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1 Institut für Epidemiologie, Friedrich-Loeffler-Institut, Wusterhausen, Germany, 2 Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany, 3 Institut

für Physik, Humboldt-Universität zu Berlin, Berlin, Germany, 4 Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany, 5Center

for Complex Network Research, Northeastern University, Boston, Massachusetts, United States of America

Abstract

Background: Many networks exhibit time-dependent topologies, where an edge only exists during a certain period of time.
The first measurements of such networks are very recent so that a profound theoretical understanding is still lacking. In this
work, we focus on the propagation properties of infectious diseases in time-dependent networks. In particular, we analyze
a dataset containing livestock trade movements. The corresponding networks are known to be a major route for the spread
of animal diseases. In this context chronology is crucial. A disease can only spread if the temporal sequence of trade
contacts forms a chain of causality. Therefore, the identification of relevant nodes under time-varying network topologies is
of great interest for the implementation of counteractions.

Methodology/Findings: We find that a time-aggregated approach might fail to identify epidemiologically relevant nodes.
Hence, we explore the adaptability of the concept of centrality of nodes to temporal networks using a data-driven approach
on the example of animal trade. We utilize the size of the in- and out-component of nodes as centrality measures. Both
measures are refined to gain full awareness of the time-dependent topology and finite infectious periods. We show that the
size of the components exhibit strong temporal heterogeneities. In particular, we find that the size of the components is
overestimated in time-aggregated networks. For disease control, however, a risk assessment independent of time and
specific disease properties is usually favored. We therefore explore the disease parameter range, in which a time-
independent identification of central nodes remains possible.

Conclusions: We find a ranking of nodes according to their component sizes reasonably stable for a wide range of
infectious periods. Samples based on this ranking are robust enough against varying disease parameters and hence are
promising tools for disease control.
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Introduction

Animal trade represents an important economic sector. At the

same time, it also provides a major route for economically most

important infectious livestock diseases [1–4] as has been shown for

foot-and-mouth disease [5,6] and classical swine fever [7]. Any

efficient disease mitigation or prevention strategy therefore needs

to include animal trade in its considerations. However, control

measures themselves may cause tremendous animal welfare and

economical problems within the agricultural production chain. A

careful assessment of risk is important and should be one of the

main goals of modern epidemiology.

Epidemiology has been influenced by network science in recent

years [8]. Animal trade can be described as a network by

representing the agricultural holdings by nodes, which are

connected to each other by directed edges. Traditionally, time-

aggregated static networks were studied, where an edge (u,v) exists

when at least one contact between the nodes u and v is recorded

during the period of observation, as reviewed by Martı́nez-López

et al. [9] and Dubé et al. [6]. Recent research, has shown,

however, that this static network representation of animal trade is

inappropriate for epidemiological purposes [10–15]. Vernon et al.

[11] point out that the spread of infectious diseases is only

predicted correctly if the chronology of contacts is accurately

reflected.

One way to meet this demand is the utilization of time-

dependent networks, also known as temporal networks. In

temporal networks an edge is represented by a triple (u,v,t),
where t is its time of occurrence. For animal trade networks the

contacts may be assumed as instantaneous due to the short

transportation time compared to the length of stay in a holding.

This is reflected by the temporal resolution of the available trade

data as described in the Materials section. Such time-discrete

temporal networks can be visualized as a stack of graphlets [16],

where a graphlet is a static snapshot of the trade at any discrete

moment ti. The temporal network itself is then represented by all

graphlets stacked on top of each other in the correct order.
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In their recent review on temporal networks, Holme and

Saramäki [17] point out that a formalism to treat these objects is

still lacking. Instead there are many parallel developments made in

various disciplines ranging from biology to computer science and

sociology. Nevertheless Danon et al. [8] call the development of

such a formalism one of the most pressing issues of network

epidemiology. However. only very recent contributions have been

made in this direction [18,19].

In fact, there has already been research on temporal networks in

the context of epidemic spreading. Vernon et al. [11] modeled an

SIR-(susceptible-infectious-recovered) and Natale et al. [20] an SI-

like disease on the British and Italian cattle trade networks,

respectively. Other works used mobile phone or email datasets to

study disease dynamics on temporal networks. Furthermore,

Vazquez et al. [21] and Karsai et al. [22] modeled an SI-like

spreading process and found that it is slowed down due to the

temporal structure of the data. Interestingly, Rocha et al. [23]

observed the opposite behavior in a dataset of sexual contacts in

Internet-mediated prostitution. Similarly, Miritello et al. [24]

found an SIR-like disease on a mobile phone call dataset to

spread more efficiently for small values of the transmission

probabilities, but less efficiently for higher values. Stéhle et al.

[25] studied a face-to-face contact network of conference attendees

and find it well approximated by a weighted time-aggregated

network concerning the course of an SEIR-modeled disease,

which takes into account an additional intermediate exposed state.

Moreover, a basic model to study the effect of the distribution of

inter-event times has been recently proposed by Rocha et al. [26].

Together with a better understanding of the initial spread of

a disease [2] and the identification of influential spreaders [27], the

development of disease control strategies is of most importance in

this area. Lee et al. [28] propose a vaccination strategy for

temporal networks, which is an adaptation of the well-known

neighborhood vaccination protocol [29] and hence only relies on

local information. In cases, where global information about the

network topology is available, the identification of risk-based

central nodes seems to be a more promising strategy. For animal

trade networks, this spatial and temporal information is usually

available due to legal obligations [30].

The term risk-based centrality is context-dependent and has at

least a two-fold meaning. It can either characterize the potential of

one node to infect other nodes or it can characterize the exposure

of a node of being infected by others. Many of the well-established

centrality measures for static networks have already been adapted

for temporal networks [17,31–37], but none of them explicitly

relates the timescale of the dynamic process on the node level, i.e.

the duration of the local infection dynamics. However, most

epidemiological models crucially depend upon finite and fixed

infection timescales representing an infectious period. To our

knowledge, the only contribution proposing a measure including

variable infectious periods was made by Natale et al. [12], where

a disease flow centrality is presented as a measure tailor-made for

animal trade networks.

The difficulty to define a risk-based centrality is caused by the

complexity of any centrality measure that considers finite dynamic

timescales. Even worse, the centrality of a node will not only

depend on the infectious period k [25], but also on the time of

infection t0 of the specific node itself. A particular node might be

central if it is infected at one particular moment, but might drop

below average after a short period of time. A chain of causation

must therefore be preserved in the temporal network.

To our knowledge, these dependencies have so far not been

investigated systematically. This paper attempts to start filling this

gap. To this end, we investigate the temporal robustness of two

simple measures of centrality for an SIR-like disease spread on the

German pig trade network.

Temporal robustness means that a centrality measure is

insensitive to variations in the time of infection t0 and the

infectious period k. The intuitive understanding of centrality and

risk is rather time-independent, i.e. it seems to be suitable to assign

a time-independent value of centrality to a node than assigning

a function of t0 and k.

Here, we try to answer the question to what extent this is still

feasible in the context of temporal networks. Particularly we focus

on the case of epidemiological relevant centrality in the context of

network topologies significantly changing on the timescale of

a typical infectious period.

A frequently used measure in epidemiology is the final size of an

epidemic, which is the number of all infected individuals

throughout an epidemic. In network terminology, this is equivalent

to the number of nodes that can be reached from a primarily

infected node, i.e. the size of its out-component, when a trans-

mission probability of p~1 is assumed. The number of nodes that

can be reached from a particular node, defines a measure of its

centrality [38], which is also known as virulence. A similar concept

called reachability was discussed in [39] for communication

networks, where a time-ordered list of contacts was taken into

account.

Another measure of centrality is defined by its reversal, i.e. the

number of nodes from which a particular node can be reached.

This number is given by the size of its in-component and

corresponds to a vulnerability of the node. The epidemiological

importance of this feature has already been emphasized by Riolo

et al. [40]. In a recent work, Kivelä et al. analyzed the spreading

in a large-scale communication network based on mobile-phone

calls, where – similar to the current study – a transmission

probability p~1 was assumed [41]. They found an upper bound

for the speed of spreading mediated by the network and compared

it to randomized reference models, which preserved selected

correlations.

Node components have already been used for risk assessments

in static representations of animal trade networks [42–44]. Since

both measures can be intuitively extended to non-static topologies,

Nöremark et al. [13] and Dubé et al. [10], for instance,

introduced the out- and ingoing infection chain as a risk-based

measure that respects the temporal sequence of contacts. They did

not consider finite infectious periods, i.e. dynamic timescales in

nodes. However, the very concept of either measure can be

intuitively extended to take also finite infectious periods into

account.

We make use of the out-component cout(u,k,t0) and the in-

component cin(u,k,t0) of a node u in a way that respects the

temporal sequence of contacts, finite infectious periods k as well as

their time of infection t0. From an epidemiological point of view,

both measures cout(u,k,t0) and cin(u,k,t0) are relevant. The size of

the out-component of a node gives an upper bound of the size of

any epidemic starting in this very node, while the size of the in-

component of a node is proportional to the probability of getting

infected if an epidemic starts somewhere in the network. For the

sake of simplicity, counteractions and network adoption to the

epidemic are neglected, i.e. we study the effects of undetected

spreading of a disease under normal trading conditions. We will

demonstrate how the time-dependent approach is superior for

a risk assessment in terms of the the maximum number of

potentially infected nodes.

In the following, we first present the data, on which the analysis

is based, and then the algorithm used to calculate out- and in-

components. We then investigate the dependence of both

Robustness of Components in a Temporal Network
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measures on the time of infection t0 and the length of the

infectious period k. We compare the results with the time-

aggregated network as a reference. Other models involving for

instance temporal shuffling [25,41] of edges, represent also

possible reference cases, but are beyond the scope of this present

paper.

We propose conditions under which centrality can be assigned

independently of t0 and k. We find that in spite of strong temporal

heterogeneities, samples based on a ranking due to the size of out-

and in-component are robust enough for practical concerns of

disease control.

Materials and Methods

The data used in this paper is an excerpt of HIT [45], the

national German database on pig trade established according to

EU legislation [30]. Whenever live animals are traded, the

purchasing and the selling agricultural holding as well as the date

of the trade are stored. This data can be interpreted as a temporal

network G, where any such trade contact from holding u to

holding v at day t is represented by a directed edge (u,v,t). The

temporal network G can be interpreted as a time-ordered sequence

of static networks G~fG1,G2, . . . ,Gtmax
g, each representing the

trade of a single day. The observation period for this paper spans

the scope of the years 2008 and 2009 with a total of N~103,490
nodes and on average vEw~4929 edges per day.

Although the trade of live pigs is subject to seasonal variation

and temporal irregularities, we found a period of one year

sufficient to obtain a representative picture of the dynamic

patterns of the network (see Supporting Information S1 (Figure S1)).

A simple explanation can be given by the average lifetime of pigs

of approximately 180 days, which would let one expect

a periodicity of the network of the same order.

In contrast to the temporal network, the static time-aggregated

network, where u and v are connected by a directed edge (u,v)
when at least one trade contact between them has been recorded

during the observation period, contains Eaggregated~267,702

edges. This time-aggregated network exhibits a heavy-tailed

degree distribution in both the in- and out-degree, spanning three

orders of magnitude. Approximately one third of the nodes belong

to a giant strongly-connected component, in which every node is

connected to any other node of the component by at least one

path. The out-component of these nodes is composed of the giant

strongly-connected component itself and all additional nodes that

can be reached from it [46]. In our system the size of this out-

component is approximately N=2.

All other nodes, which cannot reach the giant strongly-

connected component, have an out-component with a size three

orders of magnitude smaller.

We are not aware of an efficient algorithm to determine the out-

component cout(u,k,t0) and the in-component cin(u,k,t0) in

a temporal network with finite infectious periods k. With the

introduction of finite infectious periods, the precise time of the

primary infection of a node t0 becomes more important and has to

be explicitly taken into account. Furthermore it has to be defined,

whether multiple visits to the same node are allowed, i.e. if SIS- or

SIR-like spreading is assumed. In this paper, we consider

a deterministic SIR-like model, where a susceptible holding v

becomes infected with probability p~1, if it has a trade contact

(u,v) with an infected one u. The time of trade is denoted by t0(v).
After a time period k, i.e. t0(v)zk, the holding v and all its future

links are removed from the population. Thus, it does not

participate in the spreading process any longer. We assume an

SIR-type spreading, because it contains a clear defined breaking

condition for the process.

However, the determination of cout(u,k,t0) and cin(u,k,t0) for

SIR-type spreading is non-Markovian. The history of a node needs

to be considered explicitly, since a node can only become infected

if it has never been infected before.

In order to calculate cout(u,k,t0) and cin(u,k,t0), we use

a modified breadth-first-search algorithm. We start at a root node

u and mark it as infected. At every discrete time step tn, we then

identify all edges (u,v,tn) where u is infected but v susceptible. All

nodes v that can be reached this way are marked as infected.

Subsequently we iterate over all infected nodes u and mark those,

for which the infectious period has expired, as removed. The

infectious period of a node u has expired if tn{t0(u)~k, where k

is the infectious period of the disease. Afterwards, the time step tn
is incremented by one, and we start the next iteration. The search

algorithm stops, if no more infected nodes are available.

It is not clear in general, if a given observation period of

a temporal network can capture an entire dynamic process on the

network [17,34]. This problem is of minor importance here, as we

only consider primary infections t0 during the first year of the

observation period and let the epidemic eventually penetrate into

the second year. In this way, we are able to observe any epidemic

to vanish and thus, obtain a consistent value for the number of

infected nodes.

The nodes visited by our algorithm are identified as the out-

component cout(u,k,t0) of the root node u, if the temporal

sequence of edges in G for an initial infection of u and time t0 and

finite infectious period k is respected.

The in-component cin(v,k,t0) of a node v counts the number of

times that v has been visited by the algorithm for a finite infectious

period k when the algorithm starts at all possible root nodes u[U\v

at a time t0. Both components are a function of the time of the

primary infection t0 of the root node.

The size of both measures can be conveniently normalized to

the number of nodes N. Thereby in- and out-component are

bounded in the range ½0,1�.
To investigate their temporal dependency and to gain an

understanding of their robustness, we determine both measures for

all nodes for infectious periods kƒ56 days and for all times t0.

This yields 2:109 initial conditions for the search algorithm. The

choice of kmax~56 days covers the infectious period of the major

livestock diseases [47]. Thus, kmax~56 days is assumed to be

a reasonable upper value.

Results

To retain readability, we will restrict the detailed description of

results to the analysis of the out-component. The results for the in-

component show no conceptual differences and their main figures

are replicated in Supporting Information S2 (Figures S2–S4).

Disease Mitigation and Epidemic Threshold
Before analyzing the robustness of the size of the out-

component Dcout(u,k,t0)D, we briefly review the disease mitigating

effects of the temporal network structure.

In a time-aggregated representation of a network, any primary

infection will cause secondary infections as long as there is at least

one outgoing edge during the observation period. In temporal

networks, the occurrence of secondary infections is more

constrained, as the infectious period k limits the effective time

period between the moment of the primary infection t0 and the

occurrence of an outgoing edge.

Robustness of Components in a Temporal Network
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Given an infectious period k, it is possible that k is too small to

cause any follow-up outbreak at all. For this reason, we define the

outbreak probability p0(k) as the fraction of successful secondary

outbreaks over the total number of primary infections. Figure 1A

shows this outbreak probability as a function of infectious period k

for all simulated primary infections. For small infectious periods,

the outbreak probability is close to zero, because causal chains are

sparse. For increasing k, the probability approaches an asymptote,

which is defined by the ratio of nodes with at least one outgoing

edge in the time-aggregated network. For comparison, this ratio is

also plotted as a dashed line. Note that even for k~56 days, the

outbreak probability is approximately only half as high as in the

time-aggregated case.

Another interesting measure is the average size of the out-

component vDcout(u,k,t0)Dw for a given k, where the average is

calculated over all nodes u and all times of primary infection t0.

This quantity is shown in Figure 1B. As before, the dashed line

refers to the time-aggregated case.

Rocha et al. [23] and Miritello et al. [24] observed a threshold

kt in their publications on SIR-diseases when considering

temporal topologies. For kvkt the average size of the epidemic

vanishes and increases abruptly at k~kt. Our results exhibit

a similar behavior and show significant values only for kt *> 14

days. As for the outbreak probability, vDcout(u,k,t0)Dw ap-

proaches an asymptote that is given by the average size of the

out-components in the time-aggregated network. Also for this

measure, it should be noted that the average size of the out-

component of the time-aggregated network is approximately six

times larger, even if k~56 days.

Both observations support our argument that a temporal view

on the network is essential to capture its dynamics fully.

Calculations based on a time-aggregated network strongly over-

estimate the size and probability of an outbreak.

Temporal Heterogeneity of the Out-component
We explored the dependence of the out-component cout(u,k,t0)

on the time of primary infection t0 for a node u.

For illustration purposes we began with an exemplary infectious

period of k~24 days and the arbitrarily chosen node u. Figure 2A

shows the distribution of the size of the out-component

Dcout(u,k,t0)D. The out-component shows a bimodal behavior. It

attained values of 0 and approximately 6% of the network size.

Primary infections with adjacent t0 often account for similar out-

component sizes.

The explanation lies in the temporal sparsity of edges in the

network, as illustrated by the following: Let us assume that a node

ui becomes infected at tn~t0(ui) and afterwards connects within

its infectious period only to one susceptible node uj at tm~t0(uj),

i.e. tm{tnƒk. Accordingly, uj becomes infected. If uj itself has no

contacts to other nodes in the time interval ½tm,tmzk�, the

epidemic stops. Hence, the out-component contains only uj .

Otherwise, the disease continues to spread and the out-component

of ui consists of uj and its out-component. Now, the out-

component of ui will be the same for all moments of infection

tnƒt0(ui)ƒtm. If ui is connected to multiple nodes during its

infectious period, small changes in t0(ui) might trigger few more or

less infections as a small number of additional nodes enter or leave

the causal chain.

Figure 1. Outbreak probabilities (A) and out-component sizes
(B) for different infectious periods k. Panel A: Outbreak probability
p0(k) as given by the fraction of primary infections causing at least one
secondary infection. The dashed line shows the outbreak probability of
the time-aggregated network, i.e. the fraction of nodes with non-
vanishing out-degree. Panel B: Average out-components of primary
infections, i.e. the number of follow-up infections. The 50% confidence
interval is indicated by the shaded area. Only for kw14 days
a significant fraction of the network can be infected. For increasing k,
both values approach a saturation. For k~56 days, approximately every
second primary infection will cause follow-up infections which will
reach on average &4% of the network. Both numbers are significantly
lower than their counterparts in the static network, as indicated by the
dashed line. Here approximately 80% of all primary infections cause
follow-up infections with a mean size of epidemic of almost 25% of the
network.
doi:10.1371/journal.pone.0055223.g001

Figure 2. Distribution of Dcout(u,k,t0)D for an exemplary infectious
period of k~24 days. Panel A shows the size of the out-component
for an exemplary node u as a function of t0. For many times t0 , the size
of the out-component Dcout(u,k,t0)D has similar values close to &0:06,
but for some t0 we also find Dcout(u,k,t0)D to vanish. Panel B shows the
distribution for all nodes, i.e. the top view of panel A for all nodes of the
network. Each horizontal line represents one node, the example node
chosen for panel A is indicated by the dotted orange line. For the sake
of clarity, only every 100th node is plotted. Nodes are arranged
according to their averaged value of SDcout(u,k,t0)DTt0 over all t0 from
top to bottom, i.e. the node with the largest averaged out-component
is displayed as the top line of the panel.
doi:10.1371/journal.pone.0055223.g002

Robustness of Components in a Temporal Network
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Besides small fluctuations of Dcout(u,k,t0)D, a bi-modality in the

distribution was visible. The values of Dcout(u,k,t0)D were either

close to their maximum or very small. This distribution is related

to the existence of a giant strongly-connected component in the

time-aggregated network G. The bi-modally distributed sizes of

the out-components of nodes in the time-aggregated network G
are reflected in the bi-modal distribution of the size of the out-

component of a single node at different times of infection t0 in the

temporal network G. For an appropriately chosen t0, a node with

a large out-component in G will also have a large one in G, but for

an inappropriately chosen t0 no or almost no other nodes can be

reached. Vernon et al. [11] and Bajardi et al. [14] found similar

results and explain them with the importance of connecting to the

right node, i.e. a hub, at the right time.

To allow for a more complete view on the network, Figure 2B

depicts Dcout(u,k,t0)D for all nodes u. This is a top view of Figure 2A

for all nodes of the network. The nodes are arranged along the

vertical axis in a descending order from top to bottom according to

their mean value vDcout(u,k,t0)Dwt0 . The dotted line marks the

example node that is shown in panel A.

Most nodes exhibited vanishing out-components for almost all

times of infection. This is indicated by the bright region in the

lower half of Figure 2B. Only the top 30% of nodes possess

a reasonably large out-component. Overall, it became clear that

only a small fraction of nodes contributed to the risk of spreading

in the network. This feature would be missed in a time-aggregated

network study.

Ranking of Nodes According to the Out-component
To allow for further investigation of the size of the out-

component Dcout(u,k,t0)D, we focused on the effect of varying

infectious periods k. We averaged over the starting times t0 and

thus determined the mean values vDcout(u,k,t0)Dwt0 . This

limitation is justified by the likely unavailability of information

on t0 in every real-world surveillance scenario, where it is often

hard to determine the precise time of primary infection. Hence,

the exact value of t0 is inaccessible.

One should recall that the values of any risk-based measure as

such are usually of minor importance for disease control. In most

cases it is sufficient to identify the nodes that exhibit the highest

values with respect to a particular measure. In fact, these will be

the ones where interventions are most promising. In order to

locate these nodes, it is sufficient to order the nodes for each k by

the value of vDcout(u,k,t0)Dwt0 in a ranking Rc(k).
Figure 3 presents the rankings Rc(k) of the top 100 nodes.

These nodes had on average the largest out-component, where the

average is also calculated over all infectious periods k, i.e.

vDcout(u,k,t0)Dwt0,k. Each curve corresponds to one node and the

red curve represents an arbitrarily chosen node highlighted for

illustration purposes. For infectious periods kv14 days, the

ranking was very unstable and the average over both t0 and k
was not reliable. As k increased, however, it became more and

more stable. In this regime, the rank of the top nodes did not

change significantly. This means that for infectious periods that

are long enough, the importance of explicitly considering a ranking

for a given k decreases.

Robustness of Sampling Under Inaccurate Infectious
Periods

For the purpose of disease control, it is desirable to know the set

of nodes t(k) with the highest ranking according to a risk-based

measure, where the number of top-ranked nodes, i.e. T~Dt(k)D is

predetermined by the given resources, e.g. the available number of

vaccine doses. It is therefore crucial to investigate to what extend

the composition of such a top sample depends on the infectious

period k, or more accurately, it is important to analyze the

sensitivity of t(k) on an error Dk. The value of Dk is given by the

accuracy, in which the infectious period k can be estimated. The

sample t(k) is determined by thresholding the ranking. Only

nodes with a ranking above threshold will be included into the

sample.

This sensitivity can be analyzed by investigating the intersection

tIS~t(k1)\t(k2) for any pair k1,k2. The ranking is independent

of k, if t(k1)~t(k2)~tIS for every pair k1,k2. In general,

however, this will not be the case, and the size of the intersection

DtISD will be a function of k1,k2. Additionally it will also depend on

the sample size T .

The size of the intersection DtISD can be conveniently normalized

by T , so that s(k1,k2,T):DtISD=T is the relative intersection. The

measure s can be used to characterize the similarity of two

rankings.

A further reduction of the dimensionality is possible by recalling

disease control requirements. Since one is primarily interested in

the sensitivity of t(k) with respect to an error Dk, s(k1,k2,T) can

be averaged over all pairs k1,k2 with Dk1{k2DƒDk for a given

sample size T . This yields a quantity

~ss(Dk,T)~Ss(k1,k2,T)TDk1{k2 DƒDk that corresponds to the robust-

ness of a top sample with respect to inaccuracies in the infectious

period.

Analogous averaging over all k1,k2 with

Dk1{k2D=max(k1,k2)ƒdk yields

~ss(dk,T)~Ss(k1,k2,T)TDk1{k2 D=max(k1,k2)ƒdk corresponding to the

robustness of a top sample with respect to the relative error dk.

Figure 4 presents the relative intersections ~ss(Dk,T) and ~ss(dk,T)
for three different sample sizes T , that is for 0:1%, 1:0%, and

10:0% of all nodes. The 50% confidence interval is given by the

shaded areas.

One can see that ~ss decreased with larger errors Dk. This holds

for all three sample sizes. But also for very small samples in the

order of 0:1% of the network, a robustness of ~ss§50% existed for

errors of Dkƒ14days. This means that, on average, half of the

nodes in any such sample were identical and independent of the

exact value of the infectious period used for evaluation. The

definite number of identical nodes in such a sample could be

analogously determined and yielded ~sssup&25% for T~0:1% (not

shown).

Figure 3. Ranking of nodes according to their mean out-
component size SDcout(u,k,t0)DTt0 . Each curve corresponds to one
node. The top hundred nodes with the largest out-components are
shown. Curves representing nodes with higher ranking are darker than
those with lower rankings. For illustration purposes an arbitrarily
chosen node is displayed in red.
doi:10.1371/journal.pone.0055223.g003
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To account for the high variability in the ranking Rc(k) for

small infectious periods (see Figure 3), one could consider sampling

only for kwkmin to include only the nodes with the highest overall

risk in the sample. Supporting Information S3 (Figure S5) shows that

this would further improve the robustness of a sample. However,

no fundamental differences occur.

Comparison of the Dynamic Out-component and Static
Measures

Finally we compared our proposed measure to centrality

measures on a static network representation. We followed the

approach described in the previous section. Accordingly we

determined the intersection of two top samples, i.e. the highest

ranked nodes. One top sample is based on the dynamic out-

component, the other on a selection of static centrality measures.

In detail we compared Dcout(u,k,t0)D with the static out-component,

the out-degree, betweenness and k-core centrality. In Figure 5 we

show the respective intersections as a function of the sample size

for two different infectious periods k. Only for samples bigger than

&1% of the network, i.e. more than 1000 nodes the intersection

took non-vanishing values. Hence central nodes in static network

representations are likely to be different from those with a large

temporal out-component.

Conclusion and Discussion

We analyzed if time-independent determination of central

nodes is possible even in a network with high temporal

heterogeneity. The network under consideration is the German

pig trade network. We investigated an epidemiological relevant

centrality measure on this network with a topology that changes on

the timescale of epidemic spreading. The spreading is described by

a state-discrete SIR-like model. We focused on the out-component

of a node as a measure of centrality for two reasons. First of all, an

intuitive adaptability of the out-component exists in the time-

aggregated case to finite infectious periods. Secondly, under the

assumption of an infection probability p~1 upon trading contact,

the number of nodes in the out-component served as an upper

bound to the size of an epidemic.

We found that the rapidly changing network topology, whose

timescale is in the order of a typical infectious period, was reflected

in the observed temporal heterogeneity of the out-component. We

also demonstrated that the dynamic out-component only barely

correlated with any static centrality measure. Therefore any static

approximation should be used with caution. For the German pig

trade network, however, a ranking based on the size of the out-

component would be stable enough for disease control require-

ments.

Furthermore, the stable ranking allowed the sampling of nodes.

We found such samples to be robust against variations in the

length of the infectious period. For the German pig trade network,

this enables the determination of disease-independent high-risk

samples.

We emphasize that the results presented here are only valid for

the specific network under consideration. Nevertheless, we expect

similar results for other networks of animal trade, especially for pig

trade networks due to the highly standardized and industrialized

nature of these networks.

Our work contributes to improve surveillance and control of

diseases, which propagate via trade of live animals. In the context

of surveillance, one might argue that the in-component is a more

suitable measure of centrality, but as shown in Supporting Information

S2 (Figures S2–S4), we find similar results for this case. We also

briefly investigated SIS-like spreading, where reinfection of nodes

is possible. Also here the results are similar.

This paper is based on three assumptions that are critical for the

applicability of its results. First, the data used was collected during

a disease-free period of the network. It is known, however, that the

topology of animal trade networks changes significantly if a disease

is detected [48]. Therefore the term infectious period is misleading

and actually refers to what is called the high-risk period of

a disease, that is, the time span between the primary infection in

the network and the disease detection.

The second assumption is the homogeneity of the nodes. In

reality, the nodes of an animal trade network exhibit different

functionalities, e.g. breeders and slaughterhouses. This yields very

different infection probabilities. This paper circumvents this

problem by assuming an infection probability of p~1 on contact.

Therefore, our results can be seen as a worst case scenario.

Finally, the analysis of the robustness is based on averaging the

size of the out-component over several days of primary infection.

This approach is supported by the likely unavailability of any

information on the exact day of a primary infection in the case of

disease surveillance. However, if this information had been

Figure 4. Robustness of samples based on the out-component
size of nodes. Shown are the mean intersections ~ss(Dk,T) and ~ss(dk,T)
for three different sample sizes T~0:1% (red), 1:0% (blue), and 10:0%
(green) of the network representing approximately 100, 1000, or 10,000
nodes, respectively. The sampling is calculated based on the mean
largest out-component over all k and t0 (see text for details). ~ss(Dk,T) is
based on averaging over all pairs k1,k2 with Dk1{k2DƒDk or
Dk1{k2D=max(k1,k2)ƒdk respectively. Confidence intervals are given
by the shaded areas.
doi:10.1371/journal.pone.0055223.g004

Figure 5. Comparison between the dynamic out-component
and static measures. The relative size of the intersection of the top
nodes is based on their value of the dynamic out-component and on
static measures of centrality. In the upper panel the comparison for
a fixed infectious period of k~7 days is shown and in the lower one for
a fixed infectious period of k~42 days.
doi:10.1371/journal.pone.0055223.g005
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available, averaging might represent an unnecessary limitation (see

Supporting Information S3 (Figure S6) for details).

An additional remark has to be made on the assumption that

a transmission probability of p~1 depicts the worst-case scenario.

For an SIR-like spreading process on a temporal network it is

possible that recovered nodes form a transmission barrier and thus

preventing a disease from infecting a much larger portion of the

network. Therefore a lower value of p may also cause a much

larger outbreak. This effect is discussed in detail in [38].

In conclusion, we showed that the notion of time-independent

node centrality is critical in the context of temporal networks.

However, stationary sampling of nodes remains still possible for

the presented network.

Our findings can be applied in a more accurate risk assessment

of a disease outbreak in the absence of counteractions. As a next

step, the effect of vaccination protocols could also be taken into

account as well as the implementation of a sophisticated surveil-

lance system.
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