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Abstract

The carnitine palmitoyltransferase (CPT) enzyme system facilitates the transport of long-chain fatty acids into mitochondria to provide sub-

strates for b-oxidation. We performed an analysis including three coding SNP in the muscle isoform of the CPT1b gene (rs3213445,

rs2269383 and rs470117) and one coding SNP in the CPT2 gene (rs1799821) to find associations with traits of the metabolic syndrome

(MetS). Male participants (n 755) from the Metabolic Intervention Cohort Kiel were genotyped and phenotyped for features of the

MetS. Participants underwent a glucose tolerance test and a postprandial assessment of metabolic variables after a standardised mixed

meal. Carriers of the rare CPT1b 66V (rs3213445) allele had significantly higher g-glutamyl transpeptidase (GGT), glutamic oxaloacetic

transaminase (GOT) and glutamic pyruvate transaminase (GPT) activities (P,0·0001, P¼0·03 and P¼0·048, respectively) and a higher

fatty liver index (FLI, P¼0·026). Fasting and postprandial TAG (P¼0·007 and P¼0·009, respectively) and fasting glucose (P¼0·012)

were significantly higher in 66V-allele carriers. The insulin sensitivity index determined after a glucose load was lower in those subjects

(P¼0·005). Total cholesterol (P¼0·051) and LDL-cholesterol (P¼0·062) tended to be higher in 66V-allele carriers when compared with

I66I homozygotes. Homozygosity of the rare K531E allele presented with lower GGT and GOT activities (P¼0·011 and P¼0·027, respect-

ively). E531E homozygotes tended to have lower GPT and FLI (P¼0·078 and P¼0·052, respectively). CPT2 V368I (rs1799821) genotypic

groups did not differ in the investigated anthropometric and metabolic parameters. The present results confirm the association of CPT1b

coding polymorphisms with the MetS, with a deleterious effect of the CPT1b I66V and a protective impact of the CPT1b K531E SNP,

whereas haplotype analysis indicates a relevance of the E531K polymorphism only.
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Mitochondrial oxidation of long-chain fatty acids provides an

important source of energy for the heart as well as for skeletal

muscle during prolonged aerobic work and for hepatic keto-

genesis during long-term fasting. The carnitine shuttle is

responsible for transferring long-chain fatty acids across the

barrier of the inner mitochondrial membrane to gain access

to the enzymes of b-oxidation. The shuttle consists of three

enzymes (carnitine palmitoyltransferase 1 (CPT1), carnitine

acylcarnitine translocase and carnitine palmitoyltransferase 2

(CPT2)) and a small, soluble molecule, carnitine, to transport

fatty acids as their long-chain fatty acylcarnitine esters(1).

CPT1b is the muscle isoform of CPT1 but also expressed in

adipocytes and testes and CPT2 is expressed ubiquitous with

a predominant expression in the liver and intestine.
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The CPT1b (muscle) gene is located on the human chromo-

some 22q13.33; the CPT2 gene on chromosome 1p32.

In a French-Canadian population, an interaction of CPT1b

genetic variants with fat intake to modulate obesity has been

shown(2). Furthermore, in African ancestry men, CPT1b

coding polymorphisms were associated with lower intermus-

cular adipose tissue but higher subcutaneous adipose

tissue(3). In human hypertension, several haplotypes in the

CPT1b and CPT2 genes were identified to modify the left

ventricular mass index, which is independently associated

with the incidence of cardiovascular and all-cause mortality(4).

Based on these findings, we investigated the contribution of

CPT1b and CPT2 coding polymorphisms to traits of the

metabolic syndrome (MetS), including parameters of TAG

metabolism and susceptibility to the MetS by employing

the Metabolic Intervention Cohort Kiel. The investigated SNP

are non-synonymous coding SNP(2,3): rs470017 (E531K),

rs3213445 (I66V) and rs2269383 (D320G). The coding

polymorphism in CPT2 rs1799821 (V368I) has not been

investigated in association studies so far.

Experimental methods

Study population

The Metabolic Intervention Cohort Kiel is a prospective

population-based cohort study on natural incidence and risk

factors of the MetS. A total of 755 men aged 45–65 years

were randomly recruited via the registration register of the

town of Kiel, Germany. The majority (83%) of subjects were

older than 55 years. Exclusion criteria were known diabetes,

liver diseases, intestinal absorption disorders, renal diseases,

intestinal surgery within the last 3 months, thyroid disorders

and hormone therapy. A group of 714 volunteers underwent

a clinical examination including measurement of pulse,

blood pressure, weight, height, waist circumference and hip

circumference. At inclusion in the study, all participants

were guided by a physician to complete a standardised ques-

tionnaire concerning individual and family history, including

lifestyle data such as physical activity, dietary habits

(frequency of fish, meat, vegetable, fruit consumption per

week, intake of low-fat and fibre-rich products), smoking

and alcohol consumption. Participants were instructed not to

change their eating habits and not to use any dietary sup-

plements of vitamins and minerals, or special oil preparations,

and not to follow a special diet at least 3 d before and during

the test meals. Furthermore, participants were instructed to

restrain from abnormally high physical activity and excessive

alcohol consumption (the day before the study). Assessment

of the MetS was based on the criteria of the International Dia-

betes Federation(5). Volunteers underwent an oral metabolic

tolerance test and an oral glucose tolerance test at different

days with a minimum of 3 d in between. The present study

was conducted according to the guidelines laid down in the

Declaration of Helsinki and all procedures involving human

subjects were approved by the Ethics Committee of the Medi-

cal Faculty, Christian-Albrechts University of Kiel. Written

informed consent was obtained from all subjects. The detailed

design and methodology of the study and characteristics of the

cohort have been described elsewhere(6).

Oral glucose tolerance test

A 75 g oral glucose tolerance test was performed, following a

12 h overnight fast and after dietary advice was given to

ensure a carbohydrate intake of .150 g/d over the previous

3 d. Blood samples for glucose and insulin were taken

before and at 30, 60, 120, 180 and 240min after the glucose load.

Oral metabolic tolerance test

An oral metabolic tolerance test provided by Nutrichem diät þ
pharma GmbH was performed as described elsewhere(6).

In brief, after a 12 h fasting period and withdrawal of the

fasting blood sample, the subjects drank 500ml of the oral

metabolic tolerance test containing the following ingredients:

30 g protein (11·9% energy), 75 g carbohydrate (29·6%

energy; 93% sucrose and 7% lactose), 58 g fat (51·6%

energy; 65% SFA and 35% unsaturated fatty acids), 10 g

alcohol (6·9% energy), 600mg cholesterol and 9mg retinol

(31·5mmol) in the form of retinyl palmitate. The total energy

content was 4255 kJ. Before and at 0·5, 1, 2, 3, 4 and 5 h

after ingestion, blood samples were drawn for the analysis

of insulin, glucose and TAG, and at 6, 7, 8 and 9 h after

ingestion for the analysis of TAG and NEFA.

Laboratory analyses

After the meals, blood samples were taken on ice and centri-

fuged, and plasma and serum were deep frozen for later

analysis. Serum was used for the determination of insulin,

TAG and NEFA and fluoride plasma for glucose determination.

Leucocytes and Hb were assessed in EDTA blood. Other para-

meters were assessed in lithium-heparin plasma.

Lipid, glucose and insulinmeasurements havebeendescribed

previously(6). Serum NEFA were analysed enzymatically

(Wako). Homeostatic model assessment-insulin resistance

was calculated as glucose (mmol/l) £ insulin (mU/l)/135(7).

Postprandial insulin sensitivity was assessed by the oral glucose

insulin sensitivity test according to Mari et al.(8); this index

correlated strongly with insulin sensitivity assessed by glucose

clamping, the ‘gold standard’ method. The fatty liver index

(FLI) was calculated as follows(9):

FLI ¼ ðe0·953£log e ðTAGÞþ0·139£BMIþ0·718£log e ðGGTÞ

þ0·053£waist circumference215·745Þ=
ð1þ e0·953£log e ðTAGÞþ0·139£BMIþ0·718£log e ðggtÞ

þ0·053£waist circumference215·745Þ £ 100:

Genetic analysis

SNP selection was based on literature reports and on the dbSNP

database. We selected all polymorphic missense variants, which

were catalogued in the dbSNP database within the CPT1b and

CPT2 genes at this time. Eventually, five SNP were genotyped,
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of which four SNP that had a minor allele frequency (MAF)

.1% were included in the analyses (Table 1).

DNA was isolated from buffy coat (100ml) using E.Z.N.A.w

Blood DNA MiniKits (Peqlab Biotechnologie) according to

the manufacturer’s instructions. Genotyping of CPT1b I66V

(rs3213445), CPT1b G320D (rs2269383), CPT1b K531E

(rs470117) and CPT2 V368I (rs1799821) polymorphisms was

performed with the TaqMan system (ABI). TaqMan analysis

was performed as described elsewhere(10).

Statistical analysis

Allele and genotype frequencies were determined by gene

counting. The study populations were tested for the distribution

of genotypes according to the Hardy–Weinberg equilibrium

with a x 2 test. As obesity has been shown to have an impact

on the outcome of CPT1b polymorphisms(2), metabolic par-

ameters were adjusted for BMI. Between-group comparisons

were analysed in a crude model using the Mann–Whitney

U test since the probability plot of standardised residuals was

not normally distributed. SPSS (PASW Statistics 18, version

18.0.0; SPSS, Inc.) was used for statistical analyses. Linkage dis-

equilibrium statistics between genetic variations were com-

puted using Haploview(11). Haplotype analysis was conducted

using the HPlus program(12). Differences were considered

significant at P,0·05.

Results

Subject characteristics and CPT1b and CPT2 gene variants

The genotype distributions of genetic variations in the CPT1b

and CPT2 genes were in compliance with the Hardy–

Weinberg equilibrium. It was observed that two coding SNP

(I66V and E531K) in CPT1b and one coding SNP (V368I) in

CPT2 had a minor allele frequency above 5%, and therefore

they were selected for subsequent genetic analysis (Table 1).

Only two subjects were homozygous for the rare V66V

allele and were combined for statistical analysis with I66V

heterozygotes. There was no difference between the genotypes

regarding their dietary habits (data not shown).

Association of carnitine palmitoyltransferase variants with
traits of the metabolic syndrome

None of the investigated SNP was associated with BMI or waist

circumference. There also was no association with blood

pressure values after adjustment for BMI (Table 2). Carriers

of the rare 66V allele had higher g-glutamyl transpeptidase

(GGT) (P,0·001), glutamic oxaloacetic transaminase (GOT)

(P¼0·030) and glutamic pyruvate transaminase (GPT) activity

(P¼0·048) concomitant with an elevated FLI (P¼0·026) in

comparison with I66I homozygotes. Total cholesterol

(P¼0·051) and LDL-cholesterol (P¼0·062) tended to be

higher in 66V-allele carriers.

Subjects carrying the 66V allele showed higher TAG concen-

trations in the fasted state (P¼0·007) and after ingestion of a

mixed meal (Table 2; Fig. 1). Incremental TAG AUC was not

significantly different (P¼0·383). Fasting glucose concen-

trations (P¼0·045) differed between the genotypic groups,

with higher levels in CPT1b 66V carriers. The oral glucose tol-

erance test-based index of insulin sensitivity (oral glucose

insulin sensitivity) was significantly lower in 66V carriers

(P¼0·005), indicating increased insulin resistance in these sub-

jects. Other lipid parameters, postprandial glucose or insulin

were not different between the groups.

Concerning the CPT1b E531K polymorphism, K531K homo-

zygotes presented with significantly lower GGT (P¼0·011),

GOT (P¼0·027) and marginal but not significantly lower

GPT activity (P¼0·078). NEFA concentrations differed signifi-

cantly between the genotypes, with lowest levels for E531E

(P¼0·043). The FLI was lower in K531K homozygosity,

although with borderline significance (P¼0·052). LDL-choles-

terol concentrations tended to be lower in K531K homozy-

gotes when compared with homozygotes and heterozygotes

carrying the common E531 allele (P¼0·057). Other lipid

parameters, fasting glucose and insulin concentrations, and

postprandial TAG, glucose and insulin were not changed.

As CPT1b K531E and I66V are in linkage disequilibrium, an

additional analysis based on haplotypes was performed

(Fig. 2). The polymorphisms in the CPT1b gene (rs470017

and rs3213445) showed intermediate concentrations of

gametic linkage disequilibrium (D0 ¼ 1·0 (confidence bound

0·82–1), r 2 0·047). Moreover, three haplotypeswith a frequency

ofmore than1%weredetected (CPT1b-H1-K/I (47·9%), CPT1b-

H2-E/I (47·2%) and CPT1b-H3-E/V (4·9%)) and the results of

the haplotype analysis confirmed the genotype-based compari-

son. Haplotype H1-K/I was significantly less prevalent in

subjects with the MetS compared with the controls (P¼0·023)

under a log-additive model and controlled for BMI (Table 3).

In agreement with these results, the association was significant,

applying the dominant model (OR 0·642; 95% CI 0·429, 0·962;

P¼0·03). On the other hand, haplotype H2-E/I tended to be

associated with MetS risk under a log-additive model

(P¼0·052; Table 3). The dominant model for an association

between the H2-E/I haplotype and MetS risk was not significant

(OR1·299, 95%CI 0·853, 1·978,P¼0·22).HaplotypeH3-E/Vwas

not significantly associated with the MetS under either model

(data not shown).

Concerning the CPT2 V368I SNP, the genotypic groups did

not differ in the investigated anthropometric and metabolic

parameters (data not shown).

Table 1. Selected polymorphisms in carnitine palmitoyltransfer-
ase 1b and 2 (CPT1b/2) located on chromosomes 22 and 1

Gene dbSNP ID Position SNP MAF

CPT1b rs470117 22q13.33 G531L 0·479
CPT1b rs2269383 22q13.33 G320D 0·005
CPT1b rs3213445 22q13.33 I66V 0·050
CPT2 rs1799821 1p32 368V/I 0·410

MAF, minor allele frequency.
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Discussion

In the present study, we performed an examination of poly-

morphisms of the CPT gene family. CPT1 and CPT2 are the

rate-limiting enzymes of long-chain fatty acid b-oxidation in

the mitochondria. The induction of fatty acid oxidation has

been shown to improve insulin resistance and obesity

phenotypes(13). The present data suggest that genetic variants in

the CPT1b gene were associated with traits of the MetS and fatty

liver disease. In our group of middle-aged men, the CPT2 V368I

polymorphism had no impact on the parameters of the MetS.

In accordance with the results from French-Canadian males

and females(2), there were no associations between BMI,

weight and waist girth, and the CPT1b I66V SNP in the present

study group (Table 2). Yet, while obesity was associated with

the CPT1b coding SNP K531E in those French-Canadians(2),

the present findings did not confirm the earlier results. Interest-

ingly, the differences in obesity phenotypes between the K531E

genotypic groups in the French-Canadian study population

were particularly evident when fat intake was high, suggesting

a gene–diet interaction(2). Thus, the discrepancy might be

explained by a lower fat intake in the present study group.

Table 2. Anthropometric, fasting and postprandial metabolic variables according to CPT1b 66I/V and CPT1b 531G/L polymorphisms*

(Mean values with their standard errors)

rs3213445 CPT1b 66I/V rs470117 CPT1b 531E/K

II IV þ VV EE EK KK

Mean SEM Mean SEM P† Mean SEM Mean SEM Mean SEM P‡

n 613 66 185 337 157
Age (years) 58·73 0·26 60·02 0·61 0·102 59·22 0·37 58·77 0·36 58·59 0·56 0·799
Waist circumference (cm) 100·20 0·49 100·64 1·18 0·564 100·66 0·83 100·46 0·65 99·28 0·98 0·397
BMI (kg/m2) 27·42 0·17 27·55 0·43 0·564 27·49 0·30 27·49 0·21 27·22 0·36 0·397
Systolic blood pressure (mmHg) 128·94 0·75 132·95 2·38 0·124 130·02 1·26 127·90 1·03 131·58 1·60 0·092
Diastolic blood pressure (mmHg) 80·38 0·45 80·08 1·47 0·477 80·49 0·76 80·07 0·63 80·79 0·91 0·678
GGT (nkat/l) 422·4 14·8 590·1 70·0 ,0·001 4464·1 24·5 449·4 25·2 385·9 22·0 0·011
GOT (nkat/l) 149·4 3·2 158·4 6·3 0·030 151·5 4·8 155·9 5·0 136·4 4·3 0·027
GPT (nkat/l) 231·2 5·8 255·9 16·2 0·048 244·9 10·8 237·9 8·3 211·2 8·8 0·078
Fatty liver index 50·61 1·09 58·36 3·12 0·026 53·97 1·89 51·53 1·51 47·92 2·13 0·052
Total cholesterol (mmol/l) 5·83 0·04 6·20 0·15 0·051 6·05 0·08 5·82 0·06 5·74 0·07 0·157
HDL-cholesterol (mmol/l) 1·39 0·02 1·36 0·05 0·618 1·38 0·03 1·37 0·02 1·42 0·03 0·623
LDL-cholesterol (mmol/l) 3·70 0·03 3·90 0·09 0·062 0·04 0·00 0·04 0·00 3·64 0·06 0·057
TAG (mmol/l) 1·56 0·04 1·99 0·22 0·007 1·73 0·11 1·56 0·05 133·84 6·47 0·7
NEFA (mmol/l) 0·43 0·01 0·41 0·02 0·394 0·4 0·01 0·44 0·01 0·44 0·02 0·043
Glucose (mmol/l) 5·82 0·04 6·06 0·13 0·045 5·84 0·05 5·86 0·05 5·79 0·07 0·633
Insulin (pmol/l) 103·8 3·2 106·9 6·3 0·268 100·3 4·5 108·5 4·7 99·0 5·2 0·817
HOMA-IR 3·88 0·15 4·14 0·3 0·158 3·72 0·2 4·12 0·22 3·65 0·22 0·588
OMTT

TAG (AUC mmol/l £ h) 19·2 0·4 23·7 2·2 0·009 21·0 1·1 19·6 0·5 18·2 0·6 0·491
TAG (AUCi mmol/l £ h) 6·24 0·14 6·46 0·36 0·393 6·39 0·27 6·47 0·19 5·66 0·24 0·087
NEFA (AUC mmol/l £ h) 4·41 0·05 4·20 0·12 0·130 4·34 0·08 4·42 0·07 4·39 0·09 0·543
Glucose (AUC mmol/l £ h) 28·7 0·2 30·6 1·0 0·201 28·6 0·4 29·1 0·3 28·8 0·4 0·690
Insulin (AUC mU/l £ h) 204·1 7·0 229·0 20·1 0·224 213·4 13·3 202·1 8·0 208·0 16·7 0·925

OGTT
Glucose (AUC mmol/l £ h) 25·7 0·3 27·4 1·0 0·139 25·9 0·5 25·8 0·4 25·8 0·5 0·673
Insulin (AUC mU/l £ h) 171·9 5·5 177·4 11·9 0·376 179·8 11·0 173·8 7·0 161·0 9·6 0·876
OGIS (ml/min per m2) 363·9 2·5 339·4 9·1 0·005 359·1 4·6 361·3 3·6 365·0 5·0 0·559

CPT, carnitine palmitoyltransferase; HOMA-IR, homeostatic model assessment-insulin resistance; OMTT, oral metabolic tolerance test; AUCi, incremental AUC; OGTT, oral
glucose tolerance test; OGIS, oral glucose insulin sensitivity.

* Parameters were adjusted for BMI.
†P values for mean differences between the CPT1b 66I/V genotypes (Mann–Whitney U test).
‡P values for mean differences between the CPT1b 531E/K genotypes (Mann–Whitney U test).
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Fig. 1. Fasting and postprandial TAG concentrations after an oral metabolic

tolerance test in II-homozygotes ( ) compared with V-allele carriers ( )

of the 66I/V polymorphism. Values are means, with their standard errors

represented by vertical bars. *Mean values were significantly different from

those of II-homozygotes (P,0·05) after controlling for BMI.
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Unfortunately, data on dietary fat intake in Metabolic Interven-

tion Cohort Kiel participants have not been collected.

We further addressed the associations of genetic variations

in the CPT1b gene with traits of the MetS other than obesity.

Thus, the coding polymorphism I66V presented with higher

liver enzymes and FLI, suggesting this SNP to be involved in

the development of hepatic steatosis. This is further supported

by higher fasting and postprandial lipid parameters and insu-

lin resistance (Table 2). Moreover, the lacking difference

obtained when TAG incremental AUC was calculated

(Table 2) indicates an accelerated clearance of TAG and a

shortened residence time in the circulation(14) or lower VLDL

synthesis in the fasting state. In contrast, the minor allele

of K531E was associated with lower liver enzymes and FLI

concomitant with lower total cholesterol and LDL-cholesterol

concentrations (Table 3). These associations were indepen-

dent of underlying obesity for which the results were adjusted

for. Strong evidence is accumulating that b-oxidation, which is

dependent on fatty acid transport by CPT1, plays a crucial

role in the development of insulin resistance and fatty liver.

Inhibition of CPT1b has been reported to induce intramyocel-

lular lipid accumulation and insulin resistance(15), while

CPT1b overexpression in rats ameliorated lipid-induced,

muscle-specific insulin resistance via a reduction of lipid

intermediates(16). Indeed, elevated oxidative capacity is able to

inhibit the generation of lipid intermediates such as diacylgly-

cerol and ceramides, resulting in improved insulin signal-

ling(16,17). Muscle-specific insulin resistance in mice leads to the

redistribution of substrates to the adipose tissue, which resulted

in obesity and an increase in plasma TAG concentrations(18).

Petersen et al.(19) demonstrated in young, lean insulin-resist-

ant subjects that skeletalmuscle insulin resistance causedathero-

genic dyslipidaemia and hepatic steatosis by redirected ingested

carbohydrates away from muscle glycogen synthesis into hepa-

tic de novo lipogenesis. Accordingly, inhibited muscle fatty acid

oxidation induced by a potential loss-of-function of CPT1b in

subjects carrying the rare 66V allele might explain the higher

risk for fatty liver, elevated lipid parameters and insulin resist-

ance which was most pronounced after a glucose load.

Altogether, a deleterious role of the rare 66V allele for the MetS

might be suggested. The opposite might apply for E531E homo-

zygosity comparedwith carriers of the 531K allele (Table 2). The

haplotype analysis suggested that haplotype H1-K/I protects

from the MetS when compared with the less frequent haplotype

(Table 3). H1 andH2 include both variants of I66, but are associ-

atedwith contrastingOR (0·737 v. 1·300). This does not support a

functional roleof this I66Vpolymorphism.A lowOR forH1anda

highOR forH2 andH3, however,may indicate a relevance of the

E531K polymorphism. The biological relevance for the present

findingsmight be interpretedwith the help of the corresponding

CI.Hence,H1 andH2presentedwith a verynarrowCI and there-

fore might prove the biological relevance of these haplotypes.

Yet, this is in contrast to another study showing decreased

skeletal muscle fat and increased subcutaneous fat in Carib-

bean men with minor CPT1b 531K but also the 66V allele(3).

According to this study, the allelic and genotypic distribution

of the CPT1b SNP was considerably different between Euro-

pean and African ancestry populations. Moreover, linkage dis-

equilibrium between the two SNP in African ancestry is not

known. This might explain the somewhat conflicting results.

The functional impact of CPT1b genetic variants on CPT1b

enzyme activity has been investigated(20); however, there

Table 3. OR for the metabolic syndrome by haplotypes in the CPT1b gene under the log-additive model*

(Odds ratios and 95% confidence intervals)

Haplotype Control genotype frequency (n 403) Case genotype frequency (n 276) OR 95% CI P

H1-K/I 0·505 0·442 0·737 0·566, 0·958 0·023
H2-E/I 0·450 0·504 1·300 0·998, 1·693 0·052
H3-E/V 0·045 0·054 1·252 0·725, 2·296 0·404

CPT, carnitine palmitoyltransferase.
*Only haplotypes with a frequency more than 1% are considered.
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Fig. 2. Pairwise linkage disequilibrium between SNP in the CPT2 gene

using the coefficient r 2. r 2 and haplotypes were constructed using Haploview

4.2. (A colour version of this figure can be found online at www.journals.

cambridge.org/bjn)
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was no remarkable alteration in enzymatic properties due to

the substitution of amino acids. Thus, the associations found

in the present study group might be reflected by the associ-

ations of other not yet identified variations. Recently, two

genome-wide association studies were performed for the

MetS(21,22). CPT1b or CPT2 has not been reported as signifi-

cant gene loci to be associated with the MetS. However,

genome-wide association studies can only be successful if

the so-called ‘common-disease common-variant’ hypothesis

is valid. This hypothesis assumes that most of the genetic

risk for common complex diseases is caused by a small to

medium number of disease loci that have common variants.

This means that many rare variants cannot be found with

genome-wide studies, although of biological relevance(23).

In summary, the present study confirms the association of

genetic variants in the muscle-specific CPT1b gene with traits

of the MetS. Particularly, haplotype H1-KI seems to be relevant

in terms of insulin sensitivity and hepatic steatosis. Haplotype

analysis suggests a relevance of the CPT1b E531K polymorph-

ism or a gene in linkage with this SNP in their pathogenesis.
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