infection can become chronic in immunocompro-
mised patients and has been associated with high rates of mortality
in pregnant women (6, 14, 36). Along with a growing awareness of
the clinical relevance of HEV, candidate vaccines have been devel-
oped and tested in phase II and III clinical trials (64, 72, 75).
HEV differs from all other human hepatitis viruses in that it has
been linked to animal reservoirs, beginning with its isolation from
swine in 1997 (43). In particular, HEV genotypes 3 and 4 are
associated foremost with food-borne zoonotic transmission from
deer, domestic pigs, and wild boar (55, 58, 68). Antibodies against
human HEV have been detected in several other animal species,
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including cattle, sheep, and horses (55). Zoonotic infection seems
to contribute to a high seroprevalence in swine handlers and vet-
erinarians (7, 22, 42, 44). Critically, those viruses detected in live-
stock animals such as swine, deer, farmed rabbits, and mongooses
all cluster closely with human viruses (12, 23, 50, 73). Beyond this
monophyletic clade, more divergent animal hepeviruses have
been described recently. Rat sera were long known to cross-react
with human HEV antigens serologically (16, 55), and a distinct
hepevirus lineage associated with mild hepatitis in infected ani-
mals was detected in wild Norway rats (31, 38, 60). Avian hepevi-
ruses have been identified in farmed chickens but in no other birds
so far (28). These viruses are globally widespread in poultry farms,
causing a range of symptoms from asymptomatic infection to se-
vere hepatitis and splenomegaly (40, 74). The genetically most
distant animal hepevirus was already isolated from apparently
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FIG 1 Sampling sites and covered bat evolutionary lineages. (A) Sampling sites and numbers of sampled species and specimens per family. (B) Bat evolutionary
lineages according to data reported previously (67). Bat families for which samples were tested in this study are shown in boldface type. The names of bat species
which tested positive for hepeviruses are shown in red type next to their family designations.

healthy trout in 1988 but was identified as a member of the family
Hepeviridae only in 2011 (3).

Because of the zoonotic nature of HEV infection, it is highly
relevant to learn more about its genetic diversity and association
with mammalian hosts. Current data suggest the existence of spe-
cific virus clades in specific mammalian hosts, but the restriction
of previous studies to farmed and peridomestic animals provided
little opportunity to investigate the origin of human viruses. The
phylogenetic placement of viruses of several unrelated animal taxa
with human viruses suggests an acquisition from humans, but
data are insufficient to reject alternative hypotheses. Critically, the
very recent detection of rodent viruses in a sister relationship with
human HEV suggests the existence of a wider, undiscovered di-
versity of Hepeviridae in mammals. In several studies by us and
other groups, bats have proven to be highly efficient indicators of
mammalian virus diversity, which may be due to their exception-
ally large social group sizes, which promote the acquisition and
maintenance of viruses (8, 15, 19, 20, 69, 70). Bats have been
linked to a growing number of emerging viruses, including lyssa-
viruses, coronaviruses, henipaviruses, and filoviruses (8). For all
of these viruses, bats carry larger viral diversities than other mam-
mals, supporting the notion that bats might act as viral reservoirs.
To examine if bats may also play a specific role in the ecology and
evolution of mammalian Hepeviridae, we investigated a globally
representative biological sample from 85 different bat species, in-
cluding over 3,000 specimens. Our results suggest the existence of
a genetic clade of viruses whose patristic distance resembles that
encountered in rodents and humans (including the associated
livestock viruses), altogether yielding genetic criteria to define pu-
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tative genera within the family Hepeviridae. We conclude that
three putative genera of mammalian hepeviruses may exist.

MATERIALS AND METHODS

Bat sampling and specimen preparation. Bat fecal and blood specimens
were collected in Germany, Bulgaria, Spain, Ghana, Gabon, Papua New
Guinea, Australia, Costa Rica, and Panama throughout 2002 to 2011 (Fig.
1) (sampling permits are provided in Acknowledgments). Bats were
caught by using mist nets and kept in individual cloth bags until exami-
nation by trained ecologists. Fecal samples were collected directly from
individual bags or from plastic sheets placed onto the ground below bat
roost sites and stored after suspension in RNAlater solution (Qiagen,
Hilden, Germany) at 8°C until further processing. Blood was taken by
puncturing the wing or tail veins. Bats were released unharmed at the
capture site the same night. Bat organs were available from 35 animals
found dead in Germany and delivered to centers for bat protection and
from 37 Eidolon helvum bats from a study site in Ghana (18).

Viral RNA was purified from bat fecal and blood specimens by using
the viral RNA minikit and from solid-organ specimens by using the
RNeasy minikit (both from Qiagen).

Human specimens. Sera were collected in 1998 from 453 otherwise
healthy HIV-infected patients in Cameroon for studies of HIV and hepa-
titis C virus (51). The anonymized samples were extracted in pools of 10 to
40 by using the viral RNA minikit (Qiagen). Anonymized blood donor
plasma samples collected from 2009 to 2010 in Germany were pooled in
up to 96-member pools as described previously (61). Briefly, 96-member
pools containing 100 wl of individual plasma donations were concen-
trated by ultracentrifugation, followed by RNA purification and elution in
65 pl. Due to the scarcity of available material, 20 RNA samples from these
pools were merged before testing. The total number of analyzed individ-
ual donations was 93,146.
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TABLE 1 Oligonucleotides used for RT-PCR screening, complete genome sequencing, and virus quantification

Virus targeted Oligonucleotide® Sequence (5'-3")" Polarity Use
Hepeviridae HEV-F4228 ACYTTYTGTGCYYTITTTGGTCCITGGTT + Heminested screening RT-PCR
HEV-R4598 GCCATGTTCCAGAYGGTGTTCCA
HEV-R4565 CCGGGTTCRCCIGAGTGTTTCTTCCA
HEV-BS7like-R4602 ACGACCATRTTCCAIACIGT - 5" completion of Ist-round screening amplicons
HEV-Fl4a GTGGTCGATGCCATGGAGGCCCATCAGT + Heminested RT-PCR assay 1 for amplification
HEV-F14b GCCAGGGTAAGAATGGACGTCTCGCAGT + of small sequence fragments along
HEV-Fl4c GCAACCCCCGATGGAGACCCATCAGT + Hepeviridae genomes to permit full-genome
HEV-F79a GGCWGCTYTGGCWGCGGC + sequencing by lineage-specific bridging
HEV-F79b GGCTACTGCGGCGGCGGC + primers
HEV-F102 CYGYCTTGGCGAATGCTGTGGTGGT +
HEV-R106 GGCGGTGTTCGCTGCAGCTAGAGYWGC -
HEV-R390a GGGGCAGAATACCAGCGCTG -
HEV-R390b GGGGCTGAGTACCAGCGCTG -
HEV-R390c GGGGCGGTGTACCACCGCTG -
HEV-R390d GGGCAATCTCGCCAGCGCTG -
HEV-F400 GGIMGIGAYGTICAGCGITGG + Heminested RT-PCR assay 2 for full-genome
HEV-F795 GGGCIRTIGGITGYCAYTTYGT + sequencing
HEV-F848 CCIATGCCITAYGTICCITACCC +
HEV-R1045 GTCAKIAGICKIGARCARCARARIGC -
HEV-R1065 ATVCCICGIAGRTAIGTCATDAG -
HEV-R1075 GTIACYTTGTAYSWRATICCICGIAGRTAIGTCA -
HEV-F5760 CTGACGTTTTCGACCTGTCGT + Heminested RT-PCR 3 for full-genome
HEV-F5770 GCGTCTGTCGGTGGGTTTTC + sequencing
HEV-F5790 GGCCACAGTCCAACAATGTTC +
HEV-R5780 CTTATAGAAAACCCACCGACAGAC -
HEV-R5810 ATGTTGGAACATTGTTGGACTGTG
HEV-R5960 GTYTCGACAGAGCGCCAICC -
HEV-R6473 CCIAGGTCTATRTCGTGIGG -
HEV-R6493a TCCTGCTCRTGCTGRTTATCATARTCCTG
HEV-R6493b TCCTGGAGRTGCTGRTTATCAAARTCCTG -
HEV-F6376a GTCTCGGCCAATGGCGAGCC + Heminested RT-PCR 4 for full-genome
HEV-F6376b GTGTCTGAGAACGGTGAGCC + sequencing
HEV-F6493a CAGGAYTATGATAAYCAGCAYGAGCAGGA +
HEV-F6493b CAGGAYTTTGATAAYCAGCAYCTCCAGGA +
HEV-R6865 CRGTRGTRTTRTAATTRTARGGRTARCCRGC -
M. bechsteinii bat HEV-NMBS8AC-1tF TGGGTGGTTTTATGGTGATCTCT + Virus-specific quantitative real-time RT-PCR
hepevirus HEV-NMSAC-rtP FAM-AGGCCGACTTGCACGCGCA-BBQ1 + (probe) assays
HEV-NMS8AC-rtR CGTCAGGCACAGCCATAGC -
M. daubenonii HEV-NMS09-B-R-rtF GCCCTGGAAAAGCGTATTGTT +
bat hepevirus HEV-NMS09-B-R-rtP FAM-TCAGCTTCCCCCTGGCTGGTTTTATG-BHQ1 + (probe)
HEV-NMS09-B-R-rtR TGAAGGTCAGCCTCAGTATAAAGRT -
H. abae bat HEV-G19E-rtF CCTGGTTGGTTCTATGGTGATCT +
hepevirus HEV-G19E-rtP FAM-AATCAGACCTGCATGCTCACACTATGGCT-BHQ1 + (probe)
HEV-G19E-rtR TCTCAAAAACCTTACAGCCATCAG -
E. serotinus bat HEV-BS7-rtF GCTGGTTTTACGGCGACTTG +
hepevirus HEV-BS7-rtP FAM-ATACCGAGGCTGATCTG-BHQ1 + (probe)
HEV-BS7-rtR AGGAACTGCCATTGCATGTG -
V. caraccioli bat HEV-Pan-rtF CCGGGCGATAGAAAAGCAT +
hepevirus HEV-Pan-rtP FAM-TTGTTGCACAGCTGCCACCTGGAT-BHQ1 + (probe)
HEV-Pan-rtR GGTGTAAGCGTGTATGTCAGACTCA -

“ Named after the position in the reference sequence under GenBank accession number NC_001434.
P Ris G/A, Y is C/T, S is G/C, W is A/T, M is A/C, K is G/T, H is A/C/T, B is C/G/T, N is A/T/C/G, and 1 is inosine. FAM, 6-carboxyfluorescein; BBQ/BHQ1, blackberry quencher/

black hole quencher 1.

Screening for hepeviruses. Screening for novel hepeviruses was done
by heminested reverse transcription (RT)-PCR using broadly reactive oli-
gonucleotides targeting viral RNA-dependent RNA polymerase (RdRp).
The assay was designed to amplify all members of the family Hepeviridae
available in GenBank. The assay sensitivity was determined to be on the
order of 10 copies per reaction by using a quantified in vitro transcript
(HEV genotype 3). For the generation of transcript controls, the screening
RT-PCR amplicons were TA cloned (Invitrogen, Karlsruhe, Germany),
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reamplified with vector-specific primers, and in vitro transcribed by using
T7 RNA polymerase (Asuragen, Austin, TX). Further broadly reactive
nested RT-PCR assays were designed for additional genomic regions to
enable a full-genome characterization (Table 1). Additional primers used
for full-genome characterization are available upon request.

First-round RT-PCRs were carried out by using a touchdown protocol
with reverse transcription at 50°C for 20 min and subsequent PCR at 95°C
for 3 min, 10 cycles with 95°C for 15 s, a 1°C touchdown decrease of the

Journal of Virology

INMsu-I980T-youpal4 Agq 210z ‘oz Jaquiaidas uo /Biowse Al dny woly papeojumoq


http://jvi.asm.org
http://jvi.asm.org/

Bat Hepeviruses

TABLE 2 Sample characteristics

No. of RT-PCR-

No. of samples
positive samples

Virus concn®

Chiroptera family ~ Species Feces  Blood  Liver (%) (specimen type) Sampling site(s) (yr)
Pteropodidae Dobsonia praedatrix 9 Papua New Guinea (2002)
Eidolon helvum 438 100 37 Ghana (2008/2009/2010)
Epomophorus sp. 3 Ghana (2009)
Epomops franqueti 100 Gabon (2009)
Hypsignathus monstrosus 100 Gabon (2009)
Melonycteris melanops 7 Papua New Guinea (2002)
Micropteropus sp. 10 Ghana (2009)
Micropteropus pusillus 100 Gabon (2009)
Myonycteris torquata 100 Gabon (2009)
Nanonycteris sp. 7 Ghana (2009)
Pteropus alecto 3 Australia (2006)
Pteropus poliocephalus 24 Australia (2006)
Rousettus aegyptiacus 14 100 Gabon (2009); Ghana (2008)
Rousettus amplexicaudatus 1 Papua New Guinea (2002)
Rhinolophidae Rhinolophus blasii 82 Bulgaria (2008)
Rhinolophus euryale 243 Bulgaria (2008)
Rhinolophus ferrumequinum 40 Bulgaria (2008)
Rhinolophus hipposideros 146 Bulgaria (2008), Spain (2010)
Rhinolophus landeri 1 Ghana (2009)
Rhinolphus mehelyi 13 Bulgaria (2008)
Hipposideridae Hipposideros abae 57 2(3.51) 8.50 X 10° (feces), Ghana (2008/2009)
Hipposideros cf. caffer-ruber 166 6.05 X 10'° Ghana (2008/2009)
(feces)
Nycteridae Nycteris sp. 4 Ghana (2008/2009)
Noctilionidae Noctilio leporinus 3 11 Panama (2010)
Emballonuridae Coleura afra 67 Ghana (2008/2009)
Peropteryx kappleri 5 Costa Rica (2010)
Saccopteryx bilineata 1 1 Panama (2010/2011)
Saccopteryx leptura 2 Panama (2011)
Phyllostomidae Anoura geoffroyi 99 Costa Rica (2010)
Artibeus jamaicensis 48 298 Panama (2010/2011)
Artibeus lituratus 4 22 Panama (2010/2011)
Artibeus phaeotis 3 Panama (2011)
Artibeus watsoni 6 Panama (2011)
Carollia castanea 11 18 Costa Rica (2010), Panama (2010/2011)
Carollia perspicillata 207 13 Costa Rica (2010), Panama (2010/2011)
Desmodus rotundus 1 Panama (2011)
Enchisthenes hartii 3 Costa Rica (2010)
Glossophaga commissarisi 3 Costa Rica (2010)
Glossophaga soricina 28 11 Costa Rica (2010), Panama (2010/2011)
Lampronycteris brachyotis 2 Panama (2011)
Lophostoma silviculum 3 10 Panama (2010/2011)
Micronycteris hirsuta 1 Panama (2010)
Micronycteris microtis 4 7 Panama (2010)
Micronycteris minuta 1 Panama (2011)
Mimon crenulatum 1 2 Panama (2010/2011)
Phylloderma stenops 2 5 Panama (2010/2011)
Phyllostomus discolor 11 Panama (2011)
Phyllostomus hastatus 4 11 Panama (2010/2011)
Platyrrhinus helleri 1 1 Panama (2010)
Tonatia saurophila 10 9 Panama (2010/2011)
Trachops cirrhosus 4 8 Panama (2010/2011)
Uroderma bilobatum 3 23 Panama (2010/2011)
Vampyressa pusilla 3 Panama (2011)
Vampyrodes caraccioli 10 1(10.0) 1.75 X 10° (blood) ~ Panama (2011%)
Mormoopidae Pteronotus parnellii 36 38 Costa Rica (2010), Panama (2010/2011)
Vespertilionidae Barbastella barbastellus 8 Bulgaria (2008)
Eptesicus serotinus 2 3 1(20.0) 5.38 X 107 (liver) Germany (20087/2009)

Glauconycteris beatrix

Ghana (2008)
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TABLE 2 (Continued)

No. of RT-
PCR-
No. of samples positive
samples Virus concn®
Chiroptera family Species Feces Blood Liver (%) (specimen type) Sampling site(s) (yr)
Myotis brandtii 18 Germany (2008)
Myotis alcathoe 2 Bulgaria (2008)
Myotis bechsteinii 69 1 1(1.43) 2.51 X 10® (feces) Bulgaria (2008), Germany (2008Y/2009)
Myotis capaccini 1 Bulgaria (2008)
Myotis dasycneme 79 2 Germany (2006/2007/2008/2009)
Myotis daubentonii 101 3 2(1.92) 4.41 X 10® (feces), Bulgaria (2008), Germany (2007/2008%/2009/2010)
Myotis emarginatus 5 3.73 X 109 Bulgaria (2008)
Myotis myotis 243 2 (feces) Bulgaria (2008), Germany (2008/2009)
Myotis mystacinus 56 Bulgaria (2008), Germany (2008)
Myotis nattereri 70 2 Bulgaria (2008), Germany (2008/2009)
Myotis nigricans 4 2 Panama (2010)
Myotis oxygnathus Bulgaria (2008)
Myotis schreibersii 38 Bulgaria (2008)
Nyctalus leisleri 7 Bulgaria (2008), Germany (2008)
Nyctalus noctula 3 3 Germany (2007/2008/2009/2011)
Pipistrellus cf. nanus 3 Ghana (2008/2009)
Pipistrellus nathusii 17 5 Germany (2006/2007/2009)
Pipistrellus pipistrellus 44 7 Germany (2006/2008/2009/2010)
Pipistrellus pygmaeus 54 1 Bulgaria (2008), Germany (2007/2008/2009)
Pipistrellus sp. 7 3 Ghana (2009), Germany (2009)
Plecotus auritus 8 3 Bulgaria (2008), Germany (2006/2008/2010)
Plecotus austriacus 3 Germany (2008)
Rhogeessa tumida 1 Panama (2010)
Molossidae Molossus molossus Panama (2010)
Tadarida major 1 Ghana (2008)
Tadarida sp. 1 Ghana (2009)
Natalidae Natalus lanatus 4 Costa Rica (2010)
Total 85 species 2,624 1,173 72 7 (0.18)

@ Concentration per gram of feces or tissue or per milliliter of serum.
b Positive sampling year per site.

annealing temperature down to 50°C, and extension at 68°C for 30 s,
followed by another 40 cycles at an annealing temperature of 52°C. Sec-
ond-round reactions used the same cycling protocol but without the RT
step. Amplicons of the expected size (approximately 371 and 338 bp in the
first and second rounds, respectively) were visualized on 2.0% agarose gels
with ethidium bromide staining. First-round RT-PCR was performed by us-
ing the SuperScript ITI (SSIIT) one-step RT-PCR kit (Invitrogen) with 5 pl of
RNA, 400 nM (each) first-round primers, 1 pg bovine serum albumin, 0.2
mM each deoxynucleoside triphosphate (ANTP), and 2.4 mM MgSO,. Sec-
ond-round 50-p.l Platinum Taq reactions were carried out as recommended
by the manufacturer (Invitrogen), using 1 pl of the first-round PCR product,
2.5mM MgCl,, and 400 nM (each) second-round primers. All PCR products
were extended up to the size of the first-round fragment for phylogenetic
analyses using heminested RT-PCR oligonucleotides and an additional bat
hepevirus-specific reverse primer (Table 1).

Full-genome characterization. Following cDNA synthesis using the
SuperScript III reverse transcription kit (Invitrogen), amplicons from ge-
neric PCR assays were bridged by long-range PCR using gene-specific
primers and the Expand high-fidelity (Roche, Mannheim, Germany) and
Phusion PCR (New England BioLabs, Frankfurt, Germany) kits. Addi-
tionally, Phi29-driven whole-transcriptome amplification (WTA) was
done for the enrichment of viral sequences against the DNA/RNA back-
ground in specimens. Gene-specific reverse primers in the screening
RT-PCR amplicon were designed with 5’-phosphate moieties, reverse
transcribed with the SSIII kit (Invitrogen), digested with RNase H (Invit-
rogen), and finally ligated and amplified by using the Qiagen WTA kit
(Qiagen). Genome ends were amplified by using the 5'/3" rapid amplifi-
cation of cDNA ends (RACE) kit (Roche).

9138 jviasm.org

Quantification of novel hepeviruses. Viral RNA quantification was
done by using photometrically quantified in vitro RNA transcripts as de-
scribed above and specific real-time RT-PCR assays (see Table 1 for oli-
gonucleotides). Quantification was done by using 5 .l of RNA extract, 300
nM each primer, and 180 nM probe, using the SSIII one-step kit as de-
scribed above. Cycling in a Roche LightCycler480 instrument involved the
following steps: 55°C for 15 min, 95°C for 3 min, and 45 cycles of 95°C for
15 s and 58°C for 30 s with measurement of fluorescence.

Serological analysis. An indirect immunofluorescence assay was done
by using human embryonic kidney 293T (HEK293T) cells transiently ex-
pressing the full-length ORF2-encoded capsid protein from a human
HEV genotype 1 isolate (A. Osterman, unpublished data). Sera (n = 49)
from eight different bat species were diluted 1:40, and detection was done
by using a goat anti-bat immunoglobulin G polyclonal serum (Bethyl
Laboratories, Montgomery, TX), followed by a cyanine 2-labeled donkey
anti-goat serum (Dianova, Hamburg, Germany), as described previously
(48). Human positive-control serum was used in dilutions of 1:40 and
1:80. Cyanine 2-labeled goat anti-human serum (Dianova) was applied as
a secondary antibody. Nuclei were counterstained with 4’,6-diamidino-
2-phenylindole (DAPI). All pictures were taken at the corresponding mi-
croscopic settings with a Motic Axiovision microscope (Zeiss).

Nucleotide sequence accession numbers. Nucleotide sequences from
all novel bat hepeviruses described in this study are available in GenBank
under accession numbers JQ001744 to JQ001749 and JQ071861, with
JQ001749 representing a full bat hepevirus genome. Nucleotide sequences
from human hepeviruses determined in this study are available under
GenBank accesssion numbers JQ034512 to JQ034522.
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FIG 2 Solid-organ distribution of bat hepevirus BS7 in an Eptesicus serotinus
bat. Virus concentrations assessed by strain-specific real-time RT-PCR using
quantified in vitro-transcribed RNA controls are given for individual tissue
specimens. Since this animal was brought dead to a bat shelter, no blood
specimen could be taken due to coagulation.

RESULTS

Heminested RT-PCR was used to screen a total of 3,869 fecal,
liver, and blood specimens from 85 different bat species from five
continents (Table 2). Hepevirus RNA was found in seven (0.18%)
specimens, including five fecal samples, one blood sample, and
one liver specimen. RNA-positive samples stemmed from Europe,
Central America, and Western Africa (Fig. 1A). Detected se-
quences originated from five bat species of three different families
(Hipposideridae, Vespertilionidae, and Phyllostomidae), repre-
senting all three major stem lineages in the phylogenetic tree of
bats (Fig. 1B). The detection rate in feces (5 of 2,624) was not
significantly higher than those in blood (1 of 1,173) and liver (1 of
72) (P = 0.40 and 0.15, respectively, by two-tailed Fisher’s exact
test). Very high virus RNA concentrations were found in all fecal
samples (median, 8.5 X 10° RNA copies per gram of feces; range,
2.5 X 10° to 6.1 X 10'° RNA copies per gram of feces). These
concentrations were several orders of magnitude higher than that
in the single positive blood specimen (1.8 X 10° RNA copies per
ml). Hepevirus RNA was also detected in a liver sample at a high
concentration comparable to those detected in feces (5.4 X 10°
RNA copies per gram of tissue). Virus concentrations were ana-
lyzed in all solid organs of the animal whose liver tested positive.
As shown in Fig. 2, RNA concentrations in liver tissue exceeded
those in any other organ by at least 1,000-fold. The comparable
virus concentrations in solid organs other than liver were likely the
result of a high level of viremia. Unfortunately, no blood sample
was available from this animal.

For phylogenetic analysis, a putative RNA-dependent RNA
polymerase (RdRp) gene fragment corresponding to 108 amino
acids (aa) was amplified from all seven positive specimens. Dis-
tance-based and probabilistic phylogenetic analyses provided an
acceptable robustness of major nodes, placing all chiropteran vi-
ruses in a separate monophyletic clade within the family Hepeviri-
dae (Fig. 3). Long phylogenetic branches linking the bat viruses to
their common ancestor suggested the existence of a high level of
diversity of related viruses. The clade of bat viruses was about as
diversified as all human HEVs, including related HEVs found in
nonhuman hosts such as rabbits, deer, and wild boar (Table 3; see
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also Table S1 in the supplemental material). The rodent-specific
hepeviruses described more recently in wild Norway rats (Rattus
norvegicus) (31, 32, 38) had a common ancestor with human HEV
and related viruses but not with bat or avian HEV. The patristic
distance within the clade of bat viruses exceeded that in the rat-
associated clade more than 2-fold (21.1% versus 9.3% amino acid
divergence) (Table 3). The bat viruses were also considerably
more diversified than all known avian viruses.

Several viruses from livestock and peridomestic animals are
placed phylogenetically within and between the four human HEV
genotypes. To look for signs of human HEV-related viruses in
bats, a subset of 49 bat sera representing major bat lineages, in-
cluding 20 Myotis dasycneme, 5 Hipposideros gigas, 5 Hipposideros
cf. caffer-ruber (Hipposideros sp. that looks like Hipposideros caffer
or H. ruber), 4 Rhinolophus alcyone, 5 Rousettus aegyptiacus, 5
Miniopterus inflatus, 5 Coleura afra, and 5 Vampyrodes caraccioli
sera, was analyzed. These sera were tested for antibodies to human
HEV in an immunofluorescence assay using HEK293T cells tran-
siently expressing the HEV genotype 1 capsid gene. No reactivity
was observed for any sample (representative reactions are shown
in Fig. 4).

To determine, on the contrary, if descendants of bat viruses are
encountered in humans, pooled plasma samples from 93,146
blood donors were tested. As a control, all samples were first
screened for human HEV. HEV genotype 3 viruses were detected
in 11 pools. This was in agreement with previously determined
prevalences of HEV RNA in blood products (2, 27, 63), confirm-
ing the suitability of the pooled samples for HEV detection in
principle. Notably, the method of blood donor pooling involved
the concentration of viral particles by high-speed centrifugation,
allowing a nearly quantitative recovery of viruses from pools. The
sensitivity limit of the assay for individual blood donations con-
tained in the pools could therefore be projected to be approxi-
mately 4.4 log,, copies/ml. This was compatible with previously
reported viral loads in individual plasma donations ranging be-
tween 3.2 and 5.7 log,, IU/ml (4). None of the blood donor pools
yielded positive results in single and heminested RT-PCR assays
capable of detecting all bat-associated HEVs, ruling out the exis-
tence of human-specific viruses related to the bat-specific clade in
these samples. To investigate humans with potentially closer ex-
posures to bats and a propensity for persistent infection (11, 14,
45), an additional test of 453 anonymized sera from Cameroonian
HIV-positive patients was done. No evidence of bat or human
hepevirus RNA was obtained, whereas the suitability of these sam-
ples for the detection of viral RNA was proven previously (51).
This may indicate that the level of immunosuppression might not
have been as severe in these patients as in other cohorts of HIV-
infected individuals tested for HEV (11, 14).

To compare the genome properties of the novel bat viruses
with those of other members of the family Hepeviridae, the full
genome of one virus, termed BS7, from a German Eptesicus seroti-
nus bat was sequenced. As shown in Fig. 5A, the bat virus repre-
sented an independent branch among the full-length hepevirus
genomes. The complete genome comprised 6,767 nucleotides
(nt), excluding the poly(A) tail at the 3’ end, constituting the
shortest mammalian hepevirus genome, with a size comparable to
that of the avian viruses (6,654 nt in the U.S. prototype strain
[GenBank accession number AY535004]). The coding regions
were flanked by a 33-nt 5'-untranslated region (UTR) and a 77-nt
3’-UTR. In the coding region, at least three open reading frames
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FIG 3 Partial RdRp gene phylogeny of the family Hepeviridae, including novel bat viruses. The Bayesian phylogeny was generated with MrBayes V3.1 (30), using
a general time-reversible (GTR) model with a gamma distribution (G) across sites and a proportion of invariant sites (I) (GTR+G+1) as the substitution model;
otherwise default settings were used, and 4,000,000 generations were sampled every 100 steps. In agreement with tree topologies from the full-length ORF1 genes
(Fig. 5C), a monophyly prior was set on the root of all mammalian hepeviruses in order to stabilize the phylogenetic reconstruction over this shorter sequence
fragment. After an exclusion of 15,000 of the total 40,000 trees, the final tree was annotated and visualized with TreeAnnotator and FigTree from the BEAST
package. Values at the nodes indicate the fraction of times that each node was represented within the 95% highest posterior density interval of the trees. Values
below 0.7 and those overlapping with taxon names are hidden for clarity of presentation. Branches leading to novel bat viruses and the corresponding taxon
names are shown in red. The scale bar indicates genetic distance. The partial RNA-dependent RNA polymerase (RdRp) alignment comprised 324 nucleotides
corresponding to positions 4,282 to 4,605 in an HEV genotype 1 prototype strain (GenBank accession number AF459438).

(ORFs) typical of all hepeviruses were identified (Table 4). An
internal putative 660-nt ORF overlapping ORF1 in the —2 reading
frame was identified at positions 326 to 985 and provisionally
termed ORF NX (for N-terminal unknown). Whether ORF NX
corresponded to the putative ORF4 or ORF5 described for rodent
hepeviruses remains unclear, since the sequence identity with
these ORFs was very low (33.3% and 14.4% nucleotide identities
and 30.5% and 17.5% amino acid identities with ORF4 and ORF5,
respectively), and no significant similarity of the putative gene

9140 jviasm.org

product of the internal reading frame to any described protein
domain could be detected by BLAST. Similar to bat hepevirus
ORF NX, rat hepevirus ORF4 is located at the N terminus of
ORF1, while ORF5 is located approximately 2,000 nucleotides
downstream of ORFI (31).

In the first ORF of BS7 (ORF1) (nt 34 to 4776), several domains
could be predicted (Table 5). A putative methyltransferase do-
main was found to contain all four conserved amino acid residues
identified previously in plus-stranded RNA viruses belonging to
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TABLE 3 Percent nucleotide (below the diagonal) and amino acid (above the diagonal) sequence identities between hepeviruses”

. . % identit
Hepevirus lineage ° Y

(no. of strains HEV HEV HEV HEV

compared) Bat Avian Rodent genotype 1  genotype2 genotype3 genotype4 Rabbit Unassigned boar  Trout

Bat (7) 78.9-100 67-72.5 58.3-63.9 57.4-62 57.4-62 58.3-63.9  63-64.8 58.3-62 59.3-68.5 44-46.8
70.3-100

Avian (4) 94.5-100  59.3-62 60.2-62 59.3-60.2 60.2-63 62-63.9 61.1-63 62.3-65.7 45.0
60.6-65.4 78.3-89.3

Rodent (5) 90.7-96.3 68.5-75.0  68.5-72.2  65.7-73.1  71.3-73.1  66.7-72.2 67-71.3 39.8-43.5
56.5-60.8 53.7-61.4 77.2-95.4

HEV genotype 1 (4) 96.3-99.1  87-88.9 80.6-86.1  77.8-83.3  83.3-87 82.4-85.8 41.7-43.5
58-63.6 59.6-62.7 63.3-66.7 93.8-98.8

HEV genotype 2 (1) 100 83.3-85.2 815 86.1-87 83-84.3 42.6
54.6-60.5 57.7-61.7 62.0-63.9 76.5-77.5 100

HEV genotype 3 (13) 91.7-100 82.4-86.1 90.7-95.4 83-88 45.4-48.1
57.4-63.9 57.4-64.8 58.6-66 71.9-76.9  72.2-76.5 78.1-99.4

HEV genotype 4 (6) 94.4-100 82.4-85.2 84-88.9 44.4-45.4
56.8-64.2 59.6-65.1 61.4-65.7 70.1-74.4 69.4-72.5 70.7-78.4  82.7-97.8

Rabbit (3) 96.3-97.2  81.1-85.2 43.5-44.4
56.8-63 57.4-63.9 60.2-63.6 70.7-76.2 71.6-75.3 77.5-83.3 70.4-75.9 86.4-88.3

Unassigned boar (2) 88.7 44.4-45.3
55.9-63.9 60.8-64.8 59.6-64.2 72.7-76.2 73-74.4 71.1-78.1  74.5-78.7  71.3-72.2 76.5

Trout (1) 100
47.4-50.5 46.5-50.8 45.4-49.1 44.4-46 50.3 48.5-51.5  48.8-50.6  48.5-51.2 47.5-51.2 100

“ Evolutionary analyses were conducted with MEGA5 (66). GenBank accession numbers are as follows: JQ001744 to JQ001749 and JQ071861 for bat HEV; AM943647, EF206691,
AY535004, and GU954430 for avian hepevirus; GU345042, GU345043, GQ504009, GQ504010, and JN040433 for rodent HEV; AF459438, DQ459342, D11092, and L08816 for
HEV genotype 1; M74506 for HEV genotype 2; EU723512, EU375463, AB291958, AB248520, AB248521, FJ998008, FJ705359, AB089824, AB443624, AB291956, AB591734,
AB189071, and AB301710 for HEV genotype 3; AB097812, AB097811, AB480825, AB220974, AB521805, and GU119960 (genotype 4a) for HEV genotype 4; FJ906895, FJ906896,
and GU937805 for rabbit HEV; AB602441 and AB573435 for unassigned boar HEV; and NC_015521 for trout HEV. Boldface type indicates percent nucleotide identity, and

lightface type indicates percent amino acid identity.

the alphavirus-like supergroup (62) at ORF1 amino acid positions
65 (H), 115 (D), 118 (R), and 229 (Y). The beginning of a putative
Y domain, as typical for hepeviruses, was found at around aa 216
(VVTY). The level of conservation decreased downstream, and
the end of the domain could not be identified. The genome region
encoding the papain-like protease in HEV was highly divergent in
hepeviruses from different hosts, including bats, and the amino
acid residues around a putative catalytic cysteine (TCFL) defined
previously by Koonin et al. (35) were found in neither the bat
hepevirus nor the previously described rat, bird, or fish hepevi-
ruses.

The putative proline-rich hinge region of the highly variable
sequence had a maximum proline density of 12 proline residues
within 68 amino acid positions (P/68 aa). The X domain of un-
known function in human HEV (35) could not be unambiguously
identified in BS7, since only the start and not the end of this pu-
tative region could be mapped in comparison to human HEV
(Table 5). The putative helicase contained the nucleoside triphos-
phate (NTP)-binding site GVPGSGKS (aa 874 to 881) and DEAP
motif (aa 927 to 930) described previously (65), with serine being
replaced by alanine at aa 878. The putative RdRp contained the
conserved tripeptide GDD. Out of the eight RdARp motifs de-

September 2012 Volume 86 Number 17

scribed previously, two (motifs I [RDCNKFTT] and IV [NDFSE
FDSTQNN]) were completely conserved in BS7. The other motifs
could be identified but were less conserved (Table 5) (35).

The second ORF, coding for the putative 638-aa capsid pro-
tein, was found at nt 4777 to 6690 (Tables 4 and 5). The conserved
sequence TGAATAACA within a cis-active element overlapping
the ORF2 start codon in human and avian HEVs (26) was present
in the bat virus genome at the homologous position. The first half
of the polypeptide had a basic charge, with a predicted isoelectric
point (pI) of 10.97, suggesting a potential involvement in the en-
capsidation process (54). In contrast to rodent hepeviruses (32),
the ORF2 domains of BS7 seemed to be less conserved (Table 5)
(71). Several hydrophobic residues occurred after the ORF2 start
codon (FAYLLLLFL [ORF2 aa residues 16 to 24]), which charac-
terize the N-terminal signal sequence in other mammalian hep-
eviruses. ORF2 was most conserved in the shell (S) domain, in-
cluding tyrosine at position 288, which was described previously
to be crucial for capsid formation in HEV genotype 3 (71). The
middle (M) and protruding (P) domains were less conserved.

A putative ORF3 was detected in an alternative reading frame
overlapping the capsid-encoding ORF2 (Table 4). In HEV, this
protein encodes a phosphoprotein that is not essential for replica-
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PB10/445

control 1:40

control 1:80

FIG 4 Serologic testing of bat sera for antibodies to human HEV with an
HEV-specific indirect immunofluorescence assay. Slides carrying human em-
bryonic kidney 293T cells transiently expressing the full-length ORF2 protein
from a human HEV genotype 1 strain were incubated with bat sera (diluted
1:40) from eight different species. To allow the evaluation of the reaction
specificity, the transfection efficiency was optimized to yield only 5 to 10% of
cells expressing HEV antigen. One HEV RT-PCR-positive species (Vampy-
rodes caraccioli [PB10/445]) and three different RT-PCR-negative species
(Hipposideros gigas [GB557], Rousettus aegyptiacus [GB159], and Miniopterus
inflatus [GB475]) are shown. Notably, R. aegyptiacus specimen GB159 was
chosen because we realized that it reacted nonspecifically with all cells, includ-
ing those not expressing HEV antigen, and we wanted to demonstrate its clear
discrimination from seropositive human sera. Detection was done by incuba-
tion with goat anti-bat immunoglobulin (Ig), followed by donkey anti-goat Ig
labeled with cyanine 2. As a control, an anonymous human serum sample from
a patient infected with HEV was applied in dilutions of 1:40 and 1:80 (to reduce
the background signal). White arrows indicate specific serologic reactivity with
HEV ORF2-expressing cells. The bar represents 25 pwm. All pictures were taken
with identical microscope and camera settings.

tion in hepatoma cells (21) and that might be involved in virion
release, transcription, or interactions with cellular factors (34, 47,
49). The putative ORF3 product in the bat hepevirus showed little
similarity to proteins encoded by ORF3 in other hepeviruses (Ta-
ble 4) and did not yield significantly similar sequences in a BLAST
search. It did not overlap the 3’ terminus of ORF1, as in HEV
genotypes 1 to 3 (31), and its size was between that of trout hep-
evirus (678 nt) and that of the human or rodent hepeviruses (372
and 309 nt, respectively) (Table 5) (3, 31). The low level of simi-
larity of ORF3 between viruses from different hosts such as bats,
rodents, birds, and humans is in contrast to its marked conserva-
tion in viruses from identical hosts (Table 6) and may represent
viral adaptation to particular hosts.
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FIG 5 Complete genome nucleotide phylogeny, amino acid sequence iden-
tity, and ORF1/ORF2 amino acid phylogeny of bat hepevirus BS7 and proto-
type hepeviruses. (A) Neighbor-joining phylogeny of the complete genomes of
members of the Hepeviridae using the nucleotide percentage distance substi-
tution matrix and complete deletion option in MEGA5. Values at deep node
points indicate support from 1,000 bootstrap reiterations; those at apical
nodes are hidden for clarity of presentation. (B) Amino acid identity plot. The
complete ORF1 and ORF2 were translated, concatenated, and compared to
avian, rodent, human, and trout prototype hepeviruses. Positions containing
gaps in the bat hepevirus were stripped from the alignment. The uncorrected
amino acid identity was plotted with a sliding window size of 200 and a step size
of 20 amino acids. For orientation, a schematic representation ORF1 and
OREF2 is shown with putative nonstructural functional domains as approxi-
mated by BLAST comparisons with GenBank reference sequences depicted at
the top (MT, methyltransferase; NX, putative ORF NX; Y, Y-like domain; Prot,
papain-like cysteine protease; X, X domain/ADP-ribose-binding module;
RdRp, RNA-dependent RNA polymerase). The protease and X domains could
not be unambiguously identified and are therefore given with question marks.
ORF3 is shown with a dotted line, since it is translated in a different reading
frame than ORF2 and is shown only for an indication of its genomic position.
(C) Bayesian phylogeny of the complete ORF1 and ORF2. Inference of Bayes-
ian phylogenies was done by using MrBayes V3.1 with a WAG amino acid
model and 4,000,000 generations sampled every 100 steps. After the exclusion
of 10,000 trees as a burn-in, 15,000 final trees were annotated and visualized
with TreeAnnotator and FigTree from the BEAST package. Values at the node
points indicate posterior probability support (scale bar, genetic distance).
GenBank accession numbers for taxa are AF459438 (HEV genotype 1),
M74506 (HEV genotype 2), AB301710 (HEV genotype 3), AB220974 (HEV
genotype 4), GU345042 (rat hepevirus), AM943647 (avian hepevirus genotype
1), EF206691 (avian hepevirus genotype 2), GU954430 (avian hepevirus geno-
type 3), and NC_015521 (trout HEV).
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TABLE 4 Identities of bat HEV (BS7) ORFs with HEV prototype strains

Bat Hepeviruses

% identity

ORF2 (genome positions

ORF3 (genome positions

ORF1 (genome positions 34-4776) 4777-6690) 4859-5272)
Hepevirus” Nucleotide Amino acid Nucleotide Amino acid Nucleotide Amino acid
HEV genotype 1 49.1-49.5 43.5-44.1 52.5-52.7 49.8-50.7 31.4-31.9 9.3-10.1
HEV genotype 2 48.5 44.1 51.2 49.1 33.6 10.9
HEV genotype 3 48.8-49.4 43.5-44.0 52.0-53.0 50.3-50.7 29.9-31.2 10.2-12.8
HEV genotype 4 48.1-49.3 44.1-44.3 51.6-52.7 50.3-50.8 28.2-29.1 10-10.9
Rabbit 48.5-49.1 43.5-44.1 51-52.1 47-49.8 27.4-28.0 10.2-10.9
Wild boar 49-49.2 43.8-43.9 51.6-52.8 49.7-51.2 29.9-30.6 11.1-12.0
Rodent 48.5-48.7 45.1-45.3 51.9-52 48.9-49.4 28.9-29.6 7.1
Avian 51.6-52.3 47.5-47.6 47-48.8 42.9-43.1 22.7-23.5 6.0
Trout 38.3 26.5 33.8 17.3 28.2 13.2

@ GenBank accession numbers of prototype strains are as follows: D11092, L08816, AF459438, and DQ459342 for HEV genotype 1; M74506 for HEV genotype 2; EU723512,
FJ705359, F]998008, AB089824, AB248521, AB301710, AB248520, AB591734, and EU375463 for HEV genotype 3; FJ906895, FJ906896, and GU937805 for rabbit hepevirus;
AB220974, GU119960, AB480825, AB097811, and AB097812 for HEV genotype 4; AB573435 and AB602441 for unassigned wild boar hepevirus; GU345042 and GU345043 for
rodent hepevirus; AM943647, EF206691, AC535004, and GU954430 for avian hepevirus; and NC_015521 for trout hepevirus.

The amino acid identity plot (Fig. 5B) indicated that the bat
hepevirus was closely related to avian hepeviruses in some parts of
ORF1 and to primate hepeviruses in ORF2 (Fig. 5B). However,
multiple-change-point analysis with Dual Brothers (46) and
bootscan analysis with Simplot V3.5 (39) yielded no evidence of
recombination, and the complete ORF1 and ORF2 sequences
clustered reliably with other mammalian hepeviruses (Fig. 5C).

According to the International Committee on Taxonomy of
Viruses (ICTV), the mammalian hepeviruses known at the time of
assessment constituted a single genus (41). The avian viruses were
suggested previously to form another independent genus (40). To
test how the bat hepeviruses fit these proposals and to develop a
working criterion for the tentative classification of partially
sequenced viruses, we evaluated distance-based classification cri-
teria. First, an amino-acid-based criterion for members of the
Hepeviridae was calculated by using the comparably small 108-
amino-acid RdRp fragment used for this study. The fragment
overlaps largely with the amplicon of another widely used RT-
PCR assay (32, 60) and might therefore enable the expansion of
our taxonomic attempts to previous and future studies. The dis-
tribution of pairwise distances indicated several potential taxo-
nomic ranks (Fig. 6A). Amino acid distance values of up to 9.3%
but less than 11.1% were seen within the established HEV geno-
types. Distances between 11.1% and 22.2% separated established
HEV genotypes 1 to 4. The rabbit viruses would thus belong to
HEV genotype 3, while the unclassified wild boar viruses would
correspond to a distinct genotype. The latter might therefore con-
stitute a fifth HEV genotype. The recently described rat hepevi-
ruses were even more divergent, with up to 34.3% substitutions
relative to other mammalian HEV isolates (Table 3).

The range of pairwise distances between all bat hepeviruses (up
to 19.4%) suggested that they formed a taxonomic entity of the
same rank as human HEV or rodent or avian hepeviruses.

Sequence distances between the closely related Myotis bat vi-
ruses from Germany (strains NMS098B and NMS09125R from M.
daubentonii and NM98AC156 from M. bechsteinii) corresponded
to distances observed within genotypes (Fig. 6A). Distances be-
tween PAN926 from Panama (V. caraccioli), G19E36 from Ghana
(Hipposideros abae), and all other bat hepeviruses indicated that
each of these viruses could be classified as a distinct genotype if the
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above-described criteria are applied. The classification of bat hep-
evirus BS7 from E. serotinus remained questionable because its
sequence distances to the Myotis bat viruses fell on the border of
inter- and intragenotypic distances characteristic for HEV geno-
types 1 to 4.

The distance criterion within our partial RdRp gene fragment
failed to discriminate bat and avian hepeviruses into two different
tentative genera, which did not match the closer phylogenetic re-
latedness of mammalian viruses in larger parts of the ORF1-en-
coded polyprotein and the ORF2-encoded capsid protein (Fig. 5B
and C). For better resolution, the distribution of pairwise amino
acid distances was also plotted over those complete ORF1 and
ORF2 sequences represented in Fig. 3. There was a clear separation
between genetic distances within and between the four major
clades: human HEV-like, rodent, avian, and bat hepeviruses. The
distances within and between these groups were <22% and >46%
in ORF1 and <18% and >42% in ORF2 (Fig. 6B and C), support-
ing the existence of four putative genera in the family Hepeviridae.
Notably, these four putative genera were also well supported in the
partial RARp gene phylogenetic tree (Fig. 3).

DISCUSSION

In this study, we have described novel hepeviruses from a globally
representative sample of bat specimens. The genomic character-
ization of a bat hepevirus clearly supported their classification as
members of the recently established family Hepeviridae and indi-
cated that they may be the most divergent mammalian hepevi-
ruses described so far.

While a full genomic characterization is generally required for
exact conclusions on taxonomy, the RAdRp-based criterion estab-
lished here may represent a useful tool for the typing of partially
sequenced field specimens, similar to, e.g., the VP1 gene in entero-
viruses and the RdRp gene in coronaviruses (20, 53). Our ap-
proach might help to resolve the classification of rodent hepevi-
ruses, for which a fifth genotype has been proposed (38), as well as
that of the rabbit hepeviruses, which seem to belong to HEV ge-
notype 3 (23, 24). On the other hand, classification based on the
RdRp gene may not always be sufficient to assign novel genera,
and criteria based on full-ORF data may be required. The se-
quence of ORF3, which was found to be highly distinct between
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TABLE 6 Percent nucleotide (below the diagonal) and amino acid
(above the diagonal) sequence identities between hepevirus ORF3s”

% identity

Hepevirus host or lineage HEV

(no. of compared strains) Bat Avian Rodent  genotypes 1-4

Bat (1) 9.3-12.8 9.8 12.3-16.7

Avian (4) 88.4-96.5 24.3 25.6-31.2
26.4-28.0 93.9-96.9

Rodent (2) 94.1 20.8-32.4
25.2-25.5 36.5-38.3 97.4

HEV genotypes 1-4 (22) 72.1-100

32.5-35.1 33.3-38.6 37-42.5 80.4-99.2

@ Evolutionary analyses were conducted with MEGA5 (66). GenBank accession
numbers of strains are as follows: D11092, L08816, AF459438, DQ459342, M74506,
EU723512, FJ705359, FJ998008, AB089824, AB248521, AB301710, AB248520,
AB591734, EU375463, F]906895, F]906896, GU937805, AB220974, GU119960,
AB480825, AB097811, AB097812, AB573435, and AB602441 for HEV genotypes 1 to 4;
GU345042 and GU345043 for rodent hepevirus; and AM943647, EF206691, AC535004,
and GU954430 for avian hepevirus. Boldface type indicates percent nucleotide identity,
and lightface type indicates percent amino acid identity.

hepeviruses from different hosts, might be useful as an additional
marker for classification. Our cumulative classification efforts
suggested the existence of at least four putative genera in the fam-
ily Hepeviridae. One genus would comprise human HEV geno-
types and closely related animal viruses, while the other three
would include viruses from chiropteran, rodent (rat), and avian
(chicken) hosts. The trout hepevirus might correspond to a sepa-
rate taxonomic unit of a higher rank, e.g., a subfamily (3).

The rate of hepevirus detection in bats was similarly low com-
pared to that in other mammals, including humans (1, 9, 16, 24,
38,58, 60). The highest anti-HEV seroprevalence and RNA detec-
tion rates described so far were for farmed animals, e.g., rabbits,
chickens, and piglets (23, 33, 40). The accumulation of very large
groups of susceptible individuals is uncommon in wild animals,
with bats probably constituting the only mammals beside humans
that form social groups exceeding several hundred thousand indi-
viduals in one place (52). Our study was performed on samples
from very large social groups, including a breeding roost of Eido-
lon helvum bats in Ghana with more than 300,000 individuals (19)
as well as vespertilionid bats hibernating in different roosts in
Germany and Bulgaria, all exceeding 10,000 members (20, 25).
While we have not observed any particularly high prevalence of
viruses in these samples, the diversity of bat viruses found in our
whole sample was comparable to that of the extensively studied
human hepeviruses and much higher than that of the known avian
or rodent viruses. We can thus be confident that our study pro-
vides a fair representation of the wider bat hepevirus diversity.
Despite this, all chiropteran hepeviruses were monophyletic. In
contrast to other viruses for which bats are assumed to constitute
relevant mammalian reservoirs, such as mammalian coronavi-
ruses and paramyxoviruses (19, 56), bat hepeviruses were not in-
terspersed with human or other mammalian viruses. Bats there-
fore do not seem to constitute reservoirs of mammalian
hepeviruses in general. The clear distinction of the four proposed
hepevirus genera implicated rather that hepevirus evolution
might have involved a nonrecent invasion of ancestral mamma-
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lian hosts. The marked exception to this idea is human hepevi-
ruses, which can be found in both humans and peridomestic an-
imals. It may be plausible that the intensification of farming
activities during human history led to transmissions of some but
not all human viruses to farmed animals, which would then have
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FIG 6 Distribution of Hepeviridae partial RARp and full ORF1 and ORF2
pairwise amino acid distances. Uncorrected pairwise amino acid distances
were calculated between members of the family Hepeviridae in the same 108-
amino-acid RNA-dependent RNA polymerase (RdRp) alignment as that used
for Fig. 3 (A) and in the complete ORF1 (B) and ORF2 (C). The y axis indicates
the number of pairwise identity scores within each range represented on the x
axis. The bold line indicates a distance cutoff that separates intratypic and
intertypic distances within HEV genotypes 1 to 4. The dotted lines indicate a
range of possible sequence cutoffs between sequence distances within and
between the four suggested hepevirus genera. Distances within NM bat hep-
eviruses are indicated in light gray. Distances between BS7 bat virus and NM
viruses are shown in gray. Distances between PAN926, G19E36, and other bat
viruses are shown in black.
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maintained these viruses and formed a potential source of zoo-
notic reinfection. This hypothesis is coherent with the observation
that HEV genotypes 1 and 2 have so far been detected only in
humans and not in any other animals.

Based on our data, it would now be possible to search for hepevi-
ruses in more distant relatives of farmed or peridomestic animals.
This search should include lagomorphs other than rabbits, wild
(nonlivestock) ungulates, as well as carnivores other than mongooses.
If, indeed, hepeviruses very distinct from human HEV could be
found in these taxa, the idea of an acquisition of human hepeviruses
by farmed animals would be strongly supported. HEV in wild pri-
mates should also be studied to confirm a possibly more general as-
sociation of human-related viruses with primates.

As with other newly described viruses in animals, we have to
address potential zoonotic risks. Human infection has been asso-
ciated with the consumption of pig, wild boar, and deer meat in
industrialized countries (10, 37, 58, 68). Even though bats are
consumed by humans in parts of the world (45), we consider it
unlikely that bat hepeviruses would easily transmit to humans. As
discussed above, the viruses carried by pig, boar, and deer are
closely related to human viruses. Neither avian nor rodent hepevi-
ruses were transmissible to primates experimentally (29, 60), and
the latter are even more closely related to human viruses than the
bat viruses. Despite reports on the serologic reactivity of human
and rodent sera with hepevirus antigens from the opposed species
(16,17), proof of zoonotic transmission would require direct virus
detection. In our study, we did not find any bat hepevirus RNA in
a very broad range of human specimens.

Our data underline the importance of investigating targeted
and balanced samples when studying viral host associations.
While the surveillance of pathogens in livestock and peridomestic
animals is important for epidemiology, ecologically valid conclu-
sions regarding host associations can be very hard to reach using
such samples. It is essential to cover large geographic and phylo-
genetic samples from the spectrum of potential viral hosts (19).
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