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Protease activation mutants elicit protective immunity
against highly pathogenic avian influenza viruses of
subtype H7 in chickens and mice

Ralf Wagner1, Gülsah Gabriel2,*, Matthias Schlesner2,#, Nina Alex1, Astrid Herwig2, Ortrud Werner3

and Hans-Dieter Klenk2

Protease activation mutants of the highly pathogenic avian influenza virus A/FPV/Rostock/34 (H7N1) have been generated that are

fully dependent on the presence of trypsin for growth in cell culture. Unlike wild-type virus, the mutants do not induce systemic

infection in chicken embryos and show low pathogenicity in both chicken embryos and adult chickens. Inactivated vaccines prepared

from the mutants protected chickens and mice very efficiently against infection with highly pathogenic wild-type virus in a

cross-reactive manner. The potential of these mutants to be used as veterinary and prepandemic vaccines will be discussed.
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INTRODUCTION

Highly pathogenic avian influenza viruses (HPAIV) cause systemic

infections with lethal outcome in chickens, quail, geese and other

domestic birds. The disease is a major threat to the poultry industry,

since the economical damage resulting from the loss of millions of

birds may be enormous.1 The impact of these infections is drama-

tically illustrated by the H5N1 outbreak, with this virus now being

endemic in Southeast Asia and rapidly spreading to other parts of the

world.2,3

Although man has been thought for a long time not to be susceptible

to HPAIV infection, there is now increasing evidence that these viruses

can also cause disease in humans. This became quite obvious during

the H5N1 outbreak,4 but it was already observed before when avian

influenza A viruses of subtype H7, including HPAIV, were found to be

transmitted to man.5–7

The impact of these viruses for human health became most evident

during a large H7N7 outbreak in poultry in 2003, when over 300

primary and secondary human infections were observed in the

Netherlands. Most cases showed mild disease including conjunctivitis,

but there was one fatal outcome.8 These observations show that H7

like H5 viruses are able to cross the species barrier to man and that they

have therefore the potential to cause a pandemic.

Thus, there is clearly a need for vaccines against HPAIV both to

control outbreaks in birds and to be prepared for an emerging pan-

demic in humans. Several strategies have been employed for the gen-

eration of such vaccines. These include inactivated vaccines produced

by reverse genetic techniques,9–11 live attenuated cold-adapted

vaccines,12,13 vaccines based on recombinant adenovirus14 and DNA

vaccines.15 Because of the ongoing H5N1 outbreak, most of the studies

have focused on this subtype, whereas H7 viruses have attracted less

attention. Numerous inactivated human vaccines against H5N1

viruses have been developed and licensed worldwide. However, these

vaccines have so far been used only in limited numbers of subjects

mostly in clinical trials since there has been no actual H5N1 pandemic.

Further, protective H5N1-specific inactivated vaccines for the use in

poultry have been produced in China from seed strains generated by

reverse genetics.16,17 The experiences from China’s pioneering acti-

vities related to avian influenza vaccination have recently been

described.18

The prime determinant of the high virulence of HPAIV is the poly-

basic cleavage site of the haemagglutinin (HA) that allows activation

by furin. Since furin is a ubiquitous protease, this type of cleavage is

responsible for rapid virus spread resulting in systemic infection with

fatal outcome as opposed to local infection with low pathogenicity due

to restricted cleavability at monobasic cleavage sites.19 Replacement of

polybasic as well as monobasic cleavage sites by valine susceptible to

cleavage by elastase resulted in attenuated protease activation mutants

that have the potential to be used as live vaccines.20,21 Mutation at the

cleavage site of HA proved also to be useful for the production of

inactivated H5 HPAIV vaccines, since the large quantities of live virus

required for this purpose precludes the use of wild-type (WT) HPAIV

that would be extremely hazardous for the environment.10

We report here on the generation of highly attenuated H7 protease

activation mutants by reverse genetics. When used as inactivated
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vaccines, these mutants protected chickens and mice with high efficacy

from a lethal infection with H7 subtype viruses.

MATERIALS AND METHODS

Cells and viruses

Madin Darby canine kidney (MDCK) cells were cultured in minimal

essential medium (MEM) (Gibco, Gibco Life Technologies,

Darmstadt, Germany) supplemented with 10% fetal bovine serum

(Invitrogen, Invitrogen Life Technologies, Darmstadt, Germany).

Human embryonic kidney cells (293 cells) were maintained in

Dulbecco’s modified Eagle’s medium (Gibco) containing 10% fetal

bovine serum. Both cell lines were cultivated at 37 6C and 5% CO2. The

HPAIV strains A/FPV/Rostock/34 (H7N1) (FPV) and A/chicken/

Germany/R28/03 (H7N7) as well as the mouse-adapted variant of

the A/seal/Mass/80 (H7N7) strain (SC35M)22 were used.

Generation of FPV mutants

The establishment of a reversed genetics system for the rescue of FPV

has been described before.23 In brief, all eight viral gene segments were

isolated and cloned into the vector pHH21 for the RNA polymerase I-

driven transcription of viral RNA.24 Next, these eight plasmids were

cotransfected into 293 cells along with four additional plasmids for the

expression of the subunits of the influenza virus polymerase complex.

Two days post-transfection, 293 cell supernatants were passaged onto

MDCK cell monolayers for the efficient amplification of contained

recombinant viruses. Purification of rescued viruses was achieved by

three rounds of plaque passages on MDCK cells.

The two HA cleavage site mutants were produced by subjecting the

pHH21 construct carrying the WT HA gene to the Quickchange muta-

genesis procedure (Stratagene, Stratagene Agilent Technologies,

Waldbronn, Germany). The following primer pairs were used in this

approach: for mutant 1, GGG ATG AAG AAC GTT CCC GAA CCT

TCC AAA GGA AGA GGC CTG TTT GGC GCT ATA GCA GGG (fo)

and CCC TCT ATA GCG CCA AAC AGG CCT CTT CCT TTG GAA

GGT TCG GGA ACG TTC TTC ATC CC (re); for mutant 2: GGG

ATG AAG AAC GTT CCC GAA CCT TCC GCA GCA GCG AAA GGA

AGA GGC CTG TTT GGC GCT ATA GCA GGG (fo) and CCC TGC

TAT AGC GCC AAA CAG GCC TCT TCC TTT CGC TGC TGC GGA

GGT TCG GGA ACG TTC TTC ATC CC (re). For the generation of

the respective cleavage-mutant viruses, the resulting pHH21 constructs

were included in the above mentioned reverse genetics approach and

L-(tosylamido-2-phenyl)ethyl chloromethyl ketone-trypsin (Sigma,

Taufkirchen, Germany) was added to culture media at a final concen-

tration of 0.5 mg/mL. The genetic identity of rescued viruses was con-

firmed by sequencing of the complete HA gene.

Virus replication in cell culture

For growth curves, MDCK cell monolayers were inoculated at a mul-

tiplicity of infection (MOI) of 0.001 in phosphate-buffered saline

(PBS) containing 0.2% bovine serum albumin (BSA) (Invitrogen)

for 1 h. Unbound viruses were washed off and serum-free medium

containing 0.2% BSA was added. If desired, L-(tosylamido-2-pheny-

l)ethyl chloromethyl ketone-trypsin was added to a final concentra-

tion of 0.5 mg/mL. From then on, HA titres in the supernatants were

periodically monitored with chicken red blood cells (1% in saline).

For plaques assays, confluent MDCK cell monolayers in 2.5 cm

dishes (in six-well plates) were inoculated with 10-fold dilutions (in

PBS/0.2% BSA) of viruses for 1 h. Cells were washed and covered with

an overlay of MEM containing 0.5% purified agar (Oxoid Ltd, Wesel,

Germany), 0.2% BSA, and 0.001% DEAE-dextran. If applicable,

cultures were supplemented with L-(tosylamido-2-phenyl)ethyl

chloromethyl ketone-trypsin at a final concentration of 0.5 mg/mL.

Cells were incubated at 37 6C and 5% CO2, and plaques were visualized

3 days post-infection with 0.1% crystal violet in a 10% formaldehyde

solution.

Analysis of HA cleavage activation

MDCK cells were inoculated with viruses at a MOI of 5 for 1 h. Unbound

viruses were washed off with PBS and MEM was added. Four hours post-

infection, the cells were washed with PBS, and 15 mCi of Redivue Pro-Mix

L35S in vitro cell labelling mix (Amersham Pharmacia, Nuembrecht,

Germany) were added in 2 mL of methionine and cysteine free MEM.

If desired, trypsin was added to a final concentration of 1 mg/mL. After

12 h, cell supernatants were harvested and viruses collected by ultracen-

trifugation at 100 000 g for 2 h. Aliquots of these virus preparations were

subjected to a 10% sodium dodecyl sulfate–polyacrylamide gel electro-

phoresis, and viral protein bands were visualized by fluorography.

Replication in embryonated chicken eggs

Eleven-day-old embryonated chicken eggs were inoculated into the

allantoic cavity with 2000 plaque forming units (pfu, as determined by

plaque assay on MDCK cells) of viruses. At given time points post-

inoculation, eggs were opened and checked for embryo viability. Next,

the allantoic fluid was collected and examined for virus titres by plaque

assay on MDCK cells.

Spread of viral infection to embryo tissues was addressed by in situ

hybridisation using digoxygenin (DIG)-labelled riboprobes specific

for the nucleoprotein gene of fowl plague virus (FPV-NP). The ribop-

robes were produced by run-off transcription of a fragment of FPV-

NP (nt. 1077–1442) that had been inserted into the vector Bluescript

KS1 (Stratagene). Transcription was carried out utilizing T7 RNA

polymerase and the DIG-RNA labelling Kit (Roche, Roche

Diagnostics GmbH, Mannheim, Germany). Riboprobes were purified

from the reaction mixture by means of the RNeasy-Kit (Qiagen,

Hilden, Germany) following the supplier’s protocol.

Sagittal embryo cryosections (20 mm) were fixated in 4% phos-

phate-buffered formaldehyde solution for 1 h at room temperature

(RT) and then washed three times with PBS for 10 min each. All

solutions were prepared from diethylpyrocarbonate-treated water.

Deproteination was achieved by proteinase K treatment (0.2 mg/mL)

for 10 min at RT. Sections were washed with water and post-fixated

with formaldehyde for 10 min (see above). Slides were then washed

with 100 mM glycin (in PBS) and PBS for 5 min each, transferred to a

solution of acetic anhydride (0.25% in 0.1 M triethanolamine, pH 8.0)

and incubated for 10 min at RT. Sections were washed in PBS, dehy-

drated in ethanol (50% and 70%) and air dried for 15 min. Next,

prehybridisation buffer (50% deionised formamide in 43SSC (0.6 M

NaCl in 0.06 M sodium citrate, pH 7.0)) was added for 1 h at 55 6C.

Prehybridisation buffer was removed and 150 mL of the DIG-labelled

riboprobe previously diluted 1 : 500 in hybridisation buffer (43SSC

containing 50% deionised formamide, 10% dextran solution,

13Denhardt’s solution, 0.1 mg/mL of yeast RNA, 0.1 mg/mL sheared

salmon sperm DNA, 10 mM ethylenediaminetetraacetic acid) were

applied for 16 h at 55 6C in a humid chamber. During incubation

sections were sealed with coverslips. Next, washes were done at 37 6C

with 23SSC, and 13SSC for 10 min each and samples subsequently

digested with RNase A (20 mg/mL) (Fermentas, St. Leon-Rot,

Germany) and RNase T1 (1 U/mL) (Fermentas) for 1 h at 37 6C (in

0.5 M NaCl, 1 mM ethylenediaminetetraacetic acid, 10 mM Tris/HCl,

pH 7.6). Additional washes at 37 6C with 0.53SSC, 0.23SSC for 10 min
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each followed. Finally sections were washed with 0.23SSC for 1 h at

60 6C.

Detection of bound DIG-riboprobes was achieved by means of

alkaline phosphatase-conjugated to anti-DIG Fab fragments and

5-bromo-4-chloro-3-indolyl-phosphate/nitro blue tetrazolium as a

chromogenic substrate (all reagents from Roche). To this end, cryo-

sections were washed with 0.3% Tween 20 for 5 min and 1% blocking

reagent for 30 min (both in 150 mM NaCl, 100 mM maleic acid, pH

7.5). Next, 250 mL of anti-DIG-alkaline phosphatase Fab fragments

(diluted 1 : 5000 in 1% blocking solution) were added for 30 min at

RT. Sections were washed twice for 15 min each with 0.3% Tween 20 in

maleic acid buffer and equilibrated in buffer 3 (100 mM NaCl, 50 mM

MgCl2, 100 mM Tris/HCl, pH 9.5). Chromogen solution of 250 mL

(45 mg/mL nitro blue tetrazolium, 0.175 mg/mL 5-bromo-4-chloro-

3-indolyl-phosphate in buffer 3) were applied and incubated in a

humid chamber at RT overnight in the dark. The reaction was stopped

with 10 mM Tris/HCl, pH 8.1 containing 1 mM ethylenediaminete-

traacetic acid. Embryonic tissues were finally counterstained with hae-

matoxylin–eosin.

Pathogenicity in chicken

The animal experiments were performed at the Friedrich-Loeffler-

Institute, the German federal research institute for animal health,

according to the guidelines of the German animal protection law.

All animal protocols were approved by the state authorities of

Mecklenburg-Vorpommern. Work with FPV and strain A/chicken/

Germany/R28/03 (H7N7) was conducted under biosafety level 3 con-

ditions. The virulence of influenza A viruses for chickens was esti-

mated using the intravenous pathogenicity index (IVPI) test as

follows: fresh infective allantoic fluid with a HA titre .24 was diluted

1 : 10 in sterile isotonic saline and 0.1 mL of the diluted virus was

injected intravenously into each of ten 6-week-old specific patho-

gen-free (SPF) chickens. Birds were examined at 24-h intervals for

the following 10 days. At each observation, each bird was scored 0 if

normal, 1 if sick, 2 if severely sick and 3 if dead. The judgment of sick

and severely sick birds is a subjective clinical assessment. Normally,

‘sick’ birds would show one and ‘severely sick’ birds more than one of

the following signs: respiratory involvement, depression, diarrhea,

cyanosis of the exposed skin, oedema of the face and/or head and

nervous signs. The IVPI is the mean score per bird per observation

over the 10-day period. An index of 3.00 means that all birds died

within 24 h, and an index of 0.00 means that no bird showed any

clinical sign during the 10-day observation period. Any influenza A

virus, regardless of subtype, giving a value of greater than 1.2 in an

IVPI test, is considered to be a HPAI virus.25

Preparation of formalin-inactivated vaccine

Eleven-day-old embryonated chicken eggs were inoculated with

recombinant viruses via the allantoic route (40 eggs per virus species).

Allantoic fluids were harvested 36 h post inoculation and centrifuged

for 15 min at 5000 g to remove debris. Next, virus was pelleted by

centrifugation for 12 h at 65 000 g. Virus sediments were thoroughly

resuspended in 2 mL of PBS containing a protease inhibitor cocktail

(Calbiochem, Schwalbach, Germany) and further purified by sucrose

step gradient ultracentrifugation (bottom 60%; top 20%) in a

Beckman SW 41 rotor at 120 000 g for 8 h. The interface was

removed from the gradient, and virus was pelleted for 8 h at

100 000 g in the same rotor. Virus pellets were resuspended to homo-

geneity in 2 mL of PBS containing protease inhibitor. The bulk of the

material was inactivated at a protein concentration of 1 mg/mL with

0.025% formalin at 4 6C for 4 days. After this treatment, inactivated

virus was concentrated by ultracentrifugation and pellets recovered in

1 mL of PBS with protease inhibitor. Aliquots were taken for purity

analysis by Coomassie-stained sodium dodecyl sulfate–polyacryla-

mide gel electrophoresis and for calculating the HA/total viral protein

ratio. At different stages of purification, the protein concentrations of

the virus preparations were determined by means of the bicinchoninic

acid (BCA)-protein assay (Pierce, Rockford, United States) following

the manufacturer’s instructions.

Immunisation and protective efficacy in adult chickens

A vaccine formulation was produced by diluting 600 mL of purified

virus suspension (corresponding to about 150 mg of HA) in 1.8 mL of

PBS and by subsequently adding 2.4 mL of complete Freund’s adjuv-

ant. The resulting emulsion was mixed thoroughly and then injected

into the pectoral muscles of SPF chickens 5 months of age at a dose of

0.5 mL per animal. Twenty-two days post-vaccination, animals were

challenged by intranasal inoculation with 107.9 50% egg infectious

dose (EID50) of the HPAIV strain A/chicken/Germany/R28/03

(H7N7). As a control, unvaccinated chickens were included in the

trial which received the same dose of challenge virus. Blood samples

were taken for the determination of serum haemagglutination inhibi-

tion antibody titres at days 0, 9, 14 and 21 post-vaccination and days 7,

14 and 19 post-challenge. Animals were monitored for the develop-

ment of clinical symptoms, mortality and shedding of the challenge

virus.

Immunisation and protective efficacy in mice

The animal experiments were performed according to the guidelines of

the German animal protection law. All animal protocols were approved

by the relevant German authority, the Regierungspräsidium Giessen.

Handling of the SC35M virus was conducted in compliance with bio-

safety level 3 requirements. Groups of female 5-week-old Balb/C mice

(Charles River, Sulzfeld, Germany) were intramuscularly immunized

with preparations of formalin inactivated FPV mutant 1 containing 7

or 15 mg HA with or without Freund9s adjuvant in a 1 : 1 dilution. Four

weeks after immunisation, mice were challenged intranasally with 100

median lethal doses (LD50) of SC35M (H7N7) under anesthesia set by

an intraperitoneal injection of ketamine (100 mg/kg) and xylazine

(10 mg/kg). Mice were observed for weight loss and signs of disease

for 2 weeks after immunisation and challenge, respectively.

RESULTS

Generation of FPV cleavage site mutants

The sequence at the cleavage site of FPV-HA was mutated in order

to generate a motif that is no longer accessible to processing by the

ubiquitous cellular protease furin.26 Two different HA mutants

were generated (Figure 1A). The first one (Mut1) represents a

cleavage site typically found in mammalian and low-pathogenic

avian influenza viruses.19 In the second mutant (Mut2) the cleavage

site motif of Mut1 was elongated by the addition of three alanine

residues to restore the full length of the WT cleavage site. Using a

reverse genetics system, these mutant HA sequences were stably

incorporated into recombinant viruses.24 We have recently

developed such a system allowing us to generate recombinant

FPV.23 Mutant viruses were rescued in the presence of trypsin in

cultured cells and amplified in the allantoic cavity of embryonated

chicken eggs. The correct genetic identity of the rescued viruses was

finally confirmed by sequencing of the HA genes.
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Replication in MDCK cells

First, we looked at the replication of the virus mutants in MDCK cells.

Growth curves showed that, in accordance with the existing furin

recognition motif in HA, WT virus was able to replicate in these cells

in the absence of exogenously added trypsin. In contrast, replication of

both cleavage site mutants was found to be strictly dependent on the

presence of trypsin in the culture medium (Figure 1B). The situation

was the same when the ability of these viruses to produce plaques in the

MDCK cell monolayer was assayed. Virus mutants were unable to

spread from cell to cell in the absence of trypsin, while large plaques

were obtained when trypsin was added to the medium (Figure 1C).

Again, production of plaques with WT viruses was identical irrespec-

tive of the presence of trypsin. The growth restrictions of the virus

mutants were due to the lack of proteolytic activation of HA in the

absence of trypsin. This became clear when we examined the protein

pattern of virus released from MDCK cells that had been infected with

mutants at a high multiplicity of infection. Only in cells treated with

trypsin, the HA precursor is cleaved into its subunits HA1 and HA2

(Figure 2). No cleavage products are detectable if trypsin was omitted.

Due to its accessibility to cleavage by the cellular protease furin, for
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Figure 1 Characterisation of FPV mutants. (A) Cleavage site motifs of WT and mutant viruses. The WT cleavage site sequence of FPV and the two mutants produced for

the generation of recombinant viruses are depicted. Asterisks indicate the site of cleavage. (B and C) Replication of viruses in MDCK cell culture in the absence and

presence of trypsin. (B) Cells were inoculated at a MOI of 0.001. At the indicated time points, culture supernatants were monitored for HA titres using chicken red blood

cells. (C) Spread of virus infection traced by plaque formation. Monolayers seeded in six-well plates (diameter per well: 35 mm) were inoculated with the indicated

viruses and covered with an agarose-containing medium overlay. At 3 days post-infection, plaques were visualized by staining cell monolayers with a crystal violet

solution.
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WT HA, there is no need for trypsin to achieve proteolytical proces-

sing. Hence, the mutations introduced into the HA sequence totally

abrogated furin-mediated proteolytic activation. As a consequence,

replication of the mutant viruses in MDCK cell culture is strictly

dependent on exogenously added proteases targeting monobasic

cleavage sites, such as trypsin.

Replication and pathogenicity in embryonated chicken eggs

Growth to high titres in embryonated chicken eggs is a key require-

ment for a virus designated to serve as a candidate seed strain for

vaccine production. Therefore, we examined the replication of FPV

mutants in this system. Thirty hours post-inoculation into the allan-

toic cavity, allantoic fluids were harvested and monitored for viral

titres by plaque assay on MDCK cells in the presence of trypsin. It

turned out that all three virus types reached almost the same titres in a

range of 5.23108–6.43108 pfu/mL (Figure 3A). Thus, while changes

in the HA cleavage site motif drastically inhibit growth of mutant

viruses in cell culture, replication in embryonated chicken eggs is

not affected.

We next examined the pathogenicity of our set of viruses in embryo-

nated chicken eggs by comparing the survival rates of embryos at

different time points after inoculation. Embryos from WT FPV-

infected eggs started to die at 18 h post-infection. Twenty-four hours

post-infection, all embryos within this group were dead (Figure 3B). In

contrast, embryos in eggs infected with the mutant viruses did not die

until 48 h following inoculation. Accordingly, by solely converting the

HA cleavage site motif, FPV can be efficiently attenuated and trans-

formed into a non-pathogenic avian virus. This finding was confirmed

when we analysed the spread of the infection within the embryo tissues

by in situ hybridisation. In this assay, a DIG-labelled RNA probe

specific for the FPV-NP segment was used to detect viral replication

in embryo cryosections. All organs of WT-infected embryos showed

clear signs of infection (Figure 4). The infection was confined to the

endothelia of blood vessels as already reported previously.27 However,

no evidence of infection was detected in embryo tissues from eggs

infected with the mutants indicating that these viruses are unable to

cross the chorio-allantoic membrane, a typical feature of low patho-

genic avian influenza viruses (LPAIV).28 Taken together, these results
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Figure 2 Analysis of cleavage activation of HA. MDCK cells were infected at a MOI
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or presence of trypsin. After 12 h, metabolically labelled progeny viruses were

collected from the cell supernatants by ultracentrifugation and aliquots of the virus

preparations were applied to a 10% sodium dodecyl sulfate–polyacrylamide gel

electrophoresis. Protein bands were visualized by fluorography. The uncleaved

HA precursor (HA0) and the cleavage products HA1 and HA2 are indicated.
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demonstrate that, although the FPV mutants can grow to high titres in

the allantoic cavity of chicken eggs, they otherwise behave as typical

LPAIV which fail to infect and to rapidly kill chicken embryos.

Pathogenicity in adult chickens

To employ these FPV mutants as seed strains for the production of

influenza vaccines, it is of crucial importance to make sure that their

non-pathogenic phenotype in cell culture and embryonated chicken eggs

is retained upon infection of adult animals. To prove this, three groups

of 10 chickens each were infected intravenously. All 10 animals infected

with WT viruses developed typical severe signs of fowl plague and seven

out of ten died. In contrast, all of the chickens infected with the virus

mutants survived. Only one animal suffered transiently from mild diar-

rhea and slight depression. The other animals showed no disease symp-

toms, thus providing striking evidence for the low pathogenicity of the

mutant viruses (Figure 5). The intravenous pathogenicity indices of the

viruses were 2.34, 0.0 and 0.07 for WT, Mut1 and Mut2, respectively.

Hence, owing to their capability for high yield growth in embryo-

nated chicken eggs on the one hand and their complete attenuation in

chicken embryos and adult birds on the other hand, the engineered

FPV mutants are perfectly suited for the safe production in bulk

amounts that is a key prerequisite for vaccine manufacturing.

Immunogenicity and protective efficacy of formalin-inactivated

vaccine in chickens

Next, the potential of FPV mutant 1 to serve as antigenic component

of an inactivated vaccine for the protection of adult chickens from an

HPAIV challenge was investigated. To this end, the virus was grown in

large scale in embryonated chicken eggs and purified from allantoic

fluids by centrifugation through a sucrose gradient. Inactivated whole-

virus vaccine was prepared by formalin treatment. The absence of any

residual infectivity in the inactivated virus preparation was confirmed

by plaque assay on MDCK cells (data not shown). Aliquots of the

purified vaccine preparation containing approximately 15 mg of HA

protein were mixed with Freund’s adjuvant and employed for the

intramuscular immunisation of a group of nine SPF chickens. On

day 22 post-vaccination, the birds were challenged oculo-nasally with

107.9 EID50 of the HPAIV A/chicken/Germany/R28/03 (H7N7), a

virus that has an intravenous pathogenicity index in chickens of

2.93. Additionally, three unvaccinated birds were included in the chal-

lenge experiment as a control. Over a period of 40 days post-vaccina-

tion, the animals were monitored for clinical symptoms of infection

and the development of a H7N7-specific serum antibody response as

determined by hemagglutination inhibition (HI) test. No serum anti-

bodies directed against the H7N7 virus were found in blood samples

taken before vaccination. At day 9 post-vaccination, however, specific

HI titres were detectable in the serum of all vaccinated chickens which

reached peaks of 211 in vaccinated animals at the end of the experiment

(Table 1). No such antibody titres were found in non-vaccinated con-

trol animals. Apart from a mild form of diarrhea at day 3 post-infec-

tion, none of the vaccinated animals showed signs of avian influenza

and all chickens stayed perfectly healthy until the end of the trial. In

one animal, transient shedding of H7N7 virus was detected in oro-

pharyngeal and cloacal swabs. In contrast, unvaccinated control ani-

mals rapidly developed typical symptoms of severe avian influenza

(head edema, ruffled feathers, diarrhea, depression) and died at day

3 post-infection.

Taken together, these results clearly demonstrate that the inacti-

vated FPV mutant 1 has the potential to elicit a high-titre antibody

response that completely protects birds from a lethal challenge even

with another HPAIV strain of the H7 subtype.

Immunogenicity and protective efficacy of formalin-inactivated

vaccine in mice

Further, we investigated the potential of the inactivated mutant 1

vaccine for its ability to cross-protect against a lethal challenge with

WT

Blood vessel Lung Stomach

Mut1

Mut2

Figure 4 Spread of virus infection to embryonic tissues. Eleven-day-old embryonated chicken eggs were inoculated as outlined in the legend to Figure 3. At 48 h post-

inoculation, embryos were removed for the preparation of sagittal cryosections. Virus infection of the depicted tissues was detected by means of in situ hybridisation

employing a digoxygenin-labelled riboprobe specific for the FPV-NP gene. Embryonic tissues were visualized by common haematoxylin–eosin staining (magnification:

363).
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another related but antigenically distinct H7 virus, the mouse-adapted

strain SC35M.29 Therefore, groups of mice (n55) were immunized

intramuscularly according to the following protocol: (i) one dose of

non-adjuvanted vaccine containing 7 mg of HA; (ii) one dose of vac-

cine containing 7 mg HA in Freund’s adjuvant; (iii) two doses of

adjuvanted vaccine containing 7 mg HA and administered 2 weeks

apart; and (iv) one dose of adjuvanted vaccine containing 15 mg HA.

As a control, one group remained unvaccinated. The vaccine was

tolerated very well by all animals irrespective of the immunisation

scheme as judged from body weight measurements (Figure 6A).

Four weeks after the single immunisation or two weeks after the se-

cond immunisation, mice were challenged intranasally with 100LD50

of SC35M. During the subsequent observation period, all vaccinated

animals survived indicating that they were robustly protected against a

lethal challenge with SC35M (Figure 6B). Groups receiving one dose of

7 mg HA either with or without adjuvant exhibited a temporary weight

loss of approximately 20%. Weight loss was lower (app. 10%) in those

groups having received either one adjuvanted dose of 15 mg HA or two

adjuvanted doses 7 mg HA. All control mice succumbed to infection

within 5 days post-challenge.

Accordingly, the results for vaccine efficacy in mice very closely

correlated with those observed in chickens. Taken together, these

data clearly demonstrate that the FPV-based vaccine is highly

effective to induce cross-protection in animals against a lethal

infection by an antigenically different influenza strain of the same

subtype.

DISCUSSION

Proteolytic activation of influenza virus HA by cleavage into its sub-

units HA1 and HA2 has long been known to be a prime determinant of

virulence.19,30 Additional factors either encoded by the virus itself or

provided by the host cell significantly contribute to host restriction,

transmission and pathogenicity, and therefore, influenza virulence

clearly is to be regarded a multifactorial trait.31,32 In terms of proteo-

lytic activation, two major classes of viruses can be distinguished.

LPAIV contain HA with monobasic cleavage motifs susceptible to

trypsin-like proteases present only in the respiratory or gastro-intest-

inal tract. In contrast, the HA of HPAIV has a multibasic cleavage site

that is activated by the ubiquitous cellular protease furin, thus allow-

ing for a systemic spread of the infection.19,26,33 Attempts to confer

high pathogenicity by solely introducing a multibasic cleavage site into

the HA of LPAIV of H3- and H5-subtypes have so far proved unsuc-

cessful,34,35 clearly indicating that a multibasic HA cleavage site alone

is not per se sufficient for the development of a HP phenotype for these

subtypes.

In this study, we have generated and characterized protease activa-

tion mutants of the HPAIV A/FPV/Rostock/34 (H7N1). Using a

reverse genetics approach, the long loop between HA1 and HA2 con-

taining the multibasic cleavage site was converted into either a short

loop (mutant 1) or into a long loop (mutant 2), each containing a

single arginine as cleavage motif. The rationale for creating these dif-

ferent mutants was to trace potential impacts of HA cleavage loop

conformation and accessibility on proteolytic activation and resulting

viral pathogenicity.36 Replication and pathogenicity of the mutants

were analysed in cell culture, chicken embryos and chickens. In con-

trast to WT FPV, both virus mutants exhibited a classical low patho-

genic phenotype as judged from the following findings: (i) cleavage

activation and multistep replication in cell culture were fully depen-

dent on the presence of exogenously added trypsin; (ii) growth in

embryonated chicken eggs was identical to that observed for typical

LPAIV; and (iii) the IVPIs of the mutants in chickens were 0.0 (mutant

1) and 0.07 (mutant 2) as compared to 2.34 of WT virus. This clearly

reveals that the multibasic cleavage site is the key virulence factor of

FPV and that its removal is sufficient to convert FPV into a virus with

classical LPAIV phenotype. No significant differences regarding repli-

cative properties or pathogenicity were detected between mutants 1

and 2 indicating that length and conformation of the cleavage loop

have no effect on the accessibility of the monobasic cleavage site to the

activating protease.
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Figure 5 Pathogenicity of FPV mutants in adult chicken. Three groups of ten

6-week old SPF chickens each were inoculated intravenously with fresh infective

allantoic fluid (HA titre .24) containing WT, Mut1 or Mut2 viruses. From then on,

birds were examined at 24-h intervals for the following 10 days. At each obser-

vation, the birds are examined for clinical signs of disease and scored 0 if normal,

1 if mildly sick, 2 if severely sick and 3 if dead (for details, see the section on

‘Materials and methods’). The intravenous PI is the mean score of birds per group

over the entire observation period. PI, pathogenicity index.

Table 1 Immunogenicity and protective efficacy in chickens of the inactivated vaccine prepared from FPV mutant 1

HI-GMTa (log 2) Clinical manifestationsb

Days post vaccination Days post challenge Severe symptoms or

death Survival
0 9 14 21 7 14 19

Vaccinated animals 0 5.23 (1.6) 7.07 (1.9) 8.51 (2.0) 10.54 (0.5) 10.19 (0.8) 11.0 (0.0) 0 100

Control animals 0 — — — 0 — — 100 0

A group of nine SPF-chickens was immunized intramuscularly with an adjuvanted vaccine preparation containing approximately 15 mg HA per dose. Three control animals

remained unvaccinated in a separate cage. At day 22 post-vaccination, all animals were challenged with 107.9 EID50 units of influenza A/chicken/Germany/R28/03 (H7N7).

For the following 19 days, the animals were monitored for signs of infection (such as fever, oedema, ruffled feathers, diarrhoea, depression), mortality and shedding of the

challenge virus. Serum antibodies were determined by HI assay.
a Geometric mean values of HI-titres and standard deviations (in brackets). Titres are determined with virus strain A/chicken/Germany/R28/03 (H7N7).
b Percentage of animals.
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Virus yields of WT and mutant FPV obtained in allantoic fluids

were within the same range, indicating that the extensive loss of patho-

genicity does not interfere with efficient replication in embryonated

chicken eggs. Very importantly, during multiple passages in embryo-

nated chicken eggs, we never observed viral escape mutants, indicating

that the introduced cleavage site mutations are very stable. Because of

these properties, we concluded that the FPV cleavage mutants might

be promising candidates for safe and large-scale production of an

avian influenza vaccine. In order to prove this concept, an inactivated

vaccine produced from egg-grown FPV mutant 1 was prepared and

used for the immunisation of chickens. Three weeks after vaccination,

the animals were challenged with a lethal dose of the HPAIV isolate A/

chicken/R28/03 (H7N7) that shares about 93% sequence identity in

the HA protein with FPV. All vaccinated animals were fully protected

against the challenge with this non-homologous virus and survived

without showing signs of severe disease. In contrast, all non-vacci-

nated animals developed classical fowl plague symptoms and died

within 3 days following challenge. These results clearly demonstrate

that an inactivated vaccine based on a protease activation mutant of

FPV as seed virus can be readily produced in chicken eggs and very

efficiently protects chickens from severe clinical disease and death

caused by a non-homologous but related HPAIV.

We also tested the efficacy of the vaccine in a mammalian challenge

system by analysing its ability to protect mice from lethal infection with

SC35M virus (H7N7).29 All HA-antigen dosages and formulations tested

protected mice from a lethal challenge while all non-vaccinated animals
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Figure 6 Immunisation of mice with formalin-inactivated vaccine prepared from FPV mutant 1 (H7N1) and subsequent challenge with 100LD50 of SC35M (H7N7).

Groups of five mice each were immunized intramuscularly as indicated in the boxes. An unvaccinated group was used as a control. Mice were monitored for 14 days

after immunisation (A) and after challenge (B) for weight loss and signs of disease.
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died within 5 days after infection. As the HAs of FPV mutant 1 and

SC35M display only 85% overall sequence homology, these results

clearly demonstrate that the vaccine elicits a potent crossreactive

immune protection. It can also be concluded from these observations

that the vaccine is not restricted to the use in birds, but that it may also

be applicable to a broader range of species. Hence, our data strongly

indicate that FPV protease activation mutants constitute very useful seed

strains for the rapid and large-scale production of safe and efficient H7-

specific vaccines in a (pre)pandemic situation.

In a more general scenario, the FPV cleavage mutants might also

represent a powerful alternative to strain A/PR/8/34 that is currently

used almost exclusively as donor of the internal viral genes for the

generation of reassortant seed strains on which human influenza vac-

cines are based.37,38 FPV grows to very high titres in eggs as well as in

cell cultures, and as shown here, the yields of the mutants are similar to

those obtained with WT virus. In this context, it is important to note

that while most influenza vaccines are still produced in embryonated

chicken eggs, several cell culture-based vaccine products have recently

been licensed for seasonal as well as for pandemic indications.39–41

Therefore, the use of high-growth FPV reassortants with HA and

NA proteins of circulating viruses generated on the basis of the clea-

vage mutants might be of considerable advantage especially in a pan-

demic situation where timely availability of large numbers of vaccine

doses is of utmost importance for the immediate and efficient protec-

tion of vulnerable population groups.
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