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Strain typing of bacterial isolates is increasingly used to identify sources of infection or product contami-
nation and to elucidate routes of transmission of pathogens or spoilage organisms. Usually, the number of
bacterial isolates belonging to the same species that is analyzed per sample is determined by convention,
convenience, laboratory capacity, or financial resources. Statistical considerations and knowledge of the
heterogeneity of bacterial populations in various sources can be used to determine the number of isolates per
sample that is actually needed to address specific research questions. We present data for intestinal Escherichia
coli, Listeria monocytogenes, Klebsiella pneumoniae, and Streptococcus uberis from gastrointestinal, fecal, or soil
samples characterized by ribotyping, pulsed-field gel electrophoresis, and PCR-based strain-typing methods.
In contrast to previous studies, all calculations were performed with a single computer program, employing
software that is freely available and with in-depth explanation of the choice and derivation of prior distribu-
tions. Also, some of the model assumptions were relaxed to allow analysis of the special case of two (groups of)
strains that are observed with different probabilities. Sample size calculations, with a Bayesian method of
inference, show that from 2 to 20 isolates per sample need to be characterized to detect all strains that are
present in a sample with 95% certainty. Such high numbers of isolates per sample are rarely typed in real life
due to financial or logistic constraints. This implies that investigators are not gaining maximal information on
strain heterogeneity and that sources and transmission pathways may go undetected.

Strain typing of bacterial isolates is widely used to identify
sources of infection or contamination, to elucidate routes of
transmission, or to show persistence of bacterial strains within
hosts or environments (13, 22). The identification of sources of
contamination is necessary to design intervention strategies
aimed at reducing the risk of contamination (3, 6, 11). Often,
the numbers of isolates that are genotyped in a study are based
on convention, as well as limitations in time, funding, and
storage capacity, rather than on a specified level of confidence
about the total number of strains likely to be present in a
sample. If too few isolates are analyzed per sample, vital in-
formation about the source of infection or contamination may
be missed; analysis of too many isolates, on the other hand, is
a waste of resources. While the detection of one isolate of a
strain is sufficient to demonstrate the presence of that strain,
the absence of a strain may be inferred with a certain degree of
confidence only after a minimum required number of isolates
from the sample are tested.

The required number of isolates in a sample that need to be
typed in order to be 95% confident that all strains have been

found can be derived from Bayesian inference (7). Bayesian
sample size calculation combines prior information, based on
expert opinion or pilot data sets from related studies, with data
from additional typing studies to generate the posterior prob-
ability of detecting all strains that are present in a sample (1,
19). This study included data sets from the ruminant gastroin-
testinal tract and farm environments and allowed exploration
of strain heterogeneity across bacterial species within sample
types and across sample types within bacterial species. It con-
tinued the discussion initiated by Singer et al. (19) and Alte-
kruse et al. (1) by showing that for different sources of samples
different numbers of isolates need to be genotyped due to
variability in the heterogeneity of bacterial populations. It
demonstrated that the interplay between statisticians and mi-
crobiologists is essential for meaningful sample size estimation.
Specifically, the aims of the current study were (i) to provide a
single WinBUGS program code to perform all calculations
with a large variety of data, (ii) to explain methods for the
derivation of priors and the impact that they have on the
posterior distributions, and (iii) to extend previously reported
methodology (1, 19) by relaxing the assumption about equal
expected relative frequencies of strains within samples.

MATERIALS AND METHODS

Sample collection, bacterial isolation, and strain typing. In this paper, the
terms “isolate” and “strain” are used in accordance with international standard
definitions, as summarized by Zadoks and Schukken (22). The term “isolate” is
used for a population of bacterial cells in pure culture derived from a single
colony on an isolation plate and identified to the species level. The term “strain”
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refers to an isolate or a group of isolates exhibiting characteristics that set it apart
from other isolates belonging to the same species. Strains can be identified using
a variety of methods, including the presence of specified virulence markers
(virulotyping) or evaluation of the overall heterogeneity of the bacterial genome
(genotyping). Strain typing information was obtained for the following four
bacterial species: Streptococcus uberis, a gram-positive pathogen that causes
mastitis in dairy cattle; Listeria monocytogenes, a gram-positive food-borne
pathogen; Klebsiella pneumoniae, a gram-negative pathogen that causes mastitis
in dairy cattle and a range of clinical diseases in humans; and non-type-specific
Escherichia coli, including verotoxinogenic E. coli (VTEC), a group that includes
gram-negative food-borne and zoonotic pathogens. All four pathogens can be
found in the feces of ruminants and in their environments (8, 16, 17, 18, 23). For
the gram-positive species and Klebsiella spp., isolates from fecal and environ-
mental samples were available from field studies, and data on strain heteroge-
neity in both types of samples were available from previous work (S. uberis) or
were generated for the current analysis (L. monocytogenes, K. pneumoniae in
soil). For the gram-negative species, fecal samples were available. For E. coli,
additional samples were available from ovine feces and the ovine gastrointestinal
tract, as well as bovine feces (Table 1). All isolates in the study were picked at
random from agar plates.

To explore the heterogeneity of bacterial populations across sample types and
bacterial species, sets of fecal and soil isolates belonging to three bacterial
species were used. Isolates of S. uberis originated from soil samples and fecal
samples that were collected on a dairy farm in New York State (23). For each soil
sample, between four and eight isolates were characterized by automated ri-
botyping using restriction enzyme PvuII. For fecal samples, two to four isolates
were analyzed after selective enrichment on indicator media (23). Isolates of L.
monocytogenes were obtained from 10 fecal samples from dairy cattle and from
10 soil samples collected on ruminant farms (dairy cattle, beef cattle, sheep, or
goats) in New York State (18). Strain typing of three or four isolates per sample
was performed by means of pulsed-field gel electrophoresis using the PulseNet
protocol, including restriction enzymes ApaI and AscI (9). Isolates of K. pneu-
moniae originated from fecal samples collected from dairy cattle in New York
State. For each sample (n � 11), four isolates were selected for random amplified
polymorphic DNA analysis (17). Isolates of the genus Klebsiella were also ob-
tained from soil samples, but the number of isolates belonging to the species K.
pneumoniae was insufficient for assessment of strain heterogeneity within sam-
ples (data not shown).

A second data set was used to compare the impact of relatively uninformative
versus informative priors on outcomes of Bayesian sample size estimates. The
isolates of non-type-specific E. coli, including VTEC, were obtained from fecal
samples, rumen fluid, the small intestine (i.e., duodenum and ileum), and the
large intestine (i.e., cecum and colon) of five sheep kept in indoor stalls. Feces
samples were collected daily on days 1 to 21. Rumen fluid samples were collected
2 to 10 times for each animal at 1- to 7-day intervals using an esopharyngeal tube.
One sample from the small intestine and one sample from the large intestine

were collected from all animals at necropsy on day 21. Samples were stored at
4°C for a maximum of 12 h and homogenized, and 1:10, 1:100, and 1:1,000
dilutions were prepared using brain heart infusion broth (Difco). Portions (100
�l) of each dilution were plated on separate MacConkey agar plates and incu-
bated at 37°C overnight, and E. coli was identified and counted as lactose-
fermenting microorganisms using the dilution plates on which individual colonies
were identifiable. For each sample five isolates of E. coli were genotyped using
a PCR with enterobacterial repetitive intergenic consensus sequence primers (5).

Finally, to extend the methodology to samples in which strains were not
assumed to be present at the same frequency, a set of bovine E. coli isolates was
used. Seventy-six fecal samples were collected from 76 beef calves, and these
samples represented the first samples in time, including 10 isolates screened for
each sample from the longitudinal study reported by Geue et al. (8). For each
sample, 10 isolates of E. coli (a total of 760 isolates) were screened for the
presence of verotoxin 1 and verotoxin 2, for intimin, and for hemolysin using
PCR tests as reported by Geue et al. and Döpfer et al. (4, 8). Of the 760 E. coli
isolates, 425 (55.9%) were positive for verotoxin 1, verotoxin 2, or both verotox-
ins, 55 (7.2%) isolates were positive for verotoxin 1, verotoxin 2, or both vero-
toxins in combination with intimin, 124 (16.3%) isolates were positive for vero-
toxin 1, verotoxin 2, or both verotoxins in combination with the hemolysin, and
52 (6.8%) isolates were positive for intimin in combination with hemolysin.
These four categories are not mutually exclusive. The average numbers of iso-
lates in all of the isolates screened that were found to be positive for the
combinations of virulence markers are shown in Table 2.

Table 2 provides an overview of the data sets, including the bacterial species,
the sample sources, the references for the typing methods, the average number
of isolates typed or screened per sample and source, the average number of
strains observed per sample, and the expected number of strains detected in the
samples based on expert opinion or an independent data set (only for ovine fecal
data). The observed within-sample heterogeneity was lowest for non-type-spe-
cific E. coli in intestinal samples; on average, there were 1.7 strains (rumen) or
1.3 strains (small intestines) in ovine gastrointestinal samples. The observed
within-sample heterogeneity was highest for E. coli and K. pneumoniae in ovine
and bovine fecal samples, respectively; an average of three strains were detected
among four isolates. Table 2 shows the required numbers of isolates (N), as
described below.

Sample size calculations. (i) Combination of prior information and relevant
data. Bayesian statistical inference was used to calculate the number of isolates
(N) that must be genotyped to identify all strains present in a future sample with
a high (e.g., 95%) probability. Bayesian inference comprises a combination of
prior information about parameters in the model and information from relevant
data (7). Here, the parameters are the unknown probabilities (�1, �2, . . . �k) for
a sample to contain either exactly one strain, two strains, or up to a maximum of,
e.g., six strains (k � 6). The prior information is a summary of what is “known”
about �1, �2, . . . �6 prior to the use of the relevant data. The prior information
may be obtained from data that are related to the problem but are not directly

TABLE 1. Types and numbers of samples and typing methods used to obtain bacterial isolates and typing information for assessment of
within-sample strain heterogeneity

Aim of statistical analysis Organism Source No. of samples Typing method (reference�s�)a

Population heterogeneity across S. uberis Feces 16 Ribotyping (23)
species and sample types Soil 9

L. monocytogenes Feces 10 PFGE (18)
Soil 10

K. pneumoniae Feces 11 RAPD (17, 21)

Impact of priors Ovine non-type-specific Feces 50b ERIC
E. coli Feces 88c Fingerprinting

Rumen 38 (12; D. Döpfer, unpublished data)
Small intestine 10
Large intestine 9

Sample size estimation for
unequal relative frequencies
of strains

Bovine non-type-specific
E. coli, including
VTEC

Feces 76d PCR for virulence genes (4, 8)

a PFGE, pulsed-field gel electrophoresis; RAPD, random amplified polymorphic DNA; ERIC, enterobacterial repetitive intergenic consensus sequence.
b Five sheep were sampled daily for 5 days and again for 5 days after a 1-day interruption; the data set was used to generate a prior distribution.
c Five sheep were sampled daily for 21 days (105 samples), but 17 samples were missing; the data set was used to calculate the posterior estimates for the sample

sizes.
d Seventy-six calves were sampled once, and 10 isolates of E. coli were screened for virulence markers (verotoxin 1, verotoxin 2, eae, and ehxA) for each sample.
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applicable (perhaps taken from the literature) or from expert opinion. A prior
probability is attached to each possible value of a parameter. Consequently, the
prior probability takes the form of a probability distribution. The relevant data
are directly applicable to the particular bacterial species in the setting of interest.
So, while the prior information contains “soft” information, gathered from re-
lated sources, the relevant data represent “hard” information, and both are
represented by a statistical model.

Attention is focused on the probability p (derived from �1, �2, . . . �6) that all
strains that are present in a future sample will actually be observed. The result of
the calculations is again a distribution, referred to as the posterior (distribution),
which offers an up-to-date summary of the information about the parameters. A
large sample from the posterior of probability p is generated by a Markov chain
Monte Carlo algorithm, as implemented in the WinBUGS package (20). The
median for this sample is presented as an estimate for p and the 2.5 and 97.5
percentile points as Bayesian confidence bounds (a 95% credible interval). For
each value of N that is specified in the program as a possible future sample
size, an estimate and interval for p are derived. The program can be run for
a range of potential values for N. An appropriate choice can be made from a
table or a plot (for instance, the value for N where the estimate for probability
p exceeds 95%).

Choice of priors. Let there be k different bacterial strains in a sample, where
k is assumed to be known. For the probabilities �1, �2, . . . �k that a sample
contains exactly 1, 2, or k strains, we need a prior distribution for positive
numbers that add up to 1. The Dirichlet distribution has this property and is a
convenient distribution for use as a prior distribution. The form of this distribu-
tion depends on the values of its shape parameters (�1 . . . �k) that have to be
specified.

��l . . . . �k	
 � Dirichlet��l . . . �k	 (1)

The positive numbers �1 . . . �k will be chosen such that equation 1 reasonably

reflects the available prior information. A rule of thumb is that prior distribution
1 mimics the information in m � �1 � . . . � �k imaginary samples, with a
proportion of the samples with exactly one strain (�1/m), a proportion (�1/m) of
the samples with exactly two strains (�2/ m), etc.

When little is known a priori, a prior will be chosen that expresses hardly any
preference for possible values for �1 . . . . �k between 0 and 1. Popular choices for
such a relatively uninformative prior are:

�1 � 1/k, . . . , �k � 1/k, (2a)

and

�1 � 1, . . . , �k � 1 (2b)

We show that the impacts of priors 2a and 2b on the results for p are about the
same.

Alternatively, when a stronger opinion is voiced about the values of �1 . . . �k,
based on expert opinion or previously published information, a more informative
prior may be chosen. For illustration, the choice of an informative prior for
non-type-specific fecal E. coli is discussed below, based on data from a previously
conducted experiment, as shown in Table 3. Initially, following the rule of thumb,
the � values are chosen to be equal to the counts in Table 3, replacing 0 by 0.5.
This is practically equivalent to adding the data of Table 3 to the other relevant
data and using prior 2a or 2b. However, when we do not feel quite confident
about the data that inform the prior (Table 3), maybe because they relate to
somewhat different samples or experimental conditions, we may decide to choose
the prior more cautiously. To that end, we multiply the � values by a factor (�)
less than 1; i.e., �i is replaced by the smaller ��i, where i � 1 . . . k. The prior
expected � values remain the same (and equal to �1/m . . . �k/m), but the prior
distribution is wider, expressing the uncertainty about the relevance of the data
that inform the prior (Table 3). The smaller the factor � that we use, the wider

TABLE 2. Overview of strain typing data: average numbers of isolates typed, average numbers of strains observed, assumed numbers of
types per sample, � values used to construct the prior distributions, and numbers of isolates required to be typed

in order to identify all strains present in a sample with 95% probability

Organism Source Typing methoda

Avg no. of
isolates
typed
(SD)

Avg no. of
strain
types

observed
(SD)

No. of strains
assumedb

� for the
prior distribution

Required
no. of

isolates

S. uberis Feces Ribotyping 2.6 (0.6) 1.5 (0.7) 3 �1 . . . �3 � 1/3 10
Soil Ribotyping 5.9 (1.2) 3.9 (1.1) 5 �1 . . . �5 � 1/5 20

K. pneumoniae Feces RAPD 4.0 (0.0) 3.0 (0.8) 4 �1 . . . �4 � 1/4 15

L. monocytogenes Feces PFGE 3.5 (0.6) 2.1 (0.6) 4 �1 . . . �4 � 1/4 10
Soil PFGE 3.5 (0.5) 1.4 (0.5) 4 �1 . . . �4 � 1/4 6

Ovine non-type-specific Fecesc ERIC fingerprints 5.1 (1.0) 2.9 (1.2) 1 to 6b �1, . . . �6 � fractionsb 14
E. coli Feces 5.1 (0.8) 3.8 (1.1) 6 �1 . . . �6 � 1/6 or

�1 . . . �6 � 1
16

Rumen 4.3 (1.2) 1.7 (0.9) 5 �1 . . . �5 � 1/5 11
Small intestine 5.0 (0.0) 1.3 (0.5) 5 �1 . . . �5 � 1/5 5
Large intestine 5.0 (0.0) 1.8 (0.8) 6 �1 . . . �6 � 1/6 10

Bovine non-type-specific
E. coli, including

Feces positive
for V12d

PCR 10 5.6 (3.6) �1 � �2 � 1 6

VTEC Feces positive
for Vt12eaee

10 0.7 (2.3) �1 � �2 � 1 2

Feces positive
for Vt12ehxAf

10 1.6 (3.1) �1 � �2 � 1 3

Feces positive
for eaeehxAg

10 0.7 (2.1) �1 � �2 � 1 2

a PFGE, pulsed-field gel electrophoresis; RAPD, random amplified polymorphic DNA; ERIC, enterobacterial repetitive intergenic consensus sequence.
b Based on expert opinion and entered in the calculations as a known number.
c The ovine fecal data set is shown in more detail in Table 3 because it was used to generate a data-based, informative prior distribution (average, 2.9; standard

deviation, 1.2).
d V12, E. coli positive for verotoxin 1,verotoxin 2, or both verotoxins.
e Vt12eae, E. coli positive for either or both of the two verotoxins and intimin (eae).
f Vt12ehxA, E. coli positive for either or both of the verotoxins and hemolysin (ehxA).
g eaeehxA, E. coli positive for intimin and hemolysin (ehxA).
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the prior is. The WinBUGS program has simple facilities to see what the prior
looks like, so a suitable value for � may be chosen given the uncertainty about the
relevance of the data in Table 3. When there is doubt about the choice of prior,
several priors could be used to check their impact on the choice of N in relation
to the intended value for p. In Table 2, priors are relatively uninformative, except
for the prior for ovine fecal E. coli (data set with n � 50).

(ii) Assumptions in modeling the relevant data. Below, we discuss the model
assumptions in relation to the structure of the data. Similar to the assumption of
Altekruse et al. (1), it is assumed that all strains in a sample are equally likely to
be observed. The relevant data for the sample size estimate consist of the
numbers of strains observed in the samples, as shown in Table 2. Technical
details of the model are presented in the Appendix.

The assumption that all strains are equally likely to be observed is relaxed for
the special case of two strains or two groups of strains. All strains of interest are
placed into one group, while the remaining strains are placed into another group.
The data consist of the observed number of isolates with strains that belong to
the first group per total number of isolates that are genotyped per sample. In this
way, the required future sample size may be calculated for a sample containing
heterogeneous populations of pathogens that will be screened, for example, for
a rare strain type of interest. Technical details about the model for this special
case, including information about the choice of prior distributions, are presented
in the Appendix.

Presently, any dependence between data (e.g., repeated measurements for
animals) is not taken into account. Technically, it is possible to include a
suitable dependence structure in the model of the relevant data. However,
this fine-tuning of the model and the WinBUGS program requires intimate
knowledge of the data and a fair amount of statistical expertise. It is impor-
tant to distinguish between an actual analysis of new experimental data,
possibly by Bayesian inference, and the present calculation of the required
sample size. The sample size calculations will often be based on a simplified
model. The present calculations are expected to offer a reasonable indication
of the order of magnitude of the required sample size. When the correlation
between data is marked, the calculations result in a lower boundary for the
required sample size.

RESULTS

The posterior median of the probability of finding all of the
strains that are present in a sample when N isolates per sample
are analyzed was calculated for a range of values for N. Figure
1 summarizes the results for L. monocytogenes and S. uberis in
soil and for L. monocytogenes, S. uberis, and K. pneumoniae in
feces. The numbers of isolates that needed to be typed to find
all strains with 95% probability were different for different
bacterial species. For example, the number of isolates that
needed to be typed to find all strains in a fecal sample with
95% probability varied from approximately 10 for L. monocy-
togenes or S. uberis to 15 for K. pneumoniae. The differences

between bacterial species were even greater for soil samples,
where as many as 20 isolates needed to be characterized for S.
uberis, while for L. monocytogenes in soil samples characteriza-
tion of six isolates was sufficient, emphasizing the finding that
the required number of isolates varied not only with the bac-
terial species but also with the sample type. To illustrate the
differences in credibility intervals for the probability estimates
and a given number of isolates typed per sample, Fig. 2a shows
the relatively small credible intervals for K. pneumoniae and
Fig. 2b shows the larger credible intervals for the probability
estimates for L. monocytogenes.

For ovine E. coli, the number of isolates that need to be
characterized to identify all strains in the sample with 95%
probability is expected to depend on the gastrointestinal origin
of the sample and on the prior distribution that is used in
Bayesian analysis (Fig. 3 and Table 2). When the relatively
uninformative prior 1b was used, the number of isolates
needed ranged from 5 for samples from the small intestine and
10 and 11 for samples from the large intestine and rumen,
respectively, to 16 for fecal samples. The alternative relatively
uninformative prior 1c yielded virtually the same results. When
an informative prior distribution that was derived from an
independent data set from an independent study was used (50
ovine fecal samples [Table 1]), the number of isolates required
to identify all strains in a fecal sample with 95% probability was
reduced from 16 to 14 (Fig. 3).

Given the unequal relative frequencies of E. coli coding for
selected virulence factors versus all other non-type-specific E.
coli, the number of isolates per sample that have to be tested
in order to be 95% confident that E. coli carrying this selection
of virulence markers is found in the bovine fecal samples can
be calculated. Six isolates per sample need to be screened to be
95% confident that E. coli coding for verotoxin 1, verotoxin 2,
or both verotoxins is found. Two isolates per sample need to be
tested to be 95% confident that E. coli that carries either or
both of the two verotoxins in combination with intimin is de-
tected. Three isolates need to be typed to achieve this confi-

FIG. 1. Probability p of finding all strains of a species present in
sample when N isolates per sample are characterized. Squares indicate
L. monocytogenes, circles indicate S. uberis, and triangles indicate K.
pneumoniae. Filled symbols and solid lines indicate fecal samples.
Open symbols and dashed lines indicate soil samples. Cut-offs with the
horizontal dotted line that marks the 95% probability p yield the
numbers of required isolates (N) (e.g., N is about 6 for L. monocyto-
genes in soil �).

TABLE 3. Data from ovine fecal samples (n � 50) for non-type-specific
E. coli: numbers of strain types observed and fractions of the numbers of

strain types used to construct an informative prior distribution for the
sample size calculations based on the second ovine fecal

data set (n � 80) in Table 2a

No. of strain
types observed

Frequency counts
of strain

types observed

1 ......................................................................................... 6
2 .........................................................................................15
3 .........................................................................................12
4 .........................................................................................11
5 .........................................................................................12
6 ......................................................................................... 0.5b

a The number of isolates typed per sample was five.
b Since six different types were not observed in the data set, a value less than

1 was added for the frequency count of observing six different types per sample
in order to construct the prior.
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dence level for E. coli with either of the verotoxins in combi-
nation with hemolysin, and two isolates need to be typed to
detect E. coli coding for intimin in combination with hemoly-
sin. The calculated sample sizes (N) per data set are shown in
Table 2.

DISCUSSION

The estimated number of isolates to be typed is meant as a
minimum detection limit for finding all types of isolates
present with a given confidence for different bacterial species
and different sources of samples. Such knowledge is essential
when workers are trying to detect or, even more difficult, to
rule out certain substrates as possible sources of strains of
interest. The importance of characterization of multiple iso-

lates when heterogeneous populations of pathogens are stud-
ied has been described previously (1, 19), but the current study
illustrates how the concept plays out when workers examine a
single bacterial species in samples with different origins or
multiple bacterial species in samples with only one origin. For
K. pneumoniae, strain heterogeneity is limited in milk and soil
samples but high in fecal samples (one, one, and four strains
per sample, respectively) (16). For S. uberis, strain heteroge-
neity is limited in milk and fecal samples but high in soil
samples (1, 1.5, and 4 strains per sample, respectively) (23). To
characterize bacterial heterogeneity in soil samples, the num-
ber of S. uberis isolates that needs to be typed is almost four
times as high as the number of L. monocytogenes isolates that
needs to be typed (Fig. 1).

We provide a single program in WinBUGS code that en-
ables the user to perform all the required calculations together.
In contrast to previous publications (1, 19), there is no need to
resort to additional programs to, e.g., evaluate some probabil-
ities relevant to the calculations by simulation as model input.
The WinBUGS package (20) is freely available on the internet
(http://www.mrc-bsu.cam.ac.uk/bugs). The WinBUGS programs,
as used for the current sample size calculations, are available
from D. Döpfer, together with instructions. A microbiologist
provides microbial typing data and expert opinion about how
many types are expected to exist in the data. The informed user
of the WinBUGS program, for example a microbiologist or a
statistician, has to specify prior information about model pa-
rameters based on the expert opinion or independent data sets
and information about the uncertainty about this prior infor-
mation. The choice of prior distributions is discussed in some
detail. The relatively flat priors (priors 1b and 1c) can be used
routinely, when the user has little prior information or intends
to include little prior information in addition to the data that
are considered directly relevant for the bacterial species and
particular study. The statistician informs the microbiologist
with regard to the number of isolates per sample that needs to
be analyzed, based on the microbiologist’s research question
and expert opinion, as well as relevant data.

The process of updating the information, as illustrated for

FIG. 2. K. pneumoniae (a) and L. monocytogenes (b) from bovine fecal samples have different widths of the 95% credible interval (indicated
by errors bars) and result in different sample sizes for the 95% probability of typing all strains present in the samples.

FIG. 3. Probability p of finding all strains of VTEC and non-type-
specific E. coli in small intestine (triangles), large intestine (multipli-
cation signs), rumen (squares), and feces (diamonds) samples when N
isolates per sample are typed. The dotted horizontal line indicates 95%
probability. The triangles, multiplication signs, squares, and diamonds
show posterior probability distributions based on expert opinion and a
uniform prior. The asterisks show distributions based on an informa-
tive prior for ovine fecal E. coli derived from the analysis of an inde-
pendent fecal data set (n � 50 [Table 1]).
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the informative prior for ovine fecal E. coli with information
derived from an independent pilot data set, is iterative, and
sample size information can be improved with each study that
is undertaken. Updating information through consecutive
studies lies at the core of Bayesian statistical inference (2, 7).

Bayesian statistical approaches are often criticized for em-
ploying expert opinion to generate prior distributions. Calcu-
lations in this study show that with the same priors derived
from expert opinion (e.g., L. monocytogenes in soil versus fecal
samples), different posterior distributions for the probability p
of detecting all strains present can be obtained (10 versus 6
strains [Table 2]). This demonstrates that even data sets of
modest size (10 samples for L. monocytogenes [Table 1]) con-
tain information that is extracted by the Bayesian inference
and reflected by the posterior distributions of p. Credible in-
tervals for p for different data sets may vary in width, as dem-
onstrated for K. pneumoniae versus L. monocytogenes in fecal
samples (Fig. 2a and b). This difference in credible intervals
demonstrates that the posterior critically depends on the
amount and heterogeneity of the data. The “molecular typing
walk” through the ovine gastrointestinal tract illustrates how
different the numbers of E. coli isolates necessary for typing
can be, where the rumen and large intestines have higher
values than the small intestines. The presence of E. coli strains
with different relative frequencies (e.g., specific virulotypes
versus all other strains) can be detected at a certain level of
confidence, as demonstrated using the bovine fecal E. coli
isolates.

It is often assumed that all bacterial strains that are present
in a sample are equally likely to be isolated. This may not
always be true. For example, potentially pathogenic VTEC is
known to comprise about 1% of all E. coli in the feces of
ruminants (15). The number of isolates that needs to be tested
to find at least one isolate of a given type, if it is present in a
less-than-average percentage of all cases, may be far higher
(14). This is particularly relevant when selective or indicator
media for detection of the strain of interest are not available
For example, in one of our laboratories, a real-time PCR test
for detection of VTEC in bulk tank milk is used. No selective
or indicator media are available for non-O157:H7 VTEC, and
the high heterogeneity of E. coli strains in bulk tank milk turns
finding a VTEC isolate into the proverbial looking for a needle
in a haystack. In the analysis presented here, the assumption
that strains are equally likely to be present in a sample is
relaxed for strains that are collected in two groups (for exam-
ple, different groups of genotypes, virulotypes, or other typing
strategies, such as serotyping). We are presently developing an
extension of the model where the assumption is relaxed fur-
ther. The present study is meant to further enhance the aware-
ness about the numbers of isolates that need to be typed in a
sample for heterogeneous populations of pathogens, as initi-
ated by Singer et al. (19) and Altekruse et al. (1).

Another improvement in the calculation of numbers of iso-
lates that need to be typed may be to incorporate hierarchy in
the data (e.g., data from field studies comprising repeated
measurements per farm, animal, food processing plant, or
site). To this end, the current WinBUGS program needs to be
fine-tuned, which requires considerable statistical expertise
and goes beyond routine use of the present WinBUGS pro-
grams.

Independent of the typing method, it is likely that there will
be heterogeneity of isolates in many sample types and surveys,
which makes typing of multiple isolates per sample necessary
so that information is not lost. Variation across niches, species,
and time implies that sample size calculations benefit from a
pilot study before large-scale molecular typing studies are per-
formed. The worst outcome of a “blind” typing and sampling
strategy for heterogeneous populations of pathogens would be
a failure to detect a zoonotic or bioterrorism hazard. Given the
progress of automated typing of microorganisms, it is not un-
thinkable that multiple isolates per sample will be typed in the
near future.

APPENDIX

Details of the statistical calculations: model with more than
two strains. The relevant data are the numbers of strains that
are observed in different samples as determined by molecular
typing. The probability of observing j strains is more easily
expressed when we know that exactly i strains are present in a
sample. This probability is indicated by Pn(j�i), where the index
n expresses the dependence on the number of n isolates that
are typed in a sample and can be obtained from the study of
Johnson and Kotz (10):

Pn�j�i	 � �i
j� �

r � 0

j

�� 1	r� j
r��j � r

i �n

The probability of observing j strains, regardless of the value of
I, is:

Pn�j	 � �
i � 1

k

�iPn�j�i	

These expressions are derived by assuming that all strains in a
sample are equally likely to be observed. Note that the relevant
data may comprise data for samples in which different numbers
of isolates are genotyped. The probability of observing all
strains that are present in a sample, for a number of isolates
(N) that are to be typed for a future sample, is:

p�N	 � �
i � 1

k

�iPN�i�i	

This probability is introduced as an additional derived param-
eter in the WinBUGS program.

Details of the statistical calculations: model with two
(groups of) strains. Let all strains of interest be placed in one
group, referred to as type A, while the remaining strains are
placed in another group, referred to as type B. Types A and B
are now the only types in the analysis. Let x be the number of
isolates of type A that are observed in a sample where n
isolates are genotyped (x � 0 . . . n). Let �1, �2, and �3 be the
probabilities that a random sample contains only type A iso-
lates, only type B isolates (i.e., no type A isolates), or both type
A and B isolates, coded by t � 1, t � 2, and t � 3, respectively.
Depending on the type of sample, t � 1, t � 2, and t � 3, and
x follow a binomial distribution with total n and probability 1,
0, and �, respectively. Note that we no longer assume that all
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strains in a sample have an equal probability of being observed,
since the probability � is not restricted to be equal to 0.5. The
probability of detecting at least one isolate of each type that is
present in the sample, when N isolates are genotyped, is:

p1 � 1 � �3�

N � �1 � 
	N�

Alternatively, we could focus on the probability (p2) of detect-
ing at least one isolate of type A, when type A is present in the
sample:

p2 �
�1 � �3�1 � 
N	

1 � �2

For the � probabilities we use a Dirichlet prior distribution,
as described previously, and for probability � we use a beta
prior distribution. Actually, the beta distribution for � is the
same as the Dirichlet distribution for � and (1 � �) for k �
2. Prior 2b yields the uniform distribution for � for the
interval from 0 to 1.
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