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Abstract

Background: Different clonal types of Toxoplasma gondii are thought to be associated with distinct clinical manifestations
of infections. Serotyping is a novel technique which may allow to determine the clonal type of T. gondii humans are infected
with and to extend typing studies to larger populations which include infected but non-diseased individuals.

Methodology: A peptide-microarray test for T. gondii serotyping was established with 54 previously published synthetic
peptides, which mimic clonal type-specific epitopes. The test was applied to human sera (n = 174) collected from individuals with
an acute T. gondii infection (n = 21), a latent T. gondii infection (n = 53) and from T. gondii-seropositive forest workers (n = 100).

Findings: The majority (n = 124; 71%) of all T. gondii seropositive human sera showed reactions against synthetic peptides
with sequences specific for clonal type II (type II peptides). Type I and type III peptides were recognized by 42% (n = 73) or
16% (n = 28) of the human sera, respectively, while type II–III, type I–III or type I–II peptides were recognized by 49% (n = 85),
36% (n = 62) or 14% (n = 25) of the sera, respectively. Highest reaction intensities were observed with synthetic peptides
mimicking type II-specific epitopes. A proportion of the sera (n = 22; 13%) showed no reaction with type-specific peptides.
Individuals with acute toxoplasmosis reacted with a statistically significantly higher number of peptides as compared to
individuals with latent T. gondii infection or seropositive forest workers.

Conclusions: Type II-specific reactions were overrepresented and higher in intensity in the study population, which was in
accord with genotyping studies on T. gondii oocysts previously conducted in the same area. There were also individuals
with type I- or type III-specific reactions. Well-characterized reference sera and further specific peptide markers are needed
to establish and to perform future serotyping approaches with higher resolution.
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Introduction

Infection with the intracellular protozoan parasite Toxoplasma

gondii is often asymptomatic or causes flu-like symptoms in

immunocompetent individuals. Primary maternal infection with

the parasite during pregnancy may lead to abortion or induce

disease in the transplacentally infected fetus. Toxoplasmosis is

often fatal in immunocompromised patients [1,2,3].

T. gondii has a clonal population structure. North America and

Europe are dominated by three clonal lineages of T. gondii, i.e. the

clonal types I, II and III. Type II is most abundant in infected

humans and domestic animals [4,5,6,7,8]. While type III strains

are abundant in animals, they are rarely seen in humans

[4,5,6,7,9], but this distribution may be impaired by a sampling

bias. Previous studies suggested that type I strains are relatively

rare in animals and humans and they have been predominantly

found in immunocompromised patients who had experienced a

reactivation of T. gondii infection, which frequently occurs in HIV-

infected toxoplasmosis patients [4,10]. However, Ajzenberg and

colleagues (2009) [11] demonstrated that most European immu-
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nocompromised patients with reactivated toxoplasmosis were

infected with T. gondii clonal type II, whereas clonal type I and

non-archetypal T. gondii types were isolated from African and

South American patients. This suggests that the occurrence of

particular T. gondii clonal types is influenced by the geographic

origin of the patients. Most T. gondii isolates obtained in South

America, Asia and Africa are genetically distinct from the clonal

types I, II and III [12,13].

T. gondii of clonal types I, II and III show different virulence

patterns in outbred mice inoculated intraperitoneally (i.p.) with

tachyzoites [14,15]. In this experimental system, T. gondii of the

clonal types II and III are characterized by LD50 values of $103

tachyzoites, i.e. low virulence in mice. By contrast, T. gondii isolates

of type I are highly virulent for mice with LD100 values of #10

tachyzoites [14,15]. It is not yet clear, whether these differences

also imply differences in the pathogenicity of T. gondii in humans

[15]. There is evidence, however, suggesting that host-genetic

factors also contribute to the severity of toxoplasmosis

[16,17,18,19,20,21].

Several serological assays have been reported that aim at

predicting the clonal type of T. gondii by which animals or humans

are infected [22,23,24,25,26]. Serotyping is based on the

observation that the clonal lineages of T. gondii which dominate

in North America and Europe differ not only genetically but also

in the amino acid sequences of several parasite proteins, leading to

polymorphic sites. Antibody responses against these polymorphic

sites can thus be allele-specific [22,27]. Since the three clonal types

may have arisen from common ancestors of two closely related but

genetically different lineages [8,28], many of the polymorphic sites

are specific for more than one of the three clonal types I, II or III.

The pioneering work of Kong et al. (2003) [22] showed that short

synthetic peptides derived from polymorphic regions could be used

to serologically predict the clonal type of T. gondii humans or mice

were infected with.

The aim of the present study was to test a panel of sera from T.

gondii seropositive patients and volunteers (forest workers) from

Germany against polymorphic, type-specific sites of 14 T. gondii

antigens to obtain insights into the clonal types of T. gondii these

persons were infected with and to explore potential differences in

the peptide spectra recognized by patients and seropositive but

non-diseased volunteers.

Materials and Methods

Patient sera from clinics
In total, 74 T. gondii positive human sera were provided by the

Institute of Medical Microbiology and Hospital Hygiene, Hein-

rich-Heine-University, Düsseldorf and the Department of Medical

Microbiology and the National Reference Center for Systemic

Mycoses, University Medical Center, Göttingen. Out of these, 21

originated from individuals with acute toxoplasmosis, and 53 from

individuals with chronic T. gondii infection. In addition, these

institutions provided 65 samples from serologically T. gondii-

negative individuals.

Screening of human sera for T. gondii-specific immunoglobulin

G (IgG) was performed at the institutions providing the sera using

an immunofluorescence test (IFT; bioMérieux, Nürtingen, Ger-

many), the LIAISON IgG immunoassay (DiaSorin, Dietzenbach,

Germany) or the Mini VIDAS immunoassay system (bioMérieux

SA, Marcy l’Etoile, France). T. gondii-specific IgM was detected

using the Mini VIDAS immunoassay system (bioMérieux SA,

Marcy l’Etoile, France), the LIAISON IgM immunoassay

(DiaSorin) or the ISAGA IgM immunoassay (bioMerieux).

Detailed information about the serological results for each patient

serum is shown as supporting information (Table S1). Transient

detection of T. gondii-specific IgM and eventually IgA was regarded

as an indication of an acute infection. In a few patients (n = 7), a

persistent IgM response was demonstrated by repeated testing. For

these patients, a persistent but inactive (latent) infection was

assumed. Presence of IgG and absence of IgM/IgA was regarded

as an indication for persistent but inactive (latent) infection.

Sera from volunteers
A total number of 563 sera were collected from forest workers at

all forest offices in the German Federal State Brandenburg [29].

Ethical considerations
The study reported in our manuscript was a collaborative work

of the Toxonet01 project of the National Research Platform for

Zoonoses and was approved by the respective ethical committees

of the Medical Faculties of the Universities of Düsseldorf (3174,

20/01/09) and Göttingen (8/6/09) and by the State Medical

Association of Brandenburg (19/04/10). Serum samples were

collected under approved protocols.

For the anonymized patient sera provided by the Institute of

Medical Microbiology and Hospital Hygiene, Heinrich-Heine-

University, Düsseldorf and the Department of Medical Microbi-

ology and the National Reference Center for Systemic Mycoses,

University Medical Center, Göttingen informed consent was

obtained verbally, which was in agreement with the ethical

committee’s approval. All volunteers (forest workers) were

included in the study on the basis of written informed consent as

described in detail by Mertens et al. (2011) [29].

Latex agglutination test
A latex agglutination test (LAT, TOXOREAGENT, MAST

Diagnostica GmbH, Reinfeld, Germany) was performed accord-

ing to the instructions of the manufacturer. Results were expressed

as reciprocal antibody titres. Sera with reciprocal LAT titres of

$16 were regarded as seropositive. Reciprocal LAT titres of ,16

were considered as seronegative.

T. gondii surface antigen 1 (TgSAG1) immunoblot
Native T. gondii surface antigen 1 (TgSAG1) was affinity-purified

as previously described [30]. The identity of the purified protein

was confirmed using monoclonal antibodies against TgSAG1

(IgG2a P30/3 [ISL, Paignton, UK]). Detection of antibodies

against TgSAG1 was performed essentially as described for animal

sera [30] with a few modifications. Briefly, human sera were

diluted 1:10 and the conjugate (horse radish peroxidase [HRP]

AffiniPure rabbit anti-human IgA+IgG+IgM [H+L], Jackson

ImmunoResearch, West Grove, PA, USA) was diluted 1:500.

Reactivity with a protein of a relative molecular mass of 30 kDa

was regarded as a T. gondii positive reaction. Sera obtained from a

LAT positive and a LAT negative volunteer were used as controls.

Peptides
A total of 54 T. gondii synthetic peptides based on amino acid

sequences representing polymorphic epitopes of the three

archetypal lineages of T. gondii were used to detect type-specific

antibodies in sera of T. gondii seropositive humans from Germany.

The respective peptide sequences [22] were derived from 14 T.

gondii immunogenic proteins, including dense granule proteins,

surface antigens and rhoptry proteins (Table S2). Peptide

sequences were based on information available for representative

T. gondii strains of the clonal types I (RH), II (Me49 and

Prugniaud) and III (VEG and CEP) (previously described by Kong

Serotyping of Toxoplasma gondii in Humans
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et al. (2003) [22]). Some of the peptides had sequences specific for

more than one of the three clonal lineages. These peptides are

referred to as type I–II, type I–III or type II–III.

Preparation of peptide-microarray slides
Peptides were synthesized and printed on peptide-microarray

slides by JPT Peptide Technologies GmbH, Berlin. First, amino-

oxy-acetylated peptides were synthesized on cellulose membranes

in parallel using the SPOT synthesis technology [31,32]. After side

chain de-protection, the solid phase-bound peptides were

transferred into 96-well microtitre filtration plates (Millipore,

Bedford, USA) and treated with 200 ml of aqueous triethylamine

(0.5% v/v) to cleave the peptides from the cellulose support.

Peptide-containing triethylamine solution was filtered off and the

solvent removed by evaporation under reduced pressure. The

resulting peptide derivatives (50 nmol) were re-dissolved in 25 ml

printing solution (70% DMSO, 25% 0.2 M sodium acetate

pH 4.5, 5% v/v glycerol) and transferred into 384-well microtitre

plates. Two droplets of 0.5 nl peptide solution (1 mM) were

deposited per spot on epoxy-functionalized glass slides (Corning

Epoxy # 40042; Corning, Lowell, USA) using the non-contact

printer Nanoplotter (GESIM, Groberkmannsdorf, Germany)

equipped with a piezoelectric NanoTip (GESIM). The method

for chemoselective immobilization on peptide-microarrays was

originally described by Panse and colleagues (2004) [33]. This

procedure was further optimized for peptide arrays for serum

antibody detection and reviewed by Andresen and Grötzinger

(2009) [34]. Chicken IgY, cat, human, mouse and pig IgG (Sigma,

Munich, Germany and Diatec, Oslo, Norway) were also printed

on the slides as antibody controls at a concentration of 500 mg/ml

in 100 mM PBS buffer, pH 8.0.

The peptide library was spotted on each slide in triplicate. The

slide layout consisted therefore of three identical sub-arrays;

peptide and control spots were printed in 21 identical blocks.

Printed peptide-microarrays were kept at room temperature for

5 h, washed with de-ionised water, quenched for 1 h with 0.1 mg/

ml bovine serum albumin (BSA) in 75 mM saline sodium citrate

(SSC) buffer, pH 7.0, containing 0.1% SDS and 750 mM NaCl, at

42uC, washed extensively with 1.5 mM SSC buffer, pH 7.0,

followed by washings with de-ionised water and dried using a chip

centrifuge (UNIEQUIP Laborgerätebau und Vertriebs GmbH,

Planegg, Germany). Resulting peptide-microarrays were stored at

4uC until used.

Examination of sera by peptide-microarray
Array slides were first incubated with blocking solution (PBS,

0.05% Tween 20, 0.2% I-Block [Applied Biosystems, Bedford,

MA, USA]) for 30 min. The slides were then placed into a

Microplate Microarray Hardware (Arrayit Corporation, Sunny-

vale, CA, USA), which allows to examine arrays separately in a 96

well ELISA format.

Human serum samples (150 ml/well), diluted 1:200 in blocking

solution, were incubated at 37uC for 1 h and washed seven times

for 3 min with PBS-T (PBS, pH 7.2; 0.5% Tween 20) on a shaker

at room temperature. Conjugate (Cy5-AffiniPure donkey anti-

human IgG, Fcc fragment specific [min X Bov,Hrs,Ms Sr Prot],

Jackson ImmunoResearch Laboratories, West Grove, USA)

diluted 1:1000 (1 mg/ml) was added to the wells (150 ml/well),

incubated at 37uC for 30 min, and washed as indicated above,

followed by three additional washing steps, 1 min each, with

sterile-filtered MilliQ water. Afterwards, the slides were spun dry

for 10 s using a slide spinner (DW-41MA-230, Qualitron Inc/

Eppendorf, Berzdorf, Germany).

Scanning and measurement of spot signal intensities and
data extraction

Peptide-microarray slides were scanned at a wavelength of

635 nm using a GenePix 4000B microarray scanner (Axon

Instruments, Concord, Canada) in a low-noise, high-sensitivity

photomultiplier tube (PMT) at a level of 100% and a resolution of

10 mm. Images were saved electronically in TIFF and JPG

formats.

Image analysis was performed using the circular feature

alignment of the GenePix Pro 6.0 software (Axon Instruments)

and GenePix Array List (GAL) files. Each circular feature

consisted of the peptide spot to determine the foreground and a

surrounding area to detect the background reaction. The signals

from pixels of each circular feature were used to calculate median

net fluorescence intensities of both, the foreground and back-

ground of each peptide spot [35,36].

Peptide-microarray data analysis
To analyze the raw data (median of signal intensity) in GPR

(GenePix Results) files, index values (IVs) were recovered for each

peptide-spot as log2 of the quotient of the medians of foreground

and background [35,36]. Each serum was analyzed on a single

block with the peptides printed in triplicate in each block. To

obtain the serum-specific reaction against each peptide, the means

of the IVs for each peptide spot per block (mean sample index

value, MSIV) were calculated using the ‘‘corrected mean’’ formula

(Microsoft Office EXCEL 2003) to exclude artefacts, i.e. false-

positive and -negative signals within the replicas in each block.

Application of the ‘‘corrected mean’’ formula had the following

effect: If one out of three IVs per sample deviated more than 1.5-

fold from the mean of all three IVs, the value was discarded and

MSIV was calculated from the two remaining IVs. The peptide-

microarrays used in this study failed to meet the criteria required

for submission under MIAME based public databases [37,38].

Therefore MSIV for all sera and peptides are presented as

supporting information (Table S3).

To ensure the specificity, we established an individual cut-off for

each peptide to classify a reaction with this particular peptide as

positive or negative using receiver-operating characteristic (ROC)

analysis and the serological status of each serum (Table S3) as a

reference standard. The cut-off was selected for each peptide

separately using the MSIVs obtained for all T. gondii seronegative

and seropositive human sera and accepting a maximum of 4%

false-positive reactions. The results of ROC analysis (specificity,

area under ROC curve, sensitivity and cut-off) for each peptide are

shown as supporting information (Table S2). Table S4 shows the

results of the application of these cut-offs to the MSIV for each

serum and each peptide.

Statistical analysis
Fisher’s exact test and logistic regression were computed with R,

version 2.8.1 (R Foundation for Statistical Computing, Vienna,

Austria, ISBN 3-900051-07-0, URL http://www.R-project.org)

using packages ‘‘Stats’’ and ‘‘Epicalc’’ respectively [39]. Linear

regression and the Wilcoxon rank test were performed using

STATISTICA 8 (StatSoft, Tulsa, USA). P-values,0.05 were

regarded as statistically significant. Kappa values were calculated

using a web-based program (http://www.graphpad.com/

quickcalcs/kappa1.cfm). To adjust p-values in multiple testing

scenarios, Bonferroni correction was used [40].

To establish cut-offs for each peptide, ROC analysis was applied

using the R-package ‘‘DiagnosisMed’’.

Serotyping of Toxoplasma gondii in Humans
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The R-package ‘‘vcd’’ was used for computing and visualizing

log-linear independence models to examine whether reactions

with specific peptide cohorts occurred more frequently than with

others, i.e. whether the hypothesis of independence had to be

rejected. Mosaic plots were used to visualize resulting contingency

tables and Pearson residuals. Residuals displayed in mosaic plots

represent standardized deviations of observed from expected

values calculated by Pearson chi-square. The size of each box

within the plot corresponds to the observed frequencies of positive

and negative peptide reactions as well as the number of tested

peptides within a peptide cohort specific of a clonal type. To

present Pearson residuals in mosaic plots, the shading introduced

by Friendly et al. (1994) [41] was used. Blue scale shading with a

solid blue line (Pearson residuals: .2) or red scale shading with a

dashed red line (Pearson residuals: ,22) indicate statistically

significant (Pearson chi-squared p-value,0.05) over-, or under-

representation of certain clonal type-specific peptide reactions

within analyzed groups of sera, respectively (rejection of

independence hypothesis). Pearson residuals from 22 to 2 are

presented by filling the boxes in white colour, presenting the

homogeneous distribution of peptide reaction within certain

groups.

To perform multiple comparisons of the MSIVs for the tested

peptides as well as for clonal type-specific peptide groups, a Post-

Hoc-Test (LSD[Least Significant Difference]-Test) on ANOVA

results was applied using the R package ‘‘agricolae’’. The differences

between the means of positive peptide reactions in the analysis of

peptide reactivities within tested groups were regarded as

significant if the differences were equal to or higher than the

LSD values.

Results

Examination for antibodies against T. gondii in sera from
individuals and seropositive volunteers

All sera of T. gondii-infected individuals showed reciprocal LAT

titres of 16 to .2048 (Table 1; Fig. 1 [A]). The majority of sera

from individuals with an acute T. gondii infection (15 of 21; 71%)

had reciprocal LAT titres of .256, while the majority of sera from

individuals with a latent T. gondii infection (31 of 53; 59%) showed

reciprocal LAT titres of 16 to #256. All sera from seronegative

patients (n = 65) had reciprocal LAT titres of ,16.

The initial LAT screening of a total of 563 sera of forest workers

revealed the presence of antibodies against T. gondii in the LAT in

476 (84%) (Table 1). The majority of these sera (351 of 476; 74%)

had LAT titres ranging between 16 and #256 (Fig. 1 [A]). The

remaining sera (n = 87) were regarded as seronegative (reciprocal

LAT titres ,16). Volunteers had significantly lower LAT titres

than latently or acutely infected patients (Wilcoxon rank test, p-

value,0.001). To confirm the LAT results, all volunteer sera were

also tested by TgSAG1 immunoblot. Antibodies to TgSAG1 were

detected in 485 of 563 (86%) sera. The agreement between the

TgSAG1 immunoblot and the LAT was characterized by a kappa

value of 0.913.

Logistic regression analysis revealed that seropositivity in

volunteers (forest workers) was positively associated with age in

both the LAT and the in-house TgSAG1 immunoblot (LAT: OR

1.09 [95% CI: 1.06–1.12], pWald-value,0.001; TgSAG1 immu-

noblot: OR 1.07 [95% CI: 1.04–1.1], pWald-value,0.001).

For further examination in the peptide-microarray, 100

volunteer sera which had tested T. gondii positive in both assays

and 75 volunteer sera with negative results in both T. gondii tests

were selected randomly. Seropositive and seronegative volunteers

were interviewed during sampling to obtain information about

their health status. None of the volunteers included in this study

reported signs of acute toxoplasmosis.

Diagnostic specificity and sensitivity of peptide-
microarray testing in seronegative and seropositive sera

All sera of seronegative patients and volunteers (n = 140) as well

as sera from seropositive patients and volunteers (n = 174) were

used to establish peptide-specific cut-offs by ROC analysis. The

serological status of patients and volunteers was based on LAT

results as a reference standard (Table S3). Application of these cut-

offs revealed peptide-dependent diagnostic specificities for the T.

gondii-negative sera which ranged between 96% and 97% (Table

S2). A total of 174 sera, including all seropositive sera from

patients (21 with acute and 53 with latent T. gondii infection) and

100 randomly selected sera from seropositive volunteers were

tested on the peptide-microarray (Table S5). Twenty-two of these

174 (12.6%) seropositive sera failed to recognize any of the 54

peptides. All non-reactive sera had low LAT titres, i.e. showed

reciprocal LAT titres between 16 and #256.

Sera of patients with an acute T. gondii infection recognized a

significantly higher number of peptides than the sera of

seropositive volunteers (Wilcoxon Rank Test, p-value = 0.012).

Also sera of patients with a latent T. gondii infection reacted with a

statistically significantly higher number of peptides than the sera of

seropositive volunteers (Wilcoxon Rank test, p-value = 0.017). The

differences between individuals with acute and latent T. gondii

infections were not statistically significant (Wilcoxon rank test, p-

value = 0.256). Linear regression analysis revealed that the number

Table 1. Results in the Latex-Agglutination-Test (LAT) for sera from groups of seropositive and seronegative individuals with acute
or latent toxoplasmosis including patients from clinics and volunteers (forest workers).

Group Infection status LAT titre

,16 16 32 64 128 256 512 1024 2048 .2048

Patients (n = 21) Acute* 1 1 1 3 4 3 4 4

Patients (n = 53) Latent# 1 1 7 10 12 3 8 1 10

Volunteers (n = 476) PositiveV 22 44 79 111 95 76 35 9 5

Patients/Volunteers (n = 152) Negative 152

*Transient detection of T. gondii specific IgM and eventually IgA was regarded as an indication of acute infection.
#Presence of IgG and absence of IgM/IgA was regarded as an indication for persistent but inactive (latent) infection. In a few patients a persistent IgM response was
demonstrated by repeated testing. For these patients, a persistent but inactive (latent) infection was assumed.
VAntibody isotypes not specified.
doi:10.1371/journal.pone.0034212.t001
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of recognized peptides was statistically significantly associated with

the log2-transformed reciprocal LAT titres (p-value,0.001). This

association was characterized by an R2 value of 0.16 (Figure 1[B]).

Type-specificity of peptide reactions
In total 9396 (54 peptides6174 sera) peptide reactions were

possible: 2436 (14 peptides6174 sera) type I-specific, 2436 (14

peptides6174 sera) type II-specific, 1044 (6 peptides6174 sera)

type III-specific, 696 (4 peptides6174 sera) type I–II-, 1740 (10

peptides6174 sera) type I–III-, and 1044 (6 peptides6174 sera)

type II–III-specific. In total, 731 of 9396 (8%) possible peptide

reactions were observed. Positive reactions were predominantly

directed against type II-specific and the type II–III-specific

peptides (proportions of peptide reactions 14% [336/2436]) and

10% [106/1044], respectively). The positive reactions against type

I- (116/2436 [5%]), type III- (41/1044 [4%]), type I–II- (30/696

[4%]) or type I–III-specific (102/1740 [6%]) peptides were

underrepresented.

Reactions within clonal type-specific peptide groups were

statistically analyzed using a log-linear model. Contingency tables

and deviations from independence hypothesis were visualized in

mosaic plots (Fig. 2 [A, B, C, D]). Pearson residuals .4 indicated a

statistically significant (Chi-squared p-value,0.001) overrepresen-

tation of positive clonal type II-specific peptide reactions within all

groups of sera (Fig. 2 [A, B, C, D]). In latently infected patients,

type II–III-specific positive peptide reactions were also statistically

significantly overrepresented (Pearson residuals: 2–4; Chi-squared

p-value,0.05) (Fig. 2 [B]). In patients with an acute infection and

in volunteers reactions with type II–III-specific peptides were also

overrepresented (white rectangle with solid blue borderline),

however, the hypothesis of independence could statistically not

be rejected (Fig. 2 [A, C]). Reactions with peptides of type I, III, I–

III and I–II were underrepresented in all tested groups of sera

(Fig. 2 [A, B, C, D]).

Of 35 dense granule-derived peptides, 7 were recognized by

16%–42% of the sera (Table S5). The majority of these peptides

(n = 5) had amino acid sequences specific for type II (dGRA6-II-

216(9), GRA3-II-28, GRA6-II-214, dGRA6-II-214, GRA7-II-

225; Table S5). The amino acid sequences of the remaining two

peptides were specific for both, clonal types I and III (GRA3-I/III-

28) or had a sequence specific for clonal type I (NTP3-I-99). Two

other dense granule peptides were recognized by 10–11% of the

sera. One of these peptides had a type II-specific (dGRA6-II-

214(9)) and the other peptide a type I–II-specific (GRA7-I/II-215)

amino acid sequence.

Only one of 15 surface antigen-derived (SAG3-II-49) and one of

six rhoptry-derived (ROP1-II/III-181) peptides with type II and

type II–III specificity were recognized by more than 15% of the

sera (Table S5). One rhoptry (ROP1-II/III-359) and none of the

remaining surface-derived peptides were among those recognized

by 10–15% of the sera.

Differences in intensity of type-specific peptide reactions
To detect differences between reaction intensities (MSIVs) for each

tested peptide and for peptide groups presenting clonal type

specificity in seropositive patients and volunteers, ANOVA and the

LSD-Post-Hoc-Test were performed (Fig. 3). The analyses revealed

that for the groups of acutely and latently infected patients, those

peptide groups mimicking clonal type II and II–III specificities were

recognized by the highest MSIVs as compared to the remaining

peptide groups. These differences were statistically significant

(LSD.0.36, p-value,0.05 [for acutely infected patients];

LSD.0.16, p-value,0.05 [for latently infected patients]) (Fig. 3 [A,

C]). In volunteers, the clonal type II-specific peptide group was also

recognized by the highest MSIVs as compared to remaining peptide

groups. The difference was statistically significant (LSD.0.102, p-

value,0.05 [for seropositive volunteers]) (Fig. 3 [E]).

The intensity of index values was also analysed for each peptide

in patient groups with acute or latent T. gondii infection and in

seropositive volunteers.

Peptides derived from dense granule antigens mimicking type II

specificity (GRA6-II-214, dGRA6-II-214, dGRA6-II-216(9)) and

one type II–III rhoptry derived peptide (ROP-II/III-181) were

detected by the highest MSIVs in all patient and volunteer groups.

The differences were statistically significant (LSD.0.67, p-

value,0.05 [for acutely infected patients]; LSD.0.36, p-

value,0.05 [for latently infected patients]; LSD.0.24, p-val-

ue,0.05 [for seropositive volunteers]) (Fig. 3 [B, D, F]).

Figure 1. The number of recognized peptides is associated with the titre in LAT (Latex Agglutination Test). Wilcoxon rank test analysis
of the T. gondii LAT titre distribution within groups of human sera revealed significantly lower LAT titres in sera from volunteers than in sera from
latently or in acutely infected individuals (p-value,0.001). No significant differences were observed between sera from acutely and latently infected
individuals (A). The association between LAT titre and number of recognized peptides was characterized by an R2 value of 0.16 (p-value,0.001) (B).
doi:10.1371/journal.pone.0034212.g001
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In patients with acute and latent toxoplasmosis, two further type

II-specific peptides (GRA3-II-28, GRA7-II-225) were also detect-

ed by the highest MSIVs (LSD.0.67, p-value,0.05 [acutely

infected patients]; LSD.0.36, p-value,0.05 [Latently infected

patients]) (Fig. 3 [B, D]).

GRA3-I/III-28 and SRS-I-53 peptides also belong to the

peptide group recognized by the highest MSIVs in acutely T.

gondii-infected patients and in seropositive volunteers (LSD.0.67,

p-value,0.05 [acutely infected patients]; LSD.0.24, p-val-

ue,0.05 [for seropositive volunteers]) (Fig. 3 [B, F]).

Differences in number of anti-peptide reactions between
groups of sera

In all sera from patients and volunteers, reactions against type II

dense granule based peptides (GRA3-II-28, GRA6-II-214, GRA7-

II-225) and a type II–III rhoptry peptide (ROP1-II/III-181)

dominated, i.e. these peptides reacted with more than 20% of the

sera (Table S5).

In addition, further peptides were recognized by more than

20% of the sera of patients with acute toxoplasmosis (dGRA6-II-

216(9)) but not by those of seropositive volunteers and patients

with latent infection. More than 20% of the sera from patients

with latent infection recognized a type II surface antigen-derived

peptide (SAG3-II-49), but those of volunteers and individuals with

acute toxoplasmosis failed to react with this peptide in a

proportion of .20%. Two dense granule-based peptides

(dGRA6-II-214, GRA3-I/III-28) were recognized by more than

20% of the patients sera (acute, latent), but not by those of

seropositive volunteers.

No major differences within each peptide category were

observed between the different groups of persons (Table S6), with

three exceptions. Individuals with acute toxoplasmosis recognized

Figure 2. Statistically significant overrepresentation of reactions against clonal type II specific peptides. To determine whether
reactions against certain clonal type-specific peptide cohorts (I, II, III, I–II, I–III, or II–III) were over- or underrepresented in various groups of T. gondii
positive human sera a log-linear model analysis was performed and visualized by mosaic plot: acutely infected individuals (A), latently infected
individuals (B) serologically positive volunteers (forest workers) (C) and all tested positive human sera (D). The size of each box corresponds to the
observed frequencies of positive (Pos) and negative (Neg) peptide reactions as well as the number of tested peptides within each clonal type-specific
peptide cohort. Pearson residuals represent standardized deviations of observed from expected values. The solid blue line indicates that the number
of positive or negative reactions is higher than expected but not statistically significant. Blue scale shadings suggest the statistically significant
rejection of the null hypothesis, i.e. overrepresentation of certain type-specific peptide reactions (Pearson chi-squared p-value,0.05). Dashed red
lines indicate an underrepresentation of positive or negative peptide reactions which is not statistically significant. Red scale shadings suggest a
statistically significant rejection of the null hypothesis, i.e. underrepresentation of peptide reactions within tested peptide and human groups
(Pearson chi-squared p-value,0.05).
doi:10.1371/journal.pone.0034212.g002
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a significantly higher proportion of peptides with type II-specific

sequences than volunteers (p-value = 1.87610211; Fisher’s exact

test; Table S6) and latently infected patients, (p-val-

ue = 8.24610211). Latently infected patients recognized a signif-

icantly higher proportion of peptides with type II-specific

sequences than seropositive volunteers (p-value = 2.9861025,

Fisher’s exact test; Table S6). Acutely and latently infected

patients recognized a significantly higher proportion of peptides

with type II–III specificity as compared to volunteers (p-

value = 0.00021, p-value = 0.0036; Fisher’s exact test; Table S6).

Peptide-microarray-based serotyping
Data analysis was carried out to identify the clonal types

responsible for the infection of the tested persons and to analyse

potential type-specific differences in the peptide spectra recognized

by individuals presenting acute or latent T. gondii infection and

seropositive volunteers.

The majority (n = 124; 71%) of sera showed reactions against

synthetic peptides with sequences specific for clonal type II (type II

peptides) (Table 2). Forty-two percent (n = 73) or 16% (n = 28) of

the sera reacted with type I and type III peptides, respectively,

while type II–III, type I–III or I–II peptides were recognized by

49% (n = 85), 36% (n = 62) or 14% (n = 25) sera, respectively.

Based on the anti-peptide reactions, only a fraction of sera could

be clearly attributed to either of the three clonal types I, II, or III

(Table 3). Among sera that reacted with peptides containing type

II specific sequences, 35% (50/142) showed reactions exclusively

compatible with clonal type II (Table 3). The remaining 65% (92/

142) reacted not only with type II peptides but also with peptides

with sequences specific for other clonal types. Most sera reacting

with type I and type III peptides could not be clearly assigned to

one of the three clonal lineages as many of them also recognized

peptides with sequences specific for the other clonal types (Table 3).

Discussion

A number of polymorphic peptides has been described in T.

gondii antigens which might be suitable to indirectly determine the

clonal type of T. gondii, humans or mice are infected with [22].

Using such peptides, we tested sera from seropositive volunteers

and patients from Germany, to obtain insights into the clonal types

of T. gondii by which these humans were infected and to examine

potential differences in the spectra of peptides recognized by sera

of various subgroups.

Several attempts have been made to type T. gondii infections by

serological techniques using ELISA formats in which synthetic

peptides were coupled via keyhole limpet hemocyanin [22,42] or

Figure 3. Strongest reaction intensities were recorded for clonal type II specific peptides. To evaluate the intensities (MSIVs) by which
single peptides as well as peptide cohorts (I, II, III, I–II, I–III, or II–III) were recognized by T. gondii seropositive patient and volunteer groups, ANOVA
and the Least Significant Difference (LSD)-Post-Hoc-Test were performed. Whiskers in barplots represent 95% confidence intervals of the means of
MSIVs. The differences between the means of MSIVs for single peptides or peptide cohorts within tested groups were regarded as statistically
significant, when the differences were equal or higher than the LSD values. Different letters above the whiskers indicate significant differences
between the mean intensities in the Post-Hoc-LSD test. Means of MSIVs for each peptide cohort are presented in (A) for the acutely infected patient
group (LSD.0.36, p-value,0.05); in (C) for the latently infected patient group (LSD.0.16, p-value,0.05); and in (E) for the seropositive volunteer
group (LSD.0.10, p-value,0.05). Means of MSIVs for each single peptide are presented in (B) within the acutely infected patient group (LSD.0.67, p-
value,0.05); in (D) within the latently infected patient group (LSD.0.36, p-value,0.05); and in (F) within the seropositive volunteer group
(LSD.0.24, p-value,0.05).
doi:10.1371/journal.pone.0034212.g003
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directly to the solid phase [24,25,43,44]. Others used recombinant

antigens for serotyping [23,26]. We applied a synthetic peptide-

microarray format to test a panel of sera simultaneously with all

peptides that had previously been used in an ELISA by Kong et al.

(2003) [22]. In studies on other infectious diseases, Melnyk et al.

(2002) [45] and Mezzasoma et al. (2002) [46] compared peptide-

ELISAs with peptide-microarrays and found that peptide-micro-

arrays were much more sensitive than peptide-ELISAs. We

therefore expected for the serological typing of T. gondii infections

that the microarray format should have at least the same sensitivity

as the previously reported ELISA format. To ensure a minimum

diagnostic specificity of 96% for each peptide, i.e. to make sure

that it is unlikely that T. gondii-negative humans react with any of

these peptides, an individual cut-off was selected for each peptide

based on the foreground-background ratio obtained for each

peptide and the sera of 140 T. gondii seronegative humans.

By conventional techniques, i.e. by PCR-RFLP mediated

genotyping using polymorphic loci, we have previously shown

that almost all T. gondii parasites isolated from cats in Germany

showed an allele combination resembling that of clonal type II

[47,48]. Only a single clonal type III isolate and a few isolates with

allele combinations different from those of clonal type I, II or III

were observed [47]. We therefore expected that the majority of

sera from seropositive humans from Germany would recognize

peptides with type II-specific amino acid sequences. This turned

out to be true since reactions with type II peptides were superior

compared to reactions with other peptides in number as well as in

intensity. Thus our results are in accord with the results of

serotyping studies performed in France and Poland with a limited

number (i.e. 8 or 2, respectively) of those 54 peptides we applied

(GRA6-II-214, GRA6-I/III-220, dGRA6-II-214, dGRAS6-I/III-

220, GRA7-II-225, GRA7-III-225, dGRA7-II-225, dGRA7-III-

225) [42,43]. In addition, our findings confirm the results of studies

from Peyron et al. (2006) and Morisset et al. (2009) with

recombinant polypeptides mimicking polymorphic clonal type-

specific sites of T. gondii GRA5 and GRA6 which revealed a

significantly dominant clonal type II-specific serological response

in patients from France, Italy and Denmark [23,26].

Although reactions with type II-specific peptides dominated in

number and intensity in our study, the sera of many of these

humans reacted also with a few peptides with sequences specific

for other clonal types. As it is unlikely that all these individuals

experienced mixed infections or infections with atypical T. gondii,

these conflicting results were probably due to the limited specificity

of some of the peptides used in serotyping. In these cases, the

clonal type of T. gondii the affected persons were infected with

could not be unambiguously determined. One reason for a low

discriminatory power of individual peptides might be the presence

of at least one further epitope in the non-polymorphic part of the

peptide in addition to the type-specific epitope in the polymorphic

site [22,23]. Therefore, our results suggest that a large panel of

well characterized human sera is needed to determine the

specificity of each polymorphic peptide. The peptides that are

finally used to differentiate clonal type-specific antibody reactions

in individuals must be selected extremely carefully. Unfortunately,

well-characterized human sera suitable for the evaluation of

peptides are rare.

The results of this study also show that the sensitivity by which

peptides were recognized varied considerably between the

examined groups of patients or volunteers, respectively. For

instance, individual type II-specific peptides were recognized by

1% to 42% of the sera.

Each individual serum recognized an almost unique spectrum of

peptides. This may reflect an individual maturation of particular

Table 2. Clonal type-specific anti-peptide reactivity of T. gondii positive humans.

Peptide specificity Acute patients (n = 21) Non-acute patients (n = 53)
Volunteers (forest workers)
(n = 100) Total (n = 174)

n % n % n % n %

I 9 43 26 49 38 38 73 42

II 19 91 38 72 67 67 124 71

III 2 10 8 15 18 18 28 16

I–II 2 10 9 17 14 14 25 14

I–III 15 71 19 36 28 28 62 36

II–III 19 91 30 57 36 3 85 49

Reactions are sorted according to the specificities of peptides.
doi:10.1371/journal.pone.0034212.t002

Table 3. Proportion of human sera showing peptide reactions compatible with T. gondii infections by clonal types I, II, or III.

Sera with anti-peptide reactions exclusively
compatible with the respective clonal type

Sera with anti-peptide reactions not exclusively
compatible with the respective clonal type

Total (%) AP (%)* LP (%)* V (%)* Total (%) AP (%)* LP (%)* V (%)*

Clonal type I 11 (11) 0 (0) 5 (15) 6 (12) 89 (89) 15 (100) 28 (85) 46 (88)

Clonal type II 50 (35) 5 (25) 16 (36) 29 (37) 92 (65) 15 (75) 28 (64) 49 (63)

Clonal type III 12 (13) 1 (6) 5 (17) 6 (13) 80 (87) 15(94) 25 (83) 40 (87)

Reactions are sorted according to their compatibility with infections of T. gondii of the clonal type I, II, or III.
*Data resolved for seropositive patients with acute toxoplasmosis (AP), patients with latent toxoplasmosis (LP) and seropositive volunteers (V).
doi:10.1371/journal.pone.0034212.t003
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plasma cells leading to an increased affinity of the antibodies they

produce against different antigens or epitopes of T. gondii. The

variation in the sensitivity of peptide recognition by different

groups of infected persons may be further influenced by a variety

of variables, e.g. host-genetic factors, route of infection, secondary

infections and time of primary infection [17,18,49].

We also found a statistically significant association between the

LAT titre and the number of recognized peptides, with the LAT

titres explaining 16% of the variability in the number of

recognized peptides. Consequently, groups of humans showing

differences in mean LAT titres showed similar differences in the

number of peptides recognized in the microarray analysis. For

instance, sera of patients with an acute T. gondii infection had a

significantly higher mean LAT titre (Fig. 1 [A]) and recognized a

significantly higher number of peptides than sera of seropositive

volunteers.

In this study, 13% of the LAT positive sera did not react with

any of the 54 peptides used. A previous study, in which two

ELISAs with peptides presenting clonal type II and I–III specificity

(GRA6-II-214, GRA6-I/III-220) were used, revealed that more

than 30% of seropositive sera from Europe (France and Portugal)

failed to react in these peptide ELISAs [43]. Sousa and colleagues

(2009) suggested that the use of single peptides for serotyping could

lead to mistyping. To overcome this problem, a large pool of

polymorphic peptides from different antigens should be used [24].

Although we applied a much higher number of peptides as

compared to these previous studies, we also observed a high

proportion of sera that reacted only with a low number of

peptides.

Individual peptides were only recognized by a limited number

of sera. GRA6-II-214, for example, has previously been used in a

number of other typing studies [22,24,25,41]. This peptide was

recognized only by 31% of all tested T. gondii antibody positive

sera. The truncated variations of this peptide (dGRA6-II-214;

dGRA6-II-214(9); dGRA6-II-216(9)) were recognized by even

lower proportions of T. gondii antibody-positive sera (19%, 10%

and 18%, respectively). Therefore, the results of our study show

that the sensitivity of individual peptides might be low and,

consequently, allow to conclude that serotyping with synthetic

peptides requires a large number of highly specific polymorphic

peptides.

Our results clearly showed that peptides derived from dense

granule proteins, i.e. GRA3, GRA6, and GRA7, were the most

reactive ones when tested with human sera. Of 35 dense granule-

derived peptides, 7 were recognized by more than 15% of the

examined human sera. None of the 15 surface antigen-derived

peptides and only 1 of 6 rhoptry antigen-derived peptides

rendered a similar result. This finding is in accord with the high

potential of dense granule proteins as diagnostic antigens

[50,51,52,53].

In our study, a higher proportion of acutely infected patients

recognized GRA6 and GRA3 derived peptides as compared to

individuals with latent T. gondii infection (Table S5). This is in

accord with previous results of others who showed that it is

possible to discriminate between acute and chronic T. gondii

infections by using recombinant GRA6 or GRA7 [54,55,56].

In conclusion, the results of this study demonstrate that a

peptide-microarray assay can be used to detect T. gondii clonal

type-specific antibody responses in seropositive humans. A

previous study suggested that individuals in the study area were

mainly exposed to clonal type II T. gondii [47,48]. Indeed, positive

peptide reactions presenting clonal type II specificity were

statistically significantly overrepresented in the tested human

population and the intensity by which type II peptides were

recognized was significantly higher than the intensity by which

peptides with other specificities were detected. However, to

establish serotyping assays with higher resolution, well-character-

ized reference sera and further specific peptide markers are

needed.
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